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Abstract 22 
 23 

The objective of this study is to provide an approach for assessing the short-term 24 
risk of mountain pine beetle Dendroctonus ponderosae Hopkins (Coleoptera: Scolytidae) 25 
attack over large forested areas based on the spatial-temporal behavior of beetle spread. 26 
This is accomplished by integrating GIS, aerial overview surveys, and local indicators of 27 
spatial association (LISA) in order to measure the spatial relationships of mountain pine 28 
beetle impacts from one year to the next. Specifically, we implement a LISA method 29 
called the bivariate local Moran’s Ii to estimate the risk of mountain pine beetle attack 30 
across the pine distribution of British Columbia, Canada. The bivariate local Moran’s Ii 31 
provides a means for classifying locations into separate qualitative risk categories that 32 
describe insect population dynamics from one year to the next, revealing where mountain 33 
pine beetle populations are most likely to increase, stay constant, or decline. The 34 
accuracy of the model’s prediction of qualitative risk was higher in initial years and lower 35 
in later years of the study, ranging from 91% in 2002 to 72% in 2006. The risk rating can 36 
be continually updated by utilizing annual overview surveys, thus ensuring that risk 37 
prediction remains relatively high in the short-term. Such information can equip forest 38 
managers with the ability to allocate mitigation resources for responding to insect 39 
epidemics over very large areas. 40 

 41 
Keywords: local indicators of spatial association, Moran’s Ii, aerial overview surveys, 42 
mountain pine beetle, insect outbreaks. 43 
 44 
1. Introduction 45 

The mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: 46 
Scolytidae) is the most destructive insect pest of pine forests in western North America 47 
(Safranyik 1988). Since 1999, the insect has affected more than 16 million ha of pine 48 
forests in western Canada (Westfall and Ebata 2010). The current epidemic, largely 49 
located in British Columbia, has resulted in substantial commercial timber loss (Pederson 50 
2004), increase risk to fire and habitat loss (Jenkins et al. 2008, Coops et al. 2009), and 51 
alterations to carbon cycling processes (Coops and Wulder 2010; Kurz et al. 2008; Pfeifer 52 
et al. 2011). In addition, there is concern that the beetle will infest further beyond its 53 
historical range (Sambaraju et al., 2011) as warmer seasonal temperatures exacerbate the 54 
outbreak and permit it to move to higher latitudes and elevations than previously 55 
recorded (Logan et al. 2003), and across the geoclimate divide as defined by the Rocky 56 
Mountain range of North America (Safranyik et al. 2010). Such concerns indicate a need 57 
for risk analyses that can inform forest management decision making over vast areas in a 58 
timely manner.  59 

In British Columbia, the mountain pine beetle mostly attacks lodgepole pine 60 
(pinus contorta) (Flint et al. 2009). The process begins in the summer as beetles emerge 61 
from their host and spend time in flight searching for a new tree to attack. Once located, 62 
the beetle attempts to bore through the bark and release pheromone chemicals to attract 63 
additional beetles to the suitable host (Powell et al. 2000). After boring through the 64 
phloem of the tree, beetles copulate and proceed to dig galleries that are used to oviposit 65 
(Raffa et al. 2008). As beetles bore through the bark, they inoculate the tree with two 66 
types of blue stain fungi that rapidly penetrate living tree cells, thereby impacting the 67 
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capacity for translocation of moisture and nutrients through the tree, consequentially 68 
limiting the ability of the tree ward off attack (Paine et al. 1997; Six and Paine 1998). The 69 
combination of pheromone release and fungi inoculation facilitates a mass attack of 70 
beetles on an individual tree that are needed to overcome a tree’s defensive mechanisms 71 
(Safranyik 2004).  Reproduction ensues in the weeks following tree mortality, and young 72 
beetles then overwinter under the bark and then emerge in the following summer to 73 
repeat the same process. 74 

