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Abstract: Plot-based sampling with ground measurements or photography is typically used 
to establish and maintain National Forest Inventories (NFI). The re-measurement phase of 
the Canadian NFI is an opportunity to develop novel methods for the estimation of  
forest attributes such as stand height, crown closure, volume, and aboveground biomass 
(AGB) from satellite, rather than, airborne imagery. Based on panchromatic Very High 
Spatial Resolution (VHSR) images and Light Detection and Ranging (LiDAR) data 
acquired in the Yukon Territory, Canada, we propose an approach for boreal forest stand 
attribute characterization. Stand and tree objects are delineated, followed by modeling of 
stand height, volume, and AGB using metrics derived from the stand and tree crown 
objects. The calibration and validation of the models are based on co-located LiDAR-
derived estimates. A k-nearest neighbor approach provided the best accuracy for stand 
height estimation (R2 = 0.76, RMSE = 1.95 m). Linear regression models were the most 
efficient for estimating stand volume (R2 = 0.94, RMSE = 9.6 m3/ha) and AGB (R2 = 0.92, 
RMSE = 22.2 t/ha). This study was implemented for one Canadian ecozone and 
demonstrated the capacity of a methodology to produce forest inventory attributes with 
acceptable accuracies offering potential to be applied to other boreal regions. 

Keywords: panchromatic; sample; LiDAR; boreal; forest; crown; modeling; height; 
volume; biomass; Landsat 
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1. Introduction 

Accurate forest information is required by a broad range of stakeholders to meet myriad information 
needs [ 1]. For instance, government institutions require forest inventory information to meet reporting 
and planning responsibilities [ 2]. Industrial forestry agencies require forest inventory data to make 
long term projection of volume, as well as to plan harvesting and field operations. Additionally, the 
roles of forests in regulating air quality, water flow, and climate regulation is well recognized [ 3]. 
Therefore accurate information on forest composition and structure is necessary. 

National Forest Inventories (NFI) have been established by most countries to monitor and report on 
forest resources for national and international purposes [ 1]. In Canada the NFI is a key program of the 
Canadian Forest Service (CFS) dedicated to the production of information related to the structure and 
condition of Canada’s forests [ 4]. Canada’s forest area occupies approximately 400 million ha [ 5], 
representing an estimated 27.3 billion tonnes of biomass [ 6]. This area includes 196.3 million ha of 
boreal forest [ 6] for which limited coverage with aerial photography is available mainly due to 
financial and logistical constraints [ 7]. Forests in the northern reaches of the boreal have low productivity 
and are accompanied by low densities of human population, and as a result, there is a lack of an 
operational imperative for air photo data collection and forest inventory development.  

In Canada, forest stewardship responsibilities are primarily held by provinces and territories. Each 
jurisdiction has an inventory program to support planning and management activities. Federally, via a 
sample-based NFI, there is a process to standardize measures and definitions across jurisdictions and to 
support collection of additional data to ensure appropriate sample coverage and to support national and 
international reporting obligations [ 2, 4]. The sample based inventory is a systematic survey of 2 × 2 km 
photo plots on a 20 km national grid. This configuration results in a 1% sample of Canada’s land mass. 
A subset of ground plots is also collected in support of quality control and calibration of photo plots as 
required. Photo plots are akin to subsets of polygon-based forest inventory data [ 4]. In the southern 
portion of the country, where forests are more actively managed, photo plot information is typically 
acquired from manual interpretation of air photos. In the north, satellite data has been used to supply 
photo plot information, either from classified satellite imagery (a Landsat based land cover product [ 8]) 
or, more recently, from Very High Spatial Resolution (VHSR, <1-m spatial resolution) WorldView or 
QuickBird imagery [ 9]. National transects of Light Detection and Ranging (LiDAR) data have also 
been collected to provide field plot-like information over remote areas to enable model calibration and 
validation [ 10]. Such data sources are intended to address the lack of inventory data in northern 
Canada and supplant the forest attribute estimates derived from look-up tables (LUT) developed as 
part of the Earth Observation for Sustainable Development of forests (EOSD) project [ 8]. Furthermore 
these data sources are intended to enable greater consistency between the inventories of Canada’s 
northern and southern forests. 

