CCRI File Report 3

ANALYSIS OF DDT RESIDUES IN ANIMAL TISSUES AND SOILS
 COLLECTED FROM DIFFERENT REGIONS OF CANADA

By

K.M.S. SUNDARAM and P.G. DAVIS

Chemical Control Research Institute Environment Canada - Canadian Forestry Service 25 Pickering P1ace, Ottawa, Ont., K1A OW3

File Report No. 3

May 1974
[This report may not be cited nor published in whole or in part without the written consent of the Director, Chemical Control Research Institute, Environment Canada, EMS - Forestry, 25 Pickering Place, Ottawa, Ont., K1A 0W3]

TABLE OF CONTENTS

Page
Introduction 1
Materials and methods 2
Analytical néethods 4
Results and discussion 55
Summary 60
Acknowledgments 60
Literature cited 61
Appendix I 63

INTRODUCTION

The chlorinated hydrocarbon insecticide DDT [dichlorodiphe-ny1-trichloroethane; 2,2-bis-(p- chloropheny1)-1,1,1-trichloroethane], because of its wide spectrum of insecticidal activity, ease of manufacture, low cost, prolonged stability resulting in good residual activity and low mammalian toxicity, has been used extensively in Canadian forest spray programs prior to 1968 for the control of various lepidopterous defoliators (Fettes and Buckner, 1972). Although it has been phased out of usage because of its acute persistence in terrestrial and aquatic biota, cumulative food-chain concentration and biological magnification, a substantial part of the applied chemical and its degradation products are still present in the environment (Yule, 1970; Yule and Tomlin, 1970; Yule, 1973; Sundaram, 1972, 1974). The extent and significance of their presence in biota over long periods of time, especially at sub acute levels, is still obscure or only partly known primarily due to the lack of an organized environmental monitoring and surveillance system to provide comprehensive and representative data about the locations, amounts and trends of this contamination. Consequently, for an in depth evaluation of the impact produced by the residues of the toxicant, it became necessary to monitor periodically by analyzing quantitatively, their presence in various materials such as plant and animal tissues, soil, air and water samples collected from the forest environment in different regions of Canada. Results obtained earlier on a similar study comprising 362 small mammal samples has already been published (Sundaram, 1972). The present report presents residue data on DDT isomers and the $\mathrm{p}, \mathrm{p}^{\prime}$-DDE metabolite in
animal, foliage, water, soil and air samples totalling 460 in number, received from various regions of Canada since mid-1972 along with the analytical methods developed for analysing the insecticide residues. The methods described in the literature and used here are also briefly outlined for the purpose of consolidating the various analytical methods that are available under one cover to serve as a ready source of information for future reference.

MATERIALS AND METHODS

Among the 460 samples analysed and recorded in this report 421 samples had been collected at varying intervals since the early summer of 1972 to the fall of 1973 , processed and supplied by Dr. Buckner and his associates of the Invertebrate Biology Section at the Chemical Control Research Institute (CCRI). The samples after identification and processing were preserved in glass jars under methanol (pesticide grade, $20-40 \mathrm{ml}$) and stored at 10°. C in a refrigerator until analysis to prevent any further degradation of the insecticide residues. The 39 samples recorded in Table 11 were collected from Priceville (N.B.) by the personnel at the Analytical Service Section of CCRI with assistance especially from Dr. I.W. Varty of the Maritime Forest Research Centre, to study the persistence and distribution of DDT residues in a localized area which was heavily exposed to DDT spraying.

The breakdown of the 460 samples analysed according to various species, their numbers and sources are as follows:

Species	Numbers	Sources
Mice Fetus	37	(Progeny of 1972 animal samples from N.B., see Sundaram 1972).
Mice brains	332	(Quebec, Manitoba, B.C., Anticosti Is.)
Fish	10	(N.B., B.C.)
Insect larva	1	(B.C.)
Voles	5	(N.B.)
Slugs	5	(B.C.)
Spruce budworm	50	(N.B.)
Soil	(Manitoba, N.B., B.C., Anticosti Is.)	
Spruce foliage	6	(N.B.)
Air samples	6	(N.B.)
Water	5	(N.B.)
Total	460	

The residue analysis on these samples was started during the latter part of 1972 and continued as time, staff and laboratory facilities permitted until the end of March, 1974. This report is the second of the series, the first published in 1972 (Sundaram 1972) contained the analytical data on 362 samples.