Individual trees vary in their susceptibility to attack as beetles have preference for 75 
trees that provide ample resources for reproduction and growth while also providing 76 
minimal resistance to attack (Berryman 1978). Trees with larger diameters, for example, 77 
receive relatively higher densities of attack because the rougher bark associated with 78 
larger trees is preferred for initiating galleries (Safranyik 1971), and the thicker phloem 79 
provides protection from predators and extreme temperatures (Reid 1963), thus 80 
increasing the likelihood of progeny survival. Beetles also prefer older trees, generally 81 
over 80 years of age, because their vigor diminishes as age increases (Safranyik 2004). In 82 
addition, dense stands of older trees are preferred as increased competition for resources 83 
comprise their ability to resist attack (Mitchell et al. 1983).  84 
 Identifying forest stands at risk to mountain pine beetle attack aids in the 85 
mitigation and prevention of outbreaks. The term risk in the bark beetle literature has 86 
come to refer to “the short-term expectancy of tree mortality in a stand as a result of 87 
mountain pine beetle infestation” (Shore et al., 2000, p.44), with risk being a function of 88 
both stand susceptibility (i.e., the ability of a stand to support a beetle population) and the 89 
magnitude of surrounding mountain pine beetle populations – often referred to as 90 
population pressure (Bentz et al. 1993). 91 

When beetle infestations expand over large areas as has occurred with the current 92 
outbreak, estimating risk becomes a complicated task because of the data required for 93 
calculating susceptibility. Risk models with a susceptibility component (Amman et al. 94 
1978; Berryman 1978; Mahoney 1978; Schenk et al. 1980, Shore and Safranyik 1992) 95 
rely upon data that provide details concerning, for example, average tree age, tree 96 
diameter, phloem thickness, basal area, crown competition and stand growth. Such data 97 
can be collected and analyzed in a timely manner when infestations remain relatively 98 
small. However, large outbreaks require that risk models be applied over large areas, 99 
which means that models must then rely upon regional inventory records to provide the 100 
necessary data (Robertson et al. 2008). For example the British Columbia Ministry of 101 
Forests, Lands and Natural Resource Operations provides the Vegetation Resources 102 
Inventory (VRI), which is a photo-based, two-phased vegetation inventory with attributes 103 
estimates through a combination of aerial photo interpretation and ground sampling 104 
(BCMSRM 2002). The utility of such inventories becomes increasingly limited when 105 
bark beetle outbreaks cause changes to forest composition (via beetle-induced tree 106 
mortality or harvesting-based mitigation efforts) occur far more swiftly than inventory 107 
updates. This is especially true in British Columbia where the current mountain pine 108 
beetle outbreak has grown swiftly since 2000 (see Figure 1). 109 

 110 
Insert Figure 1 here 111 

 112 
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 In contrast to the data needs associated with estimating susceptibility under large-113 
area mountain pine beetle outbreak scenarios, estimating population pressure under 114 
similar scenarios can be accomplished through the use of a single dataset: forest health 115 
aerial overview survey (AOS) data.  In British Columbia, AOS are annual, systematic 116 
surveys of a broad range of forest health issues. Designed to cover the largest possible 117 
area, the AOS are conducted by trained practitioners in fixed-wing aircraft, who provide 118 
estimates of beetle-induced tree mortality (and other forest health information) (Wulder et 119 
al., 2006). The AOS is a strategic-level data source that is rapidly disseminated to the 120 
public (i.e., within 3 months of survey completion) (Wulder et al., 2009), and that can 121 
serve as a surrogate for beetle population pressure.  Furthermore, because the AOS are 122 
conducted annually, changes in population pressure can be estimated across a region, 123 
which is important for determining if populations are increasing or decreasing in specific 124 
areas in order to prioritize mitigation efforts. 125 