Characterization of a wide range of forest information such as stand type, crown closure, height, 
volume, and biomass with the use of optical satellite imagery has been proven feasible operationally for 
NFIs such as in northern Canada [8, 11], Finland [ 12] and Sweden [ 13]. Airborne LiDAR also has a 
demonstrated ability to provide metrics from which accurate stand attribute estimates can be derived for 
large areas [ 14, 15]. More specifically, LiDAR data has been used in sample-based protocols allowing the 
estimation of forest attributes outside the area covered by the LiDAR swath. Empirical and semi-empirical 
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relationships were established between LiDAR metrics and other remote sensing-derived metrics from 
optical satellite imagery that enable a larger spatial coverage of the ground [ 16, 17]. 

Falkowski et al. [ 9] proposed a series of recommendations, indicating the necessity to automate 
image processing techniques whenever possible, with manual interpretation of some difficult-to-capture 
parameters being considered when automation is not possible, inconsistent, or unreliable. Based on the 
framework proposed by Falkowski et al. [ 9], additional methodological developments have been 
undertaken towards automated attribute estimation requirements. For instance, Mora et al. [ 18] 
implemented a stand height estimation approach based upon an initial stand delineation procedure 
followed by calibration with photo-interpreted heights. This procedure used a segmentation method to 
create forest stands from VHSR imagery. Individual tree crown (ITC) isolation [ 19] was then 
implemented to generate individual tree objects. To enable stand level attribution, the distributions of 
crown objects within segments were related to stand level measurements. Using the distribution of 
crown objects in the approach is intended to make the routine more robust to outliers and capitalize 
upon image spatial information. Algorithm development with a preference towards spatial information 
is aimed to reduce the reliance on spectral information (that can be influenced by the sensor used, 
calibration approach, acquisition date, and sun-surface-sensor geometry, as examples).  

In this research we have focused on further development and extension of the Mora et al. [ 18] protocol 
to be calibrated and validated using airborne LiDAR-based stand heights in place of photo-interpreted 
heights. The relationship between LiDAR measures and stand structure is illustrated well in Frazer et al. [ 20]. 
Further, in this study we have aimed to expand the set of stand attributes predicted to make estimates of 
height, volume, and biomass. To meet these goals, we have developed a logic and processing chain that 
enables the extrapolation of structural characteristics from plot-calibrated LiDAR measures to statistical 
descriptions of segment constrained individual tree crowns. First, we build models relating LiDAR-derived 
metrics to the field measurements; we then apply the models to predict inventory attributes for all areas 
covered by the LiDAR acquisition, and then we build models relating image-derived metrics (including 
ITC metrics) to the LiDAR predictions. Finally, we apply the models to predict inventory attributes 
(including height, biomass, and volume) over the entire forested area of the imagery.  

In this communication we demonstrate the logic and required processing chain designed to predict 
boreal forest stand height, volume, and biomass. A key innovation is the use of transects of LiDAR data 
to calibrate and independently validate the predicted forest structural outcomes. The use of LiDAR data 
in this manner allows for a larger sample size than is typically possible in the northern regions of Canada, 
as well as the independent validation of predicted stand level structural estimates. The accuracy of the 
model estimates are assessed by a comparison with independent stand height, volume, and biomass 
estimates derived from LiDAR-based models. Although the process described is in support of Canada’s 
sample-based NFI VHSR framework, the challenges identified are informative for stand-based forest 
inventories in general, especially areas not subject to systematic and regular inventory. 

2. Material and Methods 

2.1. Study Area  

The Boreal Cordillera has been chosen as a test ecozone [ 21] for this research. The Boreal 
Cordillera is characterized by a climate ranging from cold and sub-humid to semi-arid. The study site, 
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near Watson Lake, has an annual mean temperature of −2.9 °C, with mean monthly daily means 
ranging between −24.2 °C (January) and 15.1 °C (July) [ 22]. Over the Boreal Cordillera the mean 
annual precipitation ranges from less than 300 mm in valleys shadowed by coastal mountain ranges, to 
more than 1,500 mm at higher elevations. The topography of the Boreal Cordillera ecozone includes 
mountains, extensive plateaus, and wide valleys and lowlands. Glaciation, erosion, solifluction, and 
eolian and volcanic ash deposition have altered the topography. Glacial drift, colluvium, and outcrops 
are the most common surface materials. Permafrost is widespread in the more northern areas of the 
ecozone. Depending on local conditions, tree species include black spruce (Picea mariana), white 
spruce (Picea glauca), lodgepole pine (Pinus contorta), subalpine fir (Abies lasiocarpa), balsam poplar 
(Populus balsamifera), quaking aspen (Populus tremuloides), and paper birch (Betula papyrifera). 
Wildfire, insects, and, to a lesser extent, forest harvesting are the primary forest disturbances in the 
Yukon Territory. Two photo plots located in southern Yukon Territory have been chosen based on the 
availability of spatially coincidence of panchromatic VHSR and transects of LiDAR data (Figure 1). 