ANALYTICAL METHODS

The analytical methods described here had been tested previously and found to be reliable and practicable; they are also adoptable to analysis of large numbers of samples with high precision. Generally, the methods were developed or modified from the work of others and consisted of seven steps:

1) Sample preparation,
2) Extraction with suitable solvent or solvent mixture,
3) Filtration under suction to separate the solvent and insoluble material,
4) Isolation of the insecticide residues by solvent partition,
5) Cleanup by column chromatography,
6) Concentration by flash evaporation and finally,
7) Detection (identification and quantitation) by gas-liquid chromatography (GLC).

In the analysis of some substrate samples such as air and water, not all the steps were necessary and thus handling and detection were simplified.

Extraction and Cleanup of DDT Residues from Animal Tissues
A number of solvents and procedures were tested (Sundaram, 1972) for efficiency in extracting DDT residues from animal tissues and the selection of acetonitrile was made over dimethylformamide used earlier, as a result of its increased extraction efficiency (> 90\%) and ease of handling, with its properties of; boiling point ($81.6^{\circ} \mathrm{C}$), high polarity, ready miscibility with water, good solubilizing power for insecticides and low toxicity.

Samples (< 2 g ; fetus and brains of small mammals, insect larva and buđworm) were received for analysis already stored in 20 ml methanol*. After blotting on filter paper to remove the solvent, the samples were weighed and homogenized in a Sorvall Omni-Mixer with 25 ml of pesticide grade acetonitrile (Caledon) for 5 min . at speed 6. The macerate was filtered under suction using a fritted glass funnel, the residue was re-extracted with a further 25 ml of solvent and filtered through the same funnel. The residue was washed with 10 ml of acetonitrile, extracts were pooled and flash evaporated to 20 ml . The extract was partitioned twice with 10 ml of hexane (pesticide grade, Caledon), and after clear separation, the nonpolar phase was discarded. The acetonitrile layer was transferred quantitatively to a 250 ml separatory funnel, 100 ml water, 10 ml of $5 \% \mathrm{Na}_{2} \mathrm{SO}_{4}$ and 50 ml of hexane were added. The mixture was equilibrated and the layers separated. The aqueous

[^0]layer was re-extracted with 50 ml of hexane and the hexane phase was rinsed with 50 ml of water. The water layers were discarded and the two hexane layers were combined and passed through a column of anhydrous sodium sulphate (ca 50 g) and flash evaporated to 3 ml .

Solid-liquid chromatographic cleanup was accomplished by passing the concentrated extract through a $10 \times 300 \mathrm{~mm}$ column containing 7 g preconditioned Florisil ($60 / 100$ mesh, $0 \% \mathrm{H}_{2} \mathrm{O}$) sandwiched between $10 \mathrm{~g} \mathrm{Na} \mathrm{SO}_{4}$. After rinsing the column with 50 ml hexane, the extract was transferred and eluted with 100 ml of hexane. The eluate was flash evaporated to 0.5 ml for GLC (ECD) analysis. The procedure is schematically illustrated in Fig. 1.

The method outlined above was found to be extremely suitable for analysing the DDT residues found in animal tissues if the sample sizes did not exceed two grams. Almost all the brain, fetus, larva and budworm samples analysed were less than this optimum weight. Fish and slug samples weighing more than 2 g were first cut into small pieces, mixed well and an aliquot was used for analysis. The proportions of acetonitrile, column adsorbent and eluting solvent used were as follows:

1 g tissue: $\quad 10 \mathrm{ml} \mathrm{CH}_{3} \mathrm{CN}$
1 g tissue: $\quad 4 \mathrm{~g}$ Florisil
1 g Florisil: 20 ml eluting solvent
During the carse of analysis, it was observed that some of the steps (see Fig. 1) could be eliminated without sacrificing sensitivity and precision. As indicated below the legend in Fig. 1, some of the steps were omitted to save time and simplify the method. The GLC responses before and after the Florisil column cleanup and after
eliminating some of the repetitive steps in the procedure are shown in Figs. 3-5.

Extraction and Cleanup of DDT Residues from Soil

The procedure reported here is similar to the one used by Yule and Smith (1971) with minor modifications to increase the sensitivity for soil analysis.