While focusing risk estimates solely on population pressure is only part of the risk 126 
equation, we posit that data on regional population dynamics collected from AOS can aid 127 
in identifying and prioritizing areas of imminent risk to mountain pine beetle infestations 128 
over large areas. As such, this study proposes a GIS-based risk rating system of mountain 129 
pine beetle infestations by integrating multi-year AOS data and local indicators of spatial 130 
association (LISA) (Anselin 1995) for estimating infestation risk at a regional scale. We 131 
extend previous applications of LISA for estimating mountain pine beetle infestations 132 
(Nelson and Boots 2008) by applying the bivariate local Moran’s Ii to determine local 133 
spatial relationships in beetle infestations in subsequent years. The objective of 134 
developing a regional risk rating system based on surrogate measures of population 135 
pressure across multiple years is to inform management of where lies increasing, constant 136 
or declining risk. As mountain pine beetle population dynamics are controlled by 137 
numerous local and regional processes that interact with each other over time, it is 138 
difficult to project where populations will arrive, increase or diminish from one year to 139 
the next over a region without examining the spatial and temporal distributions of 140 
populations. We anticipate that this regional risk rating system will be able to be used in 141 
unison with more localized data on susceptibility characteristics in order to provide a 142 
more effective means of mitigating outbreaks. 143 
 144 
2. Methods 145 
2.1 Study Site and Data 146 

The study site (see Figure 2) is defined by the distribution of lodgepole pine in 147 
British Columbia, which is an area covering approximately 30 million hectares of the 148 
provinces’ 95 million hectare land mass (BC Ministry of Forests 2004). The pine 149 
distribution data exists as a 1km resolution raster grid in which each cell is represented by 150 
the estimated percentage of pine at that location. The dataset was developed by Robertson 151 
et al. (2009) to support estimates of the compositional change of pine forests in British 152 
Columbia due to mountain beetle attack. 153 

 154 
Insert Figure 2 here 155 

 156 
The severity of mountain pine beetle attack, which refers to the percentage of 157 

trees successfully attacked within a given area (Wulder et al., 2006), was used as a proxy 158 
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for beetle population levels. Severity information was acquired from annual forest health 159 
aerial overview surveys (AOS) 160 
(http://www.for.gov.bc.ca/hfp/health/overview/overview.htm), which are conducted 161 
province-wide by trained observers in fixed-wing aircraft. These AOS are completed 162 
quickly and efficiently, making them ideally suited for mapping the general location, 163 
gross area, and general trend (i.e., increasing, decreasing, or stable) in damage caused by 164 
mountain pine beetle over large areas. Damage is observed and recorded on basemaps 165 
with scales of either 1:100,000 or 1:125,000, and a severity class (i.e., trace, light, 166 
moderate, severe, or very severe) is assigned according to the proportion of pine trees that 167 
are killed by the beetle (Table 1). The limitations of these survey data include large errors 168 
of omission when damage is very light and a lack of rigorous positional accuracy. The 169 
surveys were analyzed by Wulder et al. (2009) in order to develop spatial datasets 170 
representing severity values across the province at the 1 ha scale. For this study, the data 171 
were aggregated to a 1 km scale in order to agree with the resolution of the pine 172 
distribution data.  173 

 174 
2.2 Predicting Risk Classes 175 

LISA represents a set of localized statistical approaches that typically measure the 176 
relationship between individual locations and their surrounding neighbors to uncover 177 
patterns of spatial clustering. For this study, we employ the local Moran’s Ii, a 178 
decomposition of the global Moran’s Ii, for quantifying spatial autocorrelation. While the 179 
global statistic provides an overall measure of spatial autocorrelation, the local Moran’s Ii 180 
relates each observation to its neighbors and assigns them to classes with a value 181 
indicating the degree of spatial autocorrelation. The local Moran’s Ii estimates the 182 
similarity in x between observation i and observations j in the neighborhood of i defined 183 
by a matrix of weights wij. The strength of the relationship between the neighbors is 184 
accordingly captured. The statistic, provided by Anselin (1995), is calculated as: 185 
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where xxz ii   .  187 