Figure 1. Study site location. Spatial distribution of the ecozones of Canada, Sites 1 and 2: 
Very High Spatial Resolution (VHSR) image overlaid by stand segments and LiDAR points. 

 

2.2. Data  

Panchromatic optical satellite images were acquired for each of the two sites considered in this 
study. A panchromatic (0.45–0.9 μm) QuickBird-2 image (0.6 m spatial resolution) was acquired for 
site 1 and a panchromatic (0.4–0.9 μm) image from WorldView-1 (0.5 m spatial resolution) was 
acquired for site 2. Table 1 summarizes the acquisition parameters for each image. Panchromatic 
VHSR images have the advantage of being less costly than multi-spectral data while also providing a 
sufficient amount of information to enable the characterization of tree objects. This methodological 
aspect is critical when considering large-area forest inventories, whether they are sample-based or  
area-wide. Images were converted to top-of-atmosphere (TOA) spectral radiance following Krause [ 23, 24]. 
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LiDAR data were acquired in the summer of 2010 during a national airborne mission across the 
boreal forests of Canada from 14 June to 20 August 2010 [ 10]. The CFS working with Applied 
Geomatics Research Group (AGRG) and the Canadian Consortium for LiDAR Environmental 
Applications Research (C-CLEAR) acquired 34 transects of small-footprint discrete return airborne 
LiDAR data. The collection of LiDAR data was designed to preferentially intersect NFI plot locations 
where acquisition of VSHR images was prioritized previously. The survey resulted in the collection of 
more than 25,000 km of LiDAR data, with a swath width that typically exceeded a specified minimum 
of 400 m, and a nominal point density of 3 points per m2 (for survey details see [ 26]). Priority areas 
included ecozones largely located in the boreal zone, greater than 50% forested, and less than 75% 
managed. A total of 34 individual survey flights were completed traversing 13 UTM zones, from 
Newfoundland (56°W, UTM zone 21) in the east to the Yukon (138°W, UTM zone 8) in the west. 
Latitudinally, the flights extended from 43° to 65°N. An Optech Airborne Laser Terrain Mapper 
(ALTM) 3100C discrete return sensor was used for this survey. Survey flights were made between 
airports with suitable runways, fuel availability, and maintenance facilities, and ranged from one to 
five hours in duration. The average transect length was 700 km. Table 2 provides a summary of the 
LiDAR survey flights and sensor characteristics. Separation of returns into ground and non-ground 
classes was completed using a purpose-developed method based on [ 27].  

Table 2. Summary of LiDAR survey flight and sensor parameters. 

Attribute Value 
Platform PA31 Piper Navajo 

Flying height (m) 450 to 1,900 m 
Sensor ALTM 3100C 

Maximum number of returns 4 
Laser wavelength (nm) 1,064 

Pulse repetition frequency (kHz) 50 or 70 
Maximum scan angle (degrees) ±20 
Beam divergence angle (mrad) 0.3 

Footprint diameter (m) Varying according to altitude of flight 
Average swath width (m) 630 

Average nominal ground return density (returns/m2) 2.8 

2.3. Calculation of LiDAR Metrics and Plot-Level Attributes 

LiDAR metrics characterizing the laser point cloud (e.g., canopy cover, mean-, maximum-, and 
percentiles of height, among others) were calculated for 25 × 25 m grid cells (hereafter LiDAR plots; [ 10]) 
along the LiDAR transect using FUSION software [ 28]. Metrics were calculated using first return data 
above a two meter height threshold to distinguish vegetation hits from ground hits [ 29, 30].  

Field data were acquired from 201 forest inventory ground plots in Quebec, Ontario, and the 
Northwest Territories, and captured a representative range of boreal forest stand conditions. Ground plots 
had an area of 400 m2 and forest attributes were calculated using all stems greater than 9 cm in diameter. 
Tree height metrics and basal area were estimated for the ground plots using regionally appropriate 
standard inventory and mensuration equations. Using field-measured height and diameter at breast height 
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(DBH), gross stem volume was estimated for individual trees using Equation (1) ([ 31]; p. 582]. Plot 
volumes were calculated as the sum of the individual tree volumes using a paraboloid model. 