Composited soil sample was screened to remove plant and other debris, sifted through a 非8 sieve ($\mathrm{Br} .$, opening $2000 \mu \mathrm{~m}$), 50 g was taken in a Sorvall homogenizer and extracted with 100 ml of $2: 1$ (v/v) \underline{n} hexane: acetone solution for 5 min . at speed 6. The macerate was vacuum filtered through a Buchner funnel using a thin pad of celite, or shark skin (S and S) filter paper rinsed with 25 ml of solvent mixture, then the residue was re-extracted as before. The volume of the combined extracts was made up to 300 ml with hexane and transferred to a 2 liter separatory funnel and mixed with 600 ml of distilled water and 50 ml of 5% sodium chloride solution. The contents were shaken vigorously for 2 min. and allowed to stand overnight for the phases to separate completely. The hexane phase was washed twice with 200 ml of water and the aqueous phase with 100 ml of hexane. The aqueous phase was discarded and the hexane phases were combined and dried by passing through a column of anhydrous sodium sulphate (50 g), the column rinsed with 25 ml hexane and the volume adjusted to $50 \mathrm{ml}(1 \mathrm{~g} / \mathrm{ml})$ by flash evaporation.
"Shell" design chromatographic column (ID 20 mm , length 400 $\mathrm{mm})$ containing a reservoir (200 ml) at one end and a sealed in coarse porosity fritted disc, and Teflon stopcock to control column flow, at
the other, was loaded with 20 g of Florisil ($60 / 100$ mesh activated by heating at $160^{\circ} \mathrm{C}$ for 24 hours in an oven to contain $0 \% \mathrm{H}_{2} 0$). Additional anhydrous sodium sulfate (10 g) was placed on top of the Florisil. The column was washed with 100 ml of hexane, then the 50 ml extract was transferred quantitatively to the column and eluted with 200 ml of 15% benzene in hexane. The eluate (ca 250 ml) was collected and concentrated to 10 ml by flash evaporation ($1 \mathrm{~g} / 0.2 \mathrm{ml}$) for gas chromatographic analysis. The procedure is schematically illustrated in Fig. 2.

Two 10 g aliquots of the soil were used for moisture* (AOAC, 1955) and pH determinations ${ }^{+}$(Atkinson, et al 1958).

Extraction of DDT Residues from Water

An aliquot of water sample (250 ml) was transferred to a one liter separatory funnel and extracted twice by shaking vigorously for 5 min. with 200 ml of hexane. Emulsion formation was minimized by adding 10 ml of 5% sodium sulphate solution. After the phases separated, the aqueous layer was discarded, the hexane phases were combined and passed through a column of anhydrous sodium sulphate (70 g). No column cleanup was necessary for water samples. Prior to GC detection, the extract was concentrated down to 10 ml by flash evaporation followed by

[^1]gentle stream of air to 1 ml .

Extraction of DDT Residues from Foliage
Foliage samples were prepared by clipping them from the branches and hand-mixing. The composited sample was finely ground in a Hobart grinder. A 50 g sample was extracted twice with 100 ml of acetonitrile in a Sorvall homogenizer, cleaned-up and analysed as for soil.

Analysis of DDT Residues in Air Samples
The procedure used for analysing the six air samples recorded in Table 11 was similar to the one described recently by Sundaram (1974). The DDT residues present in the Florisil (20 g) samples were extracted twice with 150 ml of benzene and the insecticide residues in dimethylformamide (DMF) (150 ml) bubblers were partitioned twice with aqueous sodium sulphate (500 ml) and hexane (100 ml). The benzene and hexane fractions of each sample were pooled, flash evaporated to 1.0 ml and analysed.

Gas Chromatographic Analysis

Detection (identification and quantitation) of DDT residues (DDE, $\mathrm{o}, \mathrm{p}-\mathrm{DDT}$ and $\mathrm{p}, \mathrm{P}^{\prime}-\mathrm{DDT}$) was by using conventional electron capture gas chromatography.