In essence, equation 1 standardizes value x for observation i to determine if it is 188 
high or low relative to the mean, and standardizes values of x for j to determine if the 189 
neighborhood is high or low relative to the mean. The standardization operates in a 190 
similar manner as a statistical z-score that compares observations to the mean in order to 191 
determine the observations’ relative position within a distribution. In the absence of such 192 
standardization, the resulting Moran’s Ii values would be disproportionately influenced 193 
by extreme values of severity. Multiplying the standardized value x for observation i and 194 
the neighborhood j produces a scalar Moran’s Ii value; these values can conceptually be 195 
placed into one of four categories representing the relationship between each point and its 196 
neighbors: (1) Low-Low, (2) High-Low, (3) Low-High, and (4) High-High. The results 197 
from the local Moran’s Ii operation can be visualized in a Moran’s scatterplot that 198 
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displays the location of each observation within the solution space of its assigned class. 199 
Within the scatterplot, the local Moran’s Ii value describes the relative location of 200 
observation i within the two-dimensional solution space of each category. Note that not 201 
all Moran’s Ii values are significant: a test of significance is computed for each point to 202 
determine if the spatial relationship is significant given a specified level of confidence. 203 
Thus, just because a Moran’s Ii value provides a means for classifying a data point’s 204 
spatial relationship with its neighbors, it does not guarantee that this relationship is 205 
significant. For further reading on the parameterization and utility of both the global and 206 
local Moran’s Ii, please see Tiefelsdorf and Boots (1995), Waldhor (1996), and Zhang et 207 
al (2008). 208 

An extension of this method is the bivariate local Moran’s Ii in which variable x 209 
of observation i is compared to variable y of the neighborhood j. The modified equation 210 
from for bivariate local Moran’s Ii takes the form:  211 
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 213 
The bivariate Moran’s Ii facilitates the examination of multi-temporal data 214 

relating to mountain pine beetle severity. The severity at a location from two years prior 215 
to the present (year t-2) can be compared to the severity in its neighborhood at year t -1 to 216 
determine the spatial and temporal patterns of beetle spread at time t. Examining the 217 
relationship between tree mortality at a location in a specific year versus tree mortality in 218 
the neighborhood in a subsequent year results in a severity rating that incorporates 219 
change; in the absence of the temporal component of our analysis we would be ignoring 220 
the potential that mountain pine beetle populations are increasing or decreasing in an 221 
area. For example, severity in 2000 at a specific location is compared to severity in its 222 
neighborhood in 2001. The resulting estimated bivariate local Moran’s Ii class, (referred 223 
to hereafter as risk class) is then used to represent risk for that location in 2002.  This is 224 
repeated for each year in order to retrieve the risk classes for the period between 2002 225 
and 2006. Equation 2 thus becomes 226 
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where
tiI ,
is the Moran’s Ii for location i at time t, 1,1,1,   tjtjtj xxz , and 228 

2,2,2,   tititi xxz . 229 
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The Moran’s Ii identifies spatial autocorrelation in values extreme relative to 230 
mean values and subsequently facilitates the classification of locations into risk classes. 231 
A Moran’s Ii scatterplot provides a depiction of how each observation can be categorized 232 
based on its relationship with its neighbors. The scatterplot’s x-axis defines the value of 233 
observation i relative to the mean of all observations, while the y-axis defines the value of 234 
observations in the neighborhood of i relative to the mean of all observations. The 235 
scatterplot consists of four quadrats, each defining the relationship between an 236 
observation and its neighbors. Figure 3 depicts a Moran’s Ii scatterplot in the context of 237 
this study.  Class 1 (Low-Low) represents an observation i that experiences zero to 238 
minimal severity at time t-2 and whose neighborhood experiences zero to minimal 239 
severity at time t-1. Therefore, we expect that observations in class 1 will not experience 240 
a significant increase in severity and hence have zero to minimal severity at time t. We 241 
term this the Null class as we do not expect large magnitude infestations in the immediate 242 
future. Locations in the Null class exhibit positive Moran’s Ii values (the larger value the 243 
greater the difference in severity between the location and the mean neighborhood 244 
severity) in concert with low severity.  245 

 246 
Insert Figure 3 here 247 

 248 
Observations in class 2 (High-Low) experienced greater than average severity at 249 

time t-2 and below average severity in the neighborhood at time t-1. These locations 250 
exhibit negative Moran’s Ii values as the relationship between a location and its 251 
neighborhood are governed by negative spatial autocorrelation. Thus, we expect that the 252 
severity at t should be declining towards low to moderate severity because there exists a 253 
diminished attack severity in the neighborhood of i in the subsequent year. This class is 254 
referred to as the Decline class as it represents areas where infestations are expected to 255 
diminish. 256 