2

80, 000
bV HDπ ×

= ×  (1) 

where V is the stem volume in m3, Db is the DBH in cm, and H is the tree height in m. Finally, biomass 
tree components were estimated using DBH- and height-based all-species equations from [ 32, 33]. Plot 
biomass was calculated as the sum of the individual tree biomasses obtained via the summation of the 
tree component biomasses. Readers with additional interest in the relationship between LiDAR point 
clouds and the spatial summarization metrics developed in relation to stand structure are referred to 
Frazer et al. [ 20]. It is the LiDAR derived metrics that provide independent variables in predictive 
models of forest attributes developed.  

Based on the statistical relationships between the aforementioned LiDAR metrics and ground plot 
attribute estimates, plot-level estimates of dominant height, gross stem volume, and total aboveground 
biomass (AGB) were then generated for the area covered by the LiDAR data using multiple linear 
regression models [ 10]. Predictors were selected for their low inter-correlations and biological 
relevance [ 34]. Akaike’s Information Criterion [ 35] was employed to support selection of the most 
parsimonious models [ 36].The final models for dominant height (DH) (R2 = 0.84, RMSE = 1.63 m, 
RMSE-% = 9), gross stem volume (VG) (R2 = 0.8, RMSE = 68.5 m3/ha, RMSE-% = 25) and total AGB 
(AGBT) (R2 = 0.76, RMSE = 33.7 t/ha, RMSE-% = 24) are given in Equations (2–4) respectively: 

DH = exp(0.7247 + (0.7222 × ln(Lhp95)) + (0.0548 × ln(CC2m))) × 1.0036 (2) 

VG = exp(−2.79766 + (1.411911 × ln(Lhmean)) + (0.31286 × ln(LhCV))  
+ (0.28910 × ln(CC2m))) × 1.0401 

(3)

AGBT = exp(4.1060 + (1.6788 × ln(Lhmean)) + (0.2158 × ln(LhCV))  
+ (0.2726 × ln(CC2m))) × 1.0376 

(4)

where Lhp95 is the 95th percentile of the first return heights, CC2m is the percentage of first returns 
above 2 m, Lhmean is mean first return height, LhCV is the coefficient of variation of first return heights, 
and CC2m is the percentage of first returns above 2 m [ 10].  

2.4. Calculation of Stand-Level Metrics  

Based on the VHSR images, delineation of homogeneous vegetation patterns, forest stand 
identification and tree crown delineation steps were implemented following the approach described 
in [ 18]. We used commercial image segmentation software (Definiens Cognition Network Technology®, 
München, Germany; [ 37, 38]) to delineate segments that can be further related to homogeneous forest 
conditions [ 39] and associated with LiDAR metrics. Once segmented, each unit is attributed to a land 
cover class as defined per NFI and EOSD project standards [ 40]. Over the VHSR image extents the 
potential classes include: treed, herb, shrub, bryoid, wetland, exposed land, rock, snow-ice (not present), 
and water. The classification was verified to ensure the appropriateness of the class assignments. Next, a 
tree crown delineation procedure was implemented using the Individual Tree Crown (ITC) suite [20] for 
all the treed segments. The threshold values that determine whether a pixel belongs to a tree crown or the 
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surrounding shadow or understory were iteratively adjusted for each image according to the vegetation 
distribution and structure, sun-surface-sensor geometry, and solar conditions present. 

The next step comprised the calculation of a series of stand-level statistics based on the grey level 
values of the panchromatic images, including median, mean, standard deviation, and range in the treed 
segments. A second series of stand-level statistics was calculated based on the ITC-based metrics, and 
include crown closure, mean crown size (i.e., crown area), and the 25th, 50th, 75th, and 90th 
percentiles of the crown size distribution. Hereafter percentiles are noted as CX with X the value of the 
percentile (e.g., the 25th percentile of crown size is noted as C25). Prior to the computation of the 
stand metrics–crown closure excepted–crown objects with abnormal sizes were discarded from the 
dataset using the C5 and C95 as upper and lower thresholds respectively. These objects represented 
outliers (e.g., image artifacts or crowns that are beyond local size expectations), often related to 
clusters of trees that could not be separated for objects above the C95 threshold. Additional outlier 
removal was performed on stands with crown closures lower or greater than 3 standard deviations from 
the mean crown closure value (computed over all stands).  