A Hewlett-Packard 5750 instrument (Avondale, Pa.) equipped with a Ni 63 electron capture detector was used. The operating conditions were as follows:

Column: Glass, $4 \mathrm{ft} \times 6 \mathrm{~mm}$ O.D. packed with 3% DC-200 on Chromosorb W, 80-100 mesh, HP

```
Temperature: Injection port \(=220^{\circ} \mathrm{C}\)
    Column oven \(=200^{\circ} \mathrm{C}\)
    Detector \(=260^{\circ} \mathrm{C}\)
Gas flow: Argon/methane (95/5\%) pressure of 40 psi and
    flow rate of \(33.3 \mathrm{ml} / \mathrm{min}\).
Instrument Attenuation and range, \(32 \times 10\); pulse rate of
settings:
    150
```

Standard $4 \underline{\mu} 1$ injections of the sample extract were analysed. The extracts were diluted with hexane or air evaporated to the optimum concentrations for GLC analysis after trial injections. The presence of DDT isomers and metabolites in samples was determined by comparison of retention times (R.T.). The relative R.T.'s under the above operating conditions were: DDE, 1.00; o, p^{-}DDT, 1.35; and $\mathrm{p}, \mathrm{p}^{\prime}-\mathrm{DDT}, 1.72$. The quantity of DDT isomers and metabolites in samples was determined by comparison of peak heights with standard calibrations for DDE, ㅇ, $\mathrm{p}-\mathrm{DDT}$, and $\mathrm{p}, \mathrm{p}^{\prime}$-DDT. Quantitative insecticide standards were injected on the same day the samples were analysed to provide for the day-to-day fluctuations in operating conditions.

Reagents

All solvents used were of pesticide grade supplied by Caledon Laboratories, Georgetown, Ontario. Florisil 60/100 mesh (F-100) and reagent grade anhydrous sodium sulphate (S-421) were from Fisher Scientific Co.

During the course of analysis, laboratory sources of contamination, if any, were monitored frequently by conducting blank experiments using the same procedure and analysing for the DDT residues. Contamination was found to be negligible.

The results of the analysis are recorded in Tables 1 to 12 and the abbreviations, symbols and the chemical names of the insecticides mentioned in this report are explained in Appendix I.

TABLE 1

Analysis of DDT Residues in Fetus Tissues of Mice

Serial No.	Identification No.	$\begin{aligned} & \text { Mass } \\ & (\mathrm{g}) \\ & \hline \end{aligned}$	$\begin{gathered} \text { DDE } \\ (\mathrm{ppm}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{o}, \mathrm{p}-\mathrm{DDT} \\ (\mathrm{ppm}) \\ \hline \end{gathered}$	$\underset{(\mathrm{ppm})}{\mathrm{p}, \mathrm{p}^{\prime}-\mathrm{DDT}}$	$\begin{gathered} \text { Total DDT } \\ (\mathrm{ppm}) \end{gathered}$
1	1A	1.88	T	N.D.	0.120	0.120
2	1B	1.82	T	0.065	N.D.	0.065
3	1 C	1.80	0.005	0.010	0.030	0.045
4	1D	1.82	0.005	0.010	0.010	0.025
5	2A	0.10	0.090	0.030	0.140	0.260
6	2B	0.13	0.015	0.005	0.060	0.080
7	2 C	0.12	0.030	0.030	0.290	0.350
8	2D	0.20	0.030	0.020	0.110	0.160
9	2E	0.10	0.020	0.150	0.130	0.300
10	37A	0.60	T	0.005	0.015	0.020
11	37B	0.25	0.005	0.135	0.300	0.440
12	37C	0.50	T	0.010	0.020	0.030
13	37D	0.54	T	0.030	0.035	0.065
14	37E	0.55	T	0.010	0.025	0.035
15	37 F	0.59	T	0.005	0.015	0.020
16	72A	0.27	N.D.	N.D.	N.D.	N.D.
17	72B	0.28	0.005	0.010	0.030	0.045