Observations in class 3 (Low-High) are also defined by a negative spatial 257 
autocorrelation relationship as the locations experienced low severity at t-2 but above 258 
average severity in the neighborhood at t-1. Therefore, severity should be increasing 259 
highest amongst all classes towards moderate to high severity because there exists greater 260 
insect population pressure in the neighborhood in the subsequent year. We refer to this 261 
class as the Increase class because such locations are experiencing a growth in the 262 
infestation. 263 

Observations in class 4 (High-High) experienced higher than average severity at t-264 
2 and higher than average severity in the neighborhood at t-1; this class, which exhibits 265 
positive Moran’s Ii values, is thus defined as the Constant class. Our expectation for 266 
severity in class 4 depends on length of time a location has been in the class. For 267 
locations that enter class 4, we expect that severity will increase as heightened population 268 
levels attack stands of varying susceptibility. For locations in class 4 for multiple years, 269 
we expect severity to decline due to the diminishing availability of susceptible hosts.    270 

The neighborhood in the local Moran’s Ii should be representative of the distance 271 
over which a location exhibits a relationship with its surrounding area. With regards to 272 
mountain pine beetle dispersal, this task entails defining a neighborhood based on the 273 
distance that the insect typically fly during their summer dispersal period. We estimated a 274 
measure of insect dispersal by examining the nearest neighbor distance between cells that 275 
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exhibited attack in a specific year and cells that exhibited attack for the first time in the 276 
subsequent year. This measure represents our best estimate at determining the least 277 
distance that mountain pine beetle disperses from one year to the next. The bivariate local 278 
Moran’s Ii was computed using the software program GeoDa (Anselin et al. 2006) – a 279 
GIS-based application focused on estimating local and global spatial relationships in 280 
attributes represented in GIS data.  281 
 282 
2.3 Risk Rating Evaluation 283 

The use of the bivariate local Moran’s Ii to assign a risk class was first assessed 284 
by performing a cell-by-cell comparison between our estimated risk classes against 285 
observed severity classes in ArcGIS 10 (Esri 2011). The severity classes were defined 286 
using the Government of British Columbia’s severity rating system shown in Table 1, 287 
which also include the total area in the province within each class in 2006. The Moran’s Ii 288 
is considered to be correct if:  289 

1. A cell assigned to the Null risk class at time t represents a location that 290 
belongs to the None severity class at time t. 291 

2. A cell assigned to the Increase risk class represents a location that 292 
experienced an increase from one severity class to another (e.g. from light 293 
to moderate). 294 

3. A cell assigned to the Constant risk class represents a location that (a) did 295 
not experience a change in severity classes and (b) is not in the None 296 
severity class. 297 

4. A cell assigned to the Decline risk class represents a location that 298 
experienced a decline from one severity class to another (e.g. from moderate 299 
to light). 300 

 301 
The relationship between estimated and observed severity was also examined in a 302 
graphical context to determine if and how the Moran’s Ii either over- or underestimated 303 
severity. 304 

Next, we examined the distribution of risk classes with regards to our 305 
expectations (described in section 2.2) of how the classes should represent spread. During 306 
early years of the infestation, the Constant class should constitute the nucleus of the 307 
infestation, the Increase class will exist in the frontier of the infestation, and the Null 308 
class will compose the remainder of the landscape where beetle-induced tree mortality is 309 
absent. As the infestation increases over time, the cluster pattern remains the same with 310 
the exception of the Decline class emerging in the center of the infestation. The Decline 311 
class represents locations where host trees become exhausted and mountain pine beetle 312 
populations move onto alternative locations. 313 
 314 
3. Results 315 
3.1 Estimating Neighborhood Size 316 
 The appropriate neighborhood size for the local Moran’s Ii statistic was estimated 317 
from the nearest neighbor calculations performed in ArcGIS 10 (Esri 2011) between the 318 
datasets representing successive years of attack. The results from the nearest neighbor 319 
analysis are presented in Figure 4. The frequency distributions represent the minimal 320 
distance over which mountain pine beetle dispersed in order to attack trees located in a 321 
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cell that had yet to experience attack. The majority of dispersal occurs within a distance 322 
of 3 km, while longer-range dispersal is observed at varying distances from one year to 323 
the next. We thus selected 3 km as our neighborhood size for the local Moran’s Ii 324 
statistic, which is supported by previous research (Safranyik 1989, Shore and Safranyik 325 
1992).  326 
 327 
Insert Figure 4 here 328 
 329 
3.2 Assessment of Risk Classes 330 