An inner stand buffer of 17.7 m (half of the diagonal length of a 25-m sided square) was applied to 
select the appropriate LiDAR plots that fell within each stand (to avoid selection of LiDAR plots that 
contain returns belonging to neighboring stands). Only stands with at least 10% of their area 
overlapped by LiDAR data and containing a minimum of fifteen 25-by-25 m LiDAR plots were 
considered for model calibration and validation. A weighted average of the dominant LiDAR plot 
height based on the number of LiDAR hits was calculated from the LiDAR plots following the procedure 
from [ 41] to estimate stand height. Stand level volume and total AGB estimates (Equations (2) and (3)) 
were calculated by averaging values from the LiDAR plots within each stand. 

2.5. Height, Volume, and Biomass Modeling  

Stand height modeling was performed with k-NN and linear regression models (Figure 2). In the 
modeling protocol, we identified stand level median grey level value from the VHSR data and the C90 
of crown size distribution as the most suitable input variables. The protocol was based on multiple 
random selections that split the original dataset into calibration (60% of the stands) and validation 
datasets (40% of the stands). These iterative random draws were stratified according to the stand 
crown closure, which is known to influence the calculated stand metrics [ 42, 43]. Modeling methods 
were implemented using the R software [ 44]. The package stats (version 2.13.2) was used for the linear 
regression modeling, and the package yalmpute (version 1.0–15) was used for the k-NN method [ 45]. 
The number of k neighbors to use was estimated based on the computation of one thousand random 
stand selections used as calibration and validation datasets followed by stand height modeling. The test 
was repeated for values of k ranging from 1 to 30. The value of k providing the best stand height 
estimations was selected for the subsequent tests. Varying distance computation methods were tested: 
Euclidean, Mahalanobis, two Most Similar Neighbor methods (noted MSN and MSN2), and an 
independent component analysis based method [ 45]. The final stand height corresponded to the 
average of the height estimates obtained from the k-NN modeling through the required iterations. 
Stand volume and AGB model establishment followed an identical framework as the one used for the 
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stand height modeling with the addition of a stepwise linear regression method introduced as a first 
step to identify the best input metrics amongst the tested predictors. 

3. Results 

3.1. Stand Identification and Stand Metrics 

A total of 309 segments or stands were delineated over the two images, of which 249 were classified 
as forest, including 88 that met the requirements for subsequent use in the calibration and validation of 
the models. The segmentation procedure allowed the generation of forest stands greater than 2 ha in size 
(the NFI standard for minimum stand area [ 46]) and reasonable within-stand LiDAR-derived attribute 
standard deviations of 16% for height (μ = 7.5 m, σ = 1.2 m), 25% for  volume (μ = 60 m3/ha,  
σ = 15 m3/ha), and 28.5% for AGB (μ = 112 T/ha, σ = 32 T/ha). The mean stand area was 9.6 ha. Two 
outlier stands were excluded based on differing median grey level values caused by the presence of 
logging roads and low forest cover density over a portion of the stands (values of 2.6 and 2.7). As a 
result, the calibration and validation datasets had 52 and 34 stands, respectively. The range of crown 
closure values in the final dataset ranged from 34% to 49%. Table 3 summarizes stand metrics obtained 
from the grey level values and the delineated crowns. All forest stands identified were classified as 
coniferous, although some small patches of deciduous trees were identified visually. Over this particular 
study area the establishment of stand type specific models was not required. 

Table 3. Statistics on image grey level values and tree crowns for segment level metrics 
used as inputs to the models. 

Source Data Metric Mean Standard Deviation 

TOA spectral radiance values (W·sr−1·m−2·μm−1) 

median 2.2 0.3 
mean 2.3 0.3 
standard deviation  0.5 0.1 
range  3.7 0.7 

Individual ITC-defined tree crowns 

crown closure (%) 35 15 
mean crown size (m2) 5.4 2.6 
C25 of crown size distribution (m2) 2.8 1.4 
C50 of crown size distribution (m2) 4.5 2.2 
C75 of crown size distribution (m2) 7.3 3.5 
C90 of crown size distribution (m2) 10.4 4.9 

3.2. Stand Height Modeling 

Height models considered the median grey level value in the segment (median_S) and the C90 of 
the stand crown size distribution as input parameters. The mean variance inflation factor (VIF) values 
computed across the iterations equaled 1.95 (σ = 0.1) for the linear regression method (Table 4). A R2 
value of 0.71 and a RMSE value of 2.13 m (RMSE-% = 12.8) were obtained. The distribution of the 
residuals was normal (p = 0.8). No significant difference was found between the estimated and LiDAR 
measured heights for both methods (p > 0.8) and homoscedasticity was verified (p = 0.17). 
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models [ 34] led to the consideration of models based on stand height and crown closure for volume 
and biomass models. Stand height and crown closure are commonly used as predictors for stand 
volume [ 47] and biomass [11, 48] and can also be derived through image processing and modeling. The 
linear regression and k-NN modeling methods were subsequently implemented using this two-metric 
combination (stand height and crown closure). 