18	72 C	0.28	0.005	0.025	0.065	0.095
19	72 D	0.23	0.020	N.D.	0.235	0.255
20	72 E	0.24	0.010	0.075	0.040	0.125
21	72 F	0.27	N.D.	0.035	0.045	0.080
22	106 A	0.71	N.D.	T	0.005	0.005
23	106 B	0.56	N.D.	0.010	0.225	0.235
24	106 C	0.69	N.D.	0.155	N.D.	0.155
25	106 D	0.88	N.D.	N.D.	0.010	0.010
26	106 E	0.68	N.D.	N.D.	0.100	0.100
27	107 A	1.20	N.D.	0.090	N.D.	0.090
28	107 B	1.29	N.D.	0.020	N.D.	0.020
29	107 C	1.37	N.D.	N.D.	0.250	0.250
30	107 D	1.15	N.D.	N.D.	N.D.	N.D.
31	107 E	1.18	0.005	0.005	0.100	0.110
32	107 F	1.26	N.D.	N.D.	N.D.	N.D.
33	162 A	0.92	N.D.	0.010	0.020	0.030
34	162 B	0.80	0.005	N.D.	0.010	0.015
35	162 C	1.40	N.D.	N.D.	0.020	0.020
36	111 A-E	0.82	N.D.	N.D.	0.075	0.075
37	0.01	0.120	N.D.	1.600	1.720	

[^2]
TABLE 2

Analysis of DDT Residues in Mice Brains from Maniwaki and California Lake

Maniwaki Plot II Hermit Thrush 107	0.50
Maniwaki Plot II	0.39
Wood Thrush 110	
Maniwaki Plot III Cg 9	0.30
Maniwaki Plot III Cg 35	0.29
Maniwaki Plot III Cg 39	0.38
Maniwaki Plot III Cg 52	0.25
Maniwaki Plot III Cg 62	0.43
Maniwaki Plot III Cg 67	0.37
Maniwaki Plot III Cg 72	0.30
Maniwaki Plot III Cg 73	0.35
Maniwaki Plot III Cg 111	0.38
Maniwaki Plot III Cg 121	0.28
Maniwaki Plot III Ni 19	0.28
Maniwaki Plot III Cg 44	0.30
Maniwaki Plot III Cg 51	0.28
Maniwaki Plot III Cg 66	0.20
Maniwaki Plot III Cg 68	0.32
Maniwaki Plot III Pm 70	0.40
Maniwaki Plot III Cg 71	0.33
Maniwaki Plot III Pm 74	0.35
Maniwaki Plot III Ni 76	0.32

0.04	N.D.
N.D.	N.D.
0.04	0.89
N.D.	2.05
N.D.	1.69
N.D.	1.88
N.D.	0.68
N.D.	4.17
N.D.	11.69
N.D.	0.86
N.D.	1.19
N.D.	2.33
0.15	N.D.
N.D.	0.16
N.D.	T
N.D.	N.D.
N. D.	T
N.D.	T
N.D.	T
N. D.	T
N.D.	T

N.D.	0.04
N.D.	N.D.
1.84	2.77
N.D.	2.05
0.21	1.90
N.D.	1.88
N.D.	0.68
N.D.	4.17
0.23	11.92
N.D.	0.86
0.40	1.59
N.D.	2.33
N.D.	0.15
N.D.	0.16
N.D.	T
N.D.	N.D.
N.D.	T
T	T
T	T
N.D.	T
T	T

Maniwaki Plot III Pm 78	0.30
Maniwaki Plot III Cg 84	0.30
Maniwaki Plot III Cg 88	0.38
Maniwaki Plot III Cg 89	0.39
Maniwaki Plot III Cg 90	0.25
Maniwaki Plot III Cg 92	0.30
Maniwaki Plot III Cg 93	0.27
Maniwaki Plot III Fm 107	0.40
Maniwaki Plot III Pm 113	0.48
Maniwaki Plot III Pm 116	0.40
Maniwaki Plot III Cg 123	0.40
Maniwaki Plot III Cg 126	0.35
Maniwaki Plot III Cg 128	0.62
Maniwaki Plot III Cg 132	0.43
Maniwaki Plot III Fm 140	0.50
Maniwaki Plot III Cg 144	0.53
Maniwaki Plot III Cg 145	0.45
Maniwaki Plot III Cg 146	0.60
Maniwaki Plot IV Cg 18	0.40
Maniwaki Plot IV Pm 25	0.30
Maniwaki Plot IV Cg 29	0.30
Maniwaki Plot IV Cg 59	0.50
Maniwaki Plot IV Cg 60	0.46

N.D.	N.D.
N.D.	0.17
N.D.	0.95
N.D.	0.34
N.D.	1.71
N.D.	0.57
N.D.	N.D.
N.D.	0.06
N.D.	0.23
N.D.	0.32
N.D.	0.17
N.D.	0.72
N.D.	0.09
N.D.	0.15
O.08	0.16
N.D.	0.14
0.05	1.67
N.D.	0.09
N.D.	N.D.