The results from the accuracy test from each year of the study are presented in 331 
Figure 5. The local Moran’s Ii demonstrated a measure of accuracy in its description of 332 
mountain pine beetle spread between 72% and 91%. Accuracy was highest in the initial 333 
years of the study when the mountain pine beetle infestation was relatively minimal, 334 
which is important as it is during this period that mitigation strategies could prove most 335 
effective at minimizing spread. Lower accuracy in later years of the study is likely a 336 
result of the limits of adequately predicting the transition from the Constant to Null 337 
classes.   338 

The graphical comparison between the risk and severity classes is presented in 339 
Figure 6. The bars represent the severity classes for each year at time t, and the sections 340 
within the bars indicate the proportion of each risk class that corresponds with the 341 
specific severity class. One observation from the graphs is that the majority of locations 342 
that fall within the None severity class were also in the Null risk class. In addition, the 343 
Null risk class diminishes as severity increases. A proportion of the Light severity class 344 
was assigned to the Null risk class suggesting that the local Moran’s Ii underestimates 345 
light infestations. Furthermore, there exists a small proportion of the None class that is 346 
composed of the Increase and Constant risk classes. This indicates that the local Moran’s 347 
Ii does not overestimate the severity of attack when no risk is present.  348 
 349 
Insert Figure 5 here 350 
Insert Figure 6 here 351 

 352 
The Decline risk class only constitutes a very small proportion (i.e., 0% – 10%) of 353 

severity classes. However, the percentages increase in later years of the infestation 354 
indicating that certain locations experience declining populations over time. Furthermore, 355 
the highest percentage of the Decline class occurs in the Light severity class for 2005 and 356 
2006, which likely represents that these locations have been under attack for multiple 357 
years, but resources are now limited forcing populations to move to other areas.  358 

The Increase and Constant risk classes both increase substantially as severity 359 
increases. Minimal proportions of these classes in the None severity class gradually 360 
increases in the Light severity class, and constitute the majority of the Moderate to Very 361 
Severe severity classes. Furthermore, during the earlier years of the infestation the 362 
Increase risk class is more prominent than the Constant class, the latter of which 363 
increases as the infestation grows. This indicates that, in general, there are more locations 364 
during the earlier part of the infestation that are being colonized by longer range dispersal 365 
(i.e., from outside a 1km x 1km cell) than short range. As the infestation grows, it is 366 
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likely that population levels increase to the point where forest stands with low 367 
susceptibility now become at risk to being attacked. 368 

 369 
3.3 Spatial Distribution of Risk Values  370 
 The spatial distribution of risk classes for each year between 2002 and 2006 are 371 
presented in Figure 7. The maps illustrate the location over which beetle-induced pine 372 
mortality occurred over time and how the spatial distribution of risk classes changes from 373 
year to year. The result for 2002 depicts the Constant class in west-central British 374 
Columbia as well in dispersed satellite locations, all of which confer with observations of 375 
the current epidemic (Aukema et al. 2006). The Increase class generally surrounds the 376 
Constant class and is also located at distances from the core of the main infestation. Each 377 
year the Constant class grows outward from the initial nucleus, and the Increase class 378 
remains on the frontier of the infestation and in areas where mountain pine beetle likely 379 
engaged in longer-range dispersal. In general, most locations in the Increase class made 380 
the transition in later years to the Constant class as expected.  381 
 382 
Insert Figure 7 here 383 
 The Decline class emerged in locations where the Constant class resided for 384 
several years. This is evident in the transition from the initial core of the infestation 385 
shown in red in 2002 that gradually makes the transition to the Decline class by 2006. In 386 
addition, there are several locations across the province – mainly in the locations distant 387 
from the core infestation – where class transition occurred from Increase to Decline. This 388 
is evident north of the main infestation from 2002 to 2003, the south-eastern edge of the 389 
main infestation between 2004 and 2005, and the scattered infestations along the southern 390 
border between 2005 and 2006. Many of these locations, especially in the south-eastern 391 
edge of the main infestation, eventually made the transition from the Decline to Constant 392 
class. 393 
 394 
4. Discussion 395 