The stand volume model based on the linear regression method provided a R2 value of 0.94 with a 
VIF value of 1.08 (Table 6). Figure 4 presents the scatter plots of the best estimated volume values and 
the residuals of the linear regression model versus LiDAR volume values. Normality of the residuals 
was verified for the linear regression model (p = 0.83), homoscedasticity was verified (p = 0.73), and 
no significant difference was found between LiDAR-derived and estimated volumes (p = 0.97).  

Table 6. Stand volume and biomass linear regression model accuracy. 

 R2 RMSE RMSE (%) 
Height ~ CC VIF 
μ σ 

Stand volume 0.94 9.6 m3/ha 12.8 1.08 0.04 
Stand biomass 0.92 22.2 t/ha 15.8 1.08 0.04 

Figure 4. (a) Scatter plot of the best estimated volume values versus LiDAR volume 
values (b) Residuals of the best model versus stand LiDAR volume values. 

 
(a)      (b) 

AGB models had similar trends as stand volume models, with a R2 value of 0.92 with low VIF 
value (1.08). Figure 5 presents the scatter plots of the best estimated AGB values and the residuals of 
the linear regression model versus LiDAR-derived AGB values. For the linear regression method, 
normality of the residuals was verified (p = 0.83), homoscedasticity was verified (p = 0.68), and no 
significant difference was found between estimated and LiDAR-derived values (p = 0.97). 

For the k-NN modeling, the same distance computation methods were tested for the stand volume 
and AGB modeling as those employed for the stand height modeling. K-NN models provided similar 
results as those obtained with linear regression method (Table 7). For both models, the lowest RMSE 
values were provided by the MSN and MSN2 distance computation methods with an R2 of 0.93 for the 
volume models and an R2 of 0.91 for the biomass models. 
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Figure 5. (a) Scatter plot of the best estimated biomass values versus LiDAR biomass 
values (b) Residuals of the best model versus stand LiDAR biomass values. 

 
(a)      (b) 

Table 7. Stand volume and biomass k-NN model accuracies. 

 Distance Method R2 RMSE RMSE (%) 

Stand volume 

Euclidean 0.92 10.5 m3/ha 26.6 
Mahalanobis 0.91 11.3 m3/ha 26.4 

ICA 0.91 11.3 m3/ha 26.4 
MSN 0.93 9.9 m3/ha 26.0 

MSN-2 0.93 9.9 m3/ha 26.0 

Stand biomass 

Euclidean 0.90 24.5 t/ha 31.0 
Mahalanobis 0.89 26 t/ha 30.7 

ICA 0.89 26 t/ha 30.7 
MSN 0.91 22.8 t/ha 30.3 

MSN-2 0.91 22.8 t/ha 30.3 

4. Discussion 

In this study k-NN methods provided better results compared to the linear regression method for 
stand height estimation. Furthermore the influence of the distance calculation method on the results  
(R2 and RMSE) was not found to be statistically significant (t-test) (Table 5). However the k-NN 
method with the Mahalanobis distance provided the best results (R2 = 0.76 and RMSE = 1.95 m 
(RMSE-% = 11.6). The performance of our best model compares favorably with the results of other 
studies modeling stand height with VHSR and discrete return LiDAR data. Chen et al. [ 17] built 
regression models based on spectral, texture, and shadow fraction metrics derived from multispectral 
QuickBird and LiDAR data in Quebec, Canada. Their best model provided a R2 of 0.72 and a RMSE 
of 3.3 m (RMSE-% = 21). Peuhkurinen et al. [ 49] estimated mean stand height using stand-level 
spectral metrics derived from IKONOS imagery and k-most similar neighbors (K-MSN) approach, 
with an RMSE of 3.1 m. Wulder and Seemann [ 16] estimated mean stand height using segmented 
Landsat-5 TM and LiDAR data with a R2 of 0.67 and a RMSE of 3.3 m. Using regression,  
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Maselli et al. [ 50] extended a sample of LiDAR-derived mean stand height estimates over 798 ha area 
using Landsat ETM+ data, resulting in an RMSE of 3.01 m. 