N.D.	N.D.
N.D.	0.17
N.D.	0.95
N.D.	0.34
N.D.	1.71
N.D.	0.57
2.15	2.15
T	T
0.12	0.18
N.D.	0.23
N.D.	0.32
N.D.	0.28
0.62	0.79
N.D.	0.72
0.11	0.28
N.D.	0.15
N.D.	0.21
N.D.	0.14
0.18	2.63
N.D.	1.67
0.19	1.18
0.10	0.70
N.D.	1.23

98	Maniwaki Plot IV Cg 80	0.50
99	Maniwaki Plot IV Cg 102	0.50
100	Maniwaki Plot IV Cg 142	0.53
101	Maniwaki Plot IV Cg 162	0.70
102	Maniwaki Plot IV Pm 12	0.25
103	Maniwaki Plot IV Cg 15	0.45
104	Maniwaki Plot IV Cg 17	0.58
105	Maniwaki Plot IV Pm 22	0.40
106	Maniwaki Plot IV Pm 24	0.30
107	Maniwaki Plot IV Pm 27	0.30
108	Maniwaki Plot IV Pm 28	0.28
109	Maniwaki Plot IV Pm 31	0.25
110	Maniwaki Plot IV Pm 32	0.23
111	Maniwaki Plot IV Pm 33	0.28
112	Maniwaki Plot IV Cg 61	0.46
113	Maniwaki Plot IV Cg 85	0.32
114	Maniwaki Plot IV Cg 94	0.30
115	Maniwaki Plot IV Cg 95	0.30
116	Maniwaki Plot IV Cg 96	0.40
117	Maniwaki Plot IV Cg 97	0.38
118	Maniwaki Plot IV Ni 98	0.29
119	Maniwaki Plot IV Cg 106	0.32

120	Maniwaki Plot IV Fm 108	0.30	0.51	T	N.D.	0.51
121	Maniwaki Plot IV Ni 115	0.32	N.D.	0.08	T	0.08
122	Maniwaki Plot IV Cg 133	0.33	N.D.	0.31	N.D.	0.31
123	Maniwaki Plot IV Pm 134	0.30	N.D.	0.36	N.D.	0.36
124	Maniwaki Plot IV Pm 135	0.31	N.D.	0.16	0.07	0.23
125	Maniwaki Plot IV Pm 136	0.35	N.D.	T	N.D.	T
126	Maniwaki Plot IV Cg, 139	0.37	N.D.	N.D.	N.D.	N.D.
127	Maniwaki Plot IV Bb 1.43	0.20	N.D.	0.33	N.D.	0.33
128	Maniwaki Plot IV Cg 147	0.38	N.D.	2.03	0.19	2.22
129	Maniwaki Plot IV Cg, 148	0.32	N.D.	1.25	N.D.	1.25
130	Maniwaki Plot IV Pm 152	0.30	N.D.	2.09	N.D.	2.09
131	Maniwaki Plot IV Pm 153	0.31	N.D.	9.67	N.D.	9.67
132	Maniwaki Plot IV Cg 155	0.35	N.D.	6.95	N.D.	6.95
133	Maniwaki. Plot IV Pm 156	0.28	0.08	T	N.D.	0.08
134	Maniwaki Plot IV Pm 157	0.37	N.D.	0.10	N.D.	0.10
135	Maniwaki Plot IV Pm 160	0.36	N.D.	0.50	T	0.50
136	Maniwaki Plot IV Cg 164	0.27	N.D.	5.10	N.D.	5.10
137	Maniwaki Plot IV Cp, 165	0.35	N.D.	1.32	N.D.	1.32
138	Maniwaki Plot IV Pm 166	0.28	N.D.	22.82	N.D.	22.82
139		3.40	0.05	N.D.	N.D.	0.05
140	Maniwaki Plot IV Water Thrush 5	0.32	0.09	N.D.	N.D.	0.09