In this study we aimed to investigate the utility of local indicators of spatial 396 
association, namely the bivariate local Moran’s Ii, as a method for estimating risk of 397 
mountain pine beetle attack over very large areas with GIS and coarse-scale multi-398 
temporal AOS data. Specifically, we were interested to determine if the bivariate local 399 
Moran’s Ii could be used to define individual classes of risk that could overcome the 400 
limitations of using existing methods for the extent of the current epidemic. Rather than 401 
using a quantitative linear rating scale as per Bone et al. (2005), the local Moran’s Ii 402 
enables a definition of risk based on changes to beetle population levels. The qualitative 403 
risk indicators are useful for determining locations that are on the frontier of the 404 
infestations (i.e. the Increase class) versus locations where infestations are entrenched 405 
(i.e. the Constant class) versus those areas where populations are in decline. This 406 
information is used by forest managers to target different areas with specific mitigation 407 
strategies that account for local population dynamics.  408 

While it is challenging to compare the accuracy of the presented approach with that of 409 
other risk rating systems, Zhu et al. (2008) developed regression models with similar 410 
explanatory power in a single year over a smaller spatial extent. However, the method 411 
presented in our study uses a strategic-level dataset and provides a level of accuracy that 412 
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would allow management to prioritize mitigation activities across large areas. 413 
Furthermore, not all Moran’s Ii values were found to be significant, which means that 414 
efforts to utilize the bivariate local Moran’s Ii for rating risk will have need to exercise 415 
caution in areas where spatial relationships are not entirely meaningful. However, it 416 
should be noted that in this study, the number of Moran’s Ii values that were found to be 417 
significant coincided with the area impacted by mountain pine beetle (Figure 8). Thus, as 418 
the mountain pine beetle infested new areas, the bivariate local Moran’s Ii captured the 419 
relationship between these locations and their surroundings. 420 
 421 
Insert Figure 8 here 422 

 423 
The nature in which locations change from one risk class to another did not always 424 

strictly adhere to the expectations outlined above, but nonetheless are indicative of 425 
previous observations of mountain pine beetle dynamics. For example, there exists 426 
several locations, most notably on the frontier of the infestations in early years, that make 427 
the transition straight from the Increase class to the Decline class without the population 428 
stabilizing for any period of time. This process, previously observed in some forest 429 
districts in British Columbia (Wulder et al. 2009), can be a result of either high insect 430 
mortality or an exhaustion of susceptible hosts. High mortality can be induced from 431 
extreme cold temperatures during the winter months (Safranyik 1989, Régnière  and 432 
Bentz 2007), which will cause a sharp decline in populations that are on the rise. 433 
Alternatively, areas in the Decline class that had relatively high severity one year and a 434 
significant drop the next are likely a result of mountain pine beetle consuming available 435 
hosts and thus migrating to a new area in search of susceptible trees. Another observation 436 
regarding population dynamics is that numerous locations on the frontier of infestations 437 
made the transition from the Increase class to the Decline or Constant class and then back 438 
to the Increase class, indicating that populations can become dormant in localized frontier 439 
locations until enough insects from the core of the infestation reach these areas (et al.  440 
2006).  441 
 The risk rating classes derived from the bivariate local Moran’s Ii are a sufficient 442 
step towards directing decision-makers on how to prioritize different areas given spread 443 
behavior. This is not to suggest that the Moran’s Ii is a replacement for other risk rating 444 
approaches such as regression models (Robertson et al. 2008; Zhu et al. 2008) Instead 445 
there is a need to examine the integration of qualitative and quantitative rankings at 446 
appropriate scales. Over large geographic areas – such as the scale of the current outbreak 447 
– the bivariate local Moran’s Ii provides a means to determine where more precise 448 
analyses can be carried out. In areas defined by the Increase Class, for example, 449 
regression models can be applied at finer scales to determine where to precisely focus 450 
mitigation efforts.  451 
 452 
5. Conclusion  453 