The best volume and AGB models compare well with models previously established in similar 
forest environments. Chen et al. [ 17] obtained a R2 of 0.72 and a RMSE of 52.59 m3/ha for the volume 
model and a R2 of 0.72 and a RMSE of 39.5 tonnes/ha for the biomass. Hall et al. [ 11] proposed a 
method (BioSTRUCT: Biomass estimation from stand STRUCTure) to estimate a series of stand 
metrics for the EOSD initiative that represent the only consistent source of forest information in the 
north of Canada. Applied in Alberta, Canada, the regression models were built based on the same stand 
metrics used in our study (height, crown closure) but were derived from Landsat ETM+ and field plot 
data. In this study from Hall et al. [ 11], an adjusted R2 of 0.71 was obtained with a RMSE of  
74.7 m3/ha for volume. For AGB an adjusted R2 of 0.70 and a RMSE of 33.7 tonnes/ha were obtained. 
A similar approach for AGB estimation considering equivalent input metrics derived from LiDAR data 
has also been used by Næsset and Gobakken [ 51] with canopy density (a measure of the proportion of 
laser echoes >2 m to the total number of echoes) replacing crown closure (R2 = 0.88 and RMSE = 21%).  

Errors in stand height, volume, and biomass estimates may be attributed to a number of factors. 
First, satisfactory model performances were reported by [ 10] for the field-plot inventory attribute 
models (dominant height, gross stem volume and AGB) with R2 values ranging from 0.76 to 0.84 and 
RMSE-% values ranging from 9 to 25. However, a greater number of field plots could have improved 
representation of the diverse forest conditions found throughout the Canadian boreal forests that were 
surveyed, and may have lead to improved model accuracies. Stand-level attribute models would have 
subsequently benefited from more accurate plot-level estimates. Second, as a result of the limited 
number of VHSR images collected in the study area, it was not possible to obtain images with 
equivalent acquisition conditions (off-nadir view angle notably). This causes variability in the results 
of the crown delineation procedure and in the stand-level grey-level statistics for the pool of images 
used to build a given model. Third, the relationship between crown diameter, DBH, and the estimated 
stand attributes [ 52, 53] can be subject to alteration by a series of factors such as age and wind 
conditions. As a consequence, increased variability of the stand-level crown metrics used as model 
input can be expected. Due to a long distance to markets and relatively small trees, the study area has 
only limited harvesting activity with a stand structure that is largely the result of historic wildfire 
conditions. In addition, future applications should aim at considering satellite image acquisition 
angular conditions, rather than solely regional conditions (i.e., ecozone-specific in this study case), for 
constraining algorithm development.  

To mitigate these sources of error, we recommend the purchase of images with equivalent or as 
near-equivalent acquisition conditions, as possible. In addition, we recommend the use of a sufficient 
number of images per ecozone (≥3 from our experience) that intersect with the LiDAR transects to 
obtain sufficient stands for building statistically robust models, while ensuring representativeness of 
forest conditions. A similar reasoning should be applied to the location of the field plots used to 
calibrate the LiDAR data. Moreover, if stand type information is already available for the area of 
interest, one should check stand age, potential disturbances, and ensure a sufficient number of deciduous 
stands will be depicted by the VHSR and LiDAR data. This requirement may be difficult to fulfill for 
every ecozone in northern regions where the presence of deciduous trees may be rare. In addition, it is 
important to provide stand height, volume, and biomass values derived from an iterative process that 
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aggregates multiple estimates to mitigate bias that could result from a single or a low number of 
random stand selections when calibration and validation datasets are generated.  

Currently, when aiming to purchase VHSR imagery for national monitoring purposes we stipulate 
that the cloud cover tolerance over the actual 2 km × 2 km NFI photo plots is zero. Vendors are 
supplied with our national photo plot locations to interrogate the imagery for cloud-free status. We also 
limit the off nadir view angles to a maximum of 15 degrees. The view angle limitations are not 
specified based upon the particular look direction (that is, side to side versus fore/aft pointing). 
Combining these basic constraints serves to limit the number of scenes that can be obtained in a given 
year. While further specifying the desirable criteria for imagery suitable for inclusion in our processing 
chain, we are also mindful that tightening of the criteria will result in increased difficulty in obtaining 
imagery and our capacity to implement a sample based protocol. At present the yield of VHSR 
imagery on an annual basis is limited, and found to be below the number of images required to 
maintain our inventory reporting cycle.  