141	Maniwaki Plot IV Mh Juv 6	0.15	0.45	T	N.D.	0.45
142	Maniwaki Plot IV Wood Thrush 7	0.75	0.13	0.12	N.D.	0.25
143	Maniwaki Plot V Cg 16	0.22	N.D.	1.02	1.07	2.09
144	Maniwaki Plot V Cg 40	0.30	N.D.	N.D.	N.D.	N.D.
145	Maniwaki Plot V Cg 43	0.31	N.D.	0.66	0.56	1.22
146	Maniwaki Plot V Cg 58	0.33	N.D.	3.01	0.65	3.66
147	Maniwaki Plot V Cg 87	0.34	N.D.	7.94	N.D.	7.94
148	Maniwaki Plot V Cg 99	0.40	N.D.	0.39	0.05	0.44
149	Maniwaki Plot V Cg 101	0.40	N.D.	N.D.	N.D.	N.D.
150	Maniwaki Plot V Cg 130	0.40	N.D.	T	N.D.	T
151	Maniwaki Plot V Cg 137	0.30	N.D.	T	T	T
152	Maniwaki Plot V Cg 141	0.30	N.D.	T	T	T
153	Maniwaki Plot V Pm 46	0.22	N.D.	N.D.	N.D.	N.D.
154	Maniwaki Plot V Cg 63	0.40	N.D.	0.17	0.94	1.11
155	Maniwaki Plot V Cg 69	0.20	N.D.	1.28	N.D.	1.28
156	Maniwaki Plot V Pm 114	0.40	N.D.	T	N.D.	T
157	Maniwaki Plot V Pm 117	0.41	N.D.	0.28	N.D.	0.28
158	Maniwaki Plot V Pm 118	0.24	N.D.	N.D.	0.12	0.12
159	Maniwaki Plot V Pm 119	0.32	N.D.	T	N.D.	T
160	Maniwaki Plot V Pm 120	0.20	N.D.	0.44	N.D.	0.44
161	Maniwaki Plot V Pm 124	0.30	N.D.	T	0.29	0.29

Maniwaki P	Plot	V	$\mathrm{P}_{\mathrm{m}} 125$	0.31
Maniwaki	Plot	v	Pm 129	0.30
Maniwaki	Plot	V	Pm 131	0.22
Maniwaki	Plot	V	Pm 138	0.27
Maniwaki	Plot	V	Ni 154	0.29
Maniwaki	Plot	V	Cg 161	0.30
Maniwaki	Plot	v	Cg 100	0.38
Maniwaki	Plot	VI	Cg 38	0.35
Maniwaki	Plot	VI	Cg 49	0.40
Maniwaki	Plot	VI	Cg 56	0.26
Maniwaki	Plot	VI	Cg 57	0.35
Maniwaki	Plot	VI	Cg 65	0.35
Maniwaki	Plot	VI	Cg 77	0.16
Maniwaki	Plot	VI	Cg 91	0.41
Maniwaki	Plot	VI	Cg 105	0.17
Maniwaki	Plot	VI	Cg 122	0.30
Maniwaki P	Plot	VI	Cg 150	0.38
Maniwaki	Plot	VI	Pml	0.40
Maniwaki F	Plot	VI	Cg 2	0.30
Maniwaki P	Plot	VI	P m 3	0.30
Maniwaki P	Plot		Zh 8	0.29

N.D.	T
N.D.	N.D.
T	T
N.D.	T
N.D.	0.10
0.13	N.D.
N.D.	T
N.D.	T
0.06	0.49
N.D.	0.29
0.03	0.23
N.D.	0.78
N.D.	1.09
N. D.	0.27
N.D.	T
N.D.	T
N.D.	T
N. D.	0.27
T	0.46
0.03	N.D.
0.09	T

T	T
N.D.	N.D.
T	T
0.09	0.09
N.D.	0.10
0.89	1.02
T	T
T	T
N.D.	0.55
N.D.	0.29
N.D.	0.26
N.D.	0.78
N.D.	1.09
N.D.	0.27
N.D.	T
T	T
N.D.	T
N.D.	0.27
T	0.46
1.02	1.05
N.D.	0.09