The potential for the mountain pine beetle to move further eastward into naïve forest 454 
environments and species (e.g., jack pine, Pinus banksiana) across the boreal forest of 455 
Canada (Safranyik et al. 2010) emphasizes the importance of developing methods to 456 
integrate broad scale datasets in a timely manner for efficiently devising mitigation 457 
strategies and assigning resources to areas of high priority. This is a common theme in 458 
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insect disturbance ecology as warming climates are leading to range expansions for a 459 
variety of insects, especially bark beetles in North America (Waring et al. 2009).   460 

The GIS-based statistical method presented in this study builds on the previous 461 
research regarding risk ratings (Shore and Safranyik 1992), the use of local statistics for 462 
examining mountain pine beetle infestations (Long et al. 2010; Nelson and Boots 2008), 463 
and the use of multi-temporal spatial data for detecting changes in mountain pine beetle 464 
populations (Wulder et al. 2008). Moving forward, in order to make the local Moran’s Ii -465 
derived risk rating system operational, broad-scale susceptibility measures such as 466 
climatic variables and physiological stresses should be incorporated to help refine areas 467 
potentially subject to attack. This could involve future climate scenarios that can estimate 468 
the change in susceptible areas over time due to changes in temperature, precipitation, 469 
and other variables that have been found to influence beetle spread (Sambaraju et al. 470 
2011).   471 
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Figures  623 
 624 
 625 

 626 
 627 

Figure 1. Number of hectares impacted by mountain pine beetle from 1999 to 2011.  628 
 629 
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 630 

 631 
 632 
Figure 2. Study site (pine distribution) and the extent of the mountain pine beetle 633 
infestation as of 2006. 634 
 635 
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 636 

 637 
 638 
Figure 3. A conceptual schematic of the Moran’s Ii scatterplot. Arrows within each class 639 
represents the direction of LISA values from 0 to 1. Each quadrat represents the 640 
relationship between observation i and its neighborhood. In addition, each quadrat 641 
represents a different class of mountain pine beetle risk.  642 
 643 
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 644 

 645 
 646 
Figure 4. Frequency of nearest neighbor distances between locations that exhibited attack 647 
in a specific year (i.e. the year represented in the title of the graph) and locations that 648 
exhibited attack for the first time in the subsequent year. The red dotted line represents 649 
the 3 km distance selected to define the neighborhood for the bivariate local Moran’s Ii. 650 
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 651 

 652 
 653 
Figure 5. Accuracy of the risk classes derived from the bivariate local Moran’s Ii in 654 
predicting the change in mountain pine beetle severity. 655 
 656 
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 657 
 658 

 659 
 660 
Figure 6. The percentage of locations within each risk class (represented by percentages 661 
inside the bars) and their corresponding observed severity class as defined in table 1. 662 
 663 
 664 
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 665 

 666 
 667 
Figure 7. The spatial distribution of risk classes for each year of the analysis. 668 
 669 
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 670 
 671 
 672 

 673 
 674 
Figure 8. The number of 1-hectare cells that were impacted by mountain pine beetle 675 
contrasted the number of 1-hectare cells in which the bivariate Moran’s Ii values were 676 
deemed significant. 677 
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 679 
 680 

Severity 
Class 

Area Infested 
(%) 

Area Infested 
in 2000 (ha) 

Area Infested 
in 2006 (ha) 

Light 1-10 77, 746 2,933,172 

Moderate 11-30 92, 554 2,933,172 

Severe 31-49 114, 889 1,230,869 

Very Severe > 50 n/a 516,894 

 681 
Table 1. Severity class as defined by the percentage of area infested by mountain pine 682 
beetle. Table also provides information on the total area infested in each class for the 683 
years 2000 (Westfall and Ebata 2001) and 2006 (Westfall and Ebata 2007). Note that the 684 
Very Severe and Trace classes were added in 2004. However, the Trace class is omitted 685 
here as no area in the study site was allocated to this class. 686 
 687 