In building towards this research, the capacity of VHSR imagery to capture forest inventory information 
was undertaken [ 54]. We found that VHSR could be automatically segmented to produce spatial units akin 
to forest stand polygons and that an interpreter could label the stands in a manner similar to traditional 
photography [ 18]. Following a review of the potential for automation of forest inventory practices using 
VHSR [ 9], experimentation demonstrated the utility of within-stand crown objects for characterizing forest 
structural attributes [ 18]. From this base research, a number of the components required of a framework for 
using VHSR imagery to provide otherwise unavailable information in support of the NFI were developed 
and aspects tested in this research. The current focus was upon stand height, volume, and biomass—a 
subset of attributes required for forest inventory and reporting.  

Readers may note that the results achieved in this study using VHSR are similar to results achieved 
in other studies using Landsat (that is, RMSE ~ 3 m, e.g., [ 16, 50]). The question that then arises is 
therefore to what benefit is the cost and effort requirements of the VHSR approach presented herein, 
when the results are similar to results obtained using Landsat data? Moreover, a Landsat implementation 
to generate stand height would likely be simpler, more cost effective, and cover a larger area (with an 
image footprint of 185 km × 185 km rather than the approximate 10 km × 10 km of a typical VHSR 
image). Firstly, inventories require more than height (or volume and biomass for that matter), so the 
ability to interpret additional detailed information from VHSR imagery is an asset. While stand height, 
volume, and biomass do not constitute the entirety of an inventory, each is amongst the more important 
of the suite of attributes that are generated. Stand height information is important for management 
purposes and is indicative of site conditions, while volume is key to industrial forest management and 
biomass is a critical attribute for informing on forest function and carbon-related considerations. If an 
intimation of future recommendations can be suggested, it is that VHSR imagery (and related automated 
processing approaches) may remain focused on locations where jurisdiction-driven inventory programs 
persist, with the photo analogous data provided by the VHSR offering compatibility and similarity in the 
types of information generated. For areas that are not subject to regular management or monitoring 
activities, it is possible that the more limited suite of attributes that can be estimated from Landsat data 
will prove sufficient for many monitoring and reporting needs. Thus, a stratification of activity may be 
possible based upon the monitoring requirements associated with a given area. The ability to 
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characterize large areas with Landsat data for a number of important forest inventory attributes may 
prove sufficient, although additional applications research and contextual consideration is required.  

This work also encourages the further implementation of the protocol to other areas of Canada’s 
boreal forest. The research is aimed to determine if such an implementation for the north of Canada 
may offer an improved monitoring and reporting capacity. We propose that the approach demonstrated 
be considered to support other large-area jurisdictional or national level activities where similar 
characteristics are present. Further, large-area, wall-to-wall characterization with a high level of 
attribute detail are difficult to obtain, with sampling offering a practical, robust, and reliable 
alternative. Future global forest inventory programs may benefit from consideration of the framework 
and methods presented herein. We also note that depending on location and attributes required,  
wall-to-wall mapping with medium spatial resolution data (i.e., Landsat), calibrated and validated with 
samples of LiDAR [ 10], may provide analogous opportunities for systematic and repeatable 
monitoring and reporting activities. 

5. Conclusion 

The objective of this study was to apply, the complete chain of processing steps to produce stand 
level predictions of height, volume, and biomass from Light Detection and Ranging (LiDAR) and 
Very High Spatial Resolution (VHSR) imagery appropriate for a sample based forest inventory. The 
attribute predictions are preceded by the delineation of forest stands, the identification of the stand 
type, and crown closure. The use of LiDAR data allows for a large sample appropriate for model 
calibration and independent validation of attribute predictions. In this research we demonstrated the 
utility of VHSR imagery, calibrated with samples of LiDAR from a transect-based survey, to produce 
stand height (RMSE = 1.95 m), volume (RMSE = 9.9 m3/ha), and biomass (RMSE = 22.8 t/ha) 
estimates with an accuracy suitable for operational activities. This approach using statistics, sampling, 
LiDAR, and satellite imagery demonstrates the state-of-the-art for reporting on remote areas not 
subject to photo-based forest inventory programs. We also note the difference in information content 
between different spatial resolutions of imagery, with opportunities existing for medium spatial 
resolution imagery (i.e., Landsat) if a full forest inventory attribute suite is not required.  
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