183	Maniwaki Plot VI Fm 13	
184	Maniwaki Plot VI Cg 14	0.40
185	Maniwaki Plot VI Cg 18	0.37
186	Maniwaki Plot VI Cg 20	0.24
187	Maniwaki Plot VI Pm 21	0.22
188	Maniwaki Plot VI Pm 23	0.27
189	Maniwaki Plot VI Cg 30	0.30
190	Maniwaki Plot VI Pm 34	0.30
191	Maniwaki Plot VI Pm 41	0.26
192	Maniwaki Plot VI Cg 55	0.31
193	Maniwaki Plot VI Cg 64	0.23
194	Maniwaki Plot VI Cg 83	0.42
195	Maniwaki Plot VI Pm 112	0.23
196	Maniwaki Plot VI Fm 127	0.30
197	Maniwaki Plot VI Pm 149	0.31
198	Maniwaki Plot VI Pm 151	0.29
199	Maniwaki Plot VI Pm 158	0.30
200	Maniwaki Plot VI Fm 159	0.30
201	Maniwaki Plot VI Ts 54	0.31
202	Maniwaki Plot VI Is 163	1.30

204	California Lake	20	0.39	N.D.	N.D.	T	T
205	California Lake	21	0.23	N.D.	T	0.13	0.13
206	California Lake	22	0.21	N.D.	0.02	N.D.	0.02
207	California Lake	6	0.33	T	T	N.D.	T
208	California Lake	7	0.31	N.D.	T	N.D.	T
209	California Lake	8	0.29	T	N.D.	N.D.	T
210	California Lake	9	0.24	N.D.	N.D.	T	T
211	California Lake	10	0.30	N.D.	0.01	T	0.01
212	California Lake	11	0.29	N.D.	T	N.D.	T
213	California Lake	12	0.19	T	N.D.	N.D.	T
214	California Lake	13	0.31	N.D.	T	N. D.	T
215	California Lake	14	0.28	T	0.03	0.01	0.04
216	California Lake	15	0.27	N.D.	T	N.D.	T
217	California Lake	16	0.31	N.D.	0.01	N.D.	0.01
218	California Lake	17	0.40	N.D.	0.02	T	0.02
219	California Lake	18	0.36	N. D.	0.03	N.D.	0.03
220	California Lake	19	0.32	N.D.	N.D.	T	T
221	Progeny	¢ Cg 1	5.40	T	N.D.	T	T
222	Progeny	$0^{\prime \prime} \mathrm{Cg} 2$	4.90	T	N.D.	T	T
223	Progeny	$\sigma^{\prime} \mathrm{Cg} 3$	5.20	T	N.D.	T	T

Progeny	\& Cg 4	3.75
Progeny	\& Cg 5	4.70

0.01
N.D.

T
0.01
N.D.
0.01
0.01
$\mathrm{T} \quad=$ Traces (<0.005 ppm)

Analysis of DDT Residues in Mice Brains from Manitoba

Serial Number	Identification No.	Species	$\begin{aligned} & \hline \text { Mass } \\ & \text { (gm) } \end{aligned}$	DDT Residues (ppm)			Total DDT (ppm)
				DDE	으, ${ }^{\text {- }}$ DDT	P, $\mathrm{p}^{\prime}-\mathrm{DDT}$	
226	Sprucewoods Aug. 6, 1973 Fenitro2 \#2	Pm	0.50	T**	T**	0.012	0.012
227	Sprucewoods Aug. 4, 1973 Fenitro2 非 1 A	Cg embryos	0.11	T**	0.030	0.050	0.080
228	$\begin{aligned} & \text { Sprucewoods Aug. 4, } 1973 \text { Fenitro- } \\ & 2 \text { \#1 } \end{aligned}$	Cg	0.60	T**	0.009	0.016	0.025
229	$\text { Belair Aug. 3, } 1973 \text { West }-2$	Fm	0.52	T**	T**	0.014	0.014
230	$\text { Relair Aug. 3, } 1973 \text { West - } 2$	Cg	0.42	T**	N.D.	0.015	0.015
231	Sprucewoods Aug. 4, 1973 Sevin 1 非 1	Pm	0.50	T**	0.009	0.010	0.019
232	Sprucewoods Aug. 6, 1973 Sevin 1 (N) \#7	Fm	0.41	0.008	0.006	0.008	0.022
233	$\underset{1}{\text { Sprucewoods Aug. }} \underset{\# 3}{ } \text { 5, } 1973 \text { Sevin - }$	sc	0.11	0.031	0.090	0.105	0.226
234	$\begin{gathered} \text { Sprucewoods } \\ 1 \end{gathered} \underset{\sharp 4}{\text { Aug. }} 5,1973 \text { Sevin - }$	Cg	0.51	T**	T**	0.008	0.008
235	$\begin{aligned} & \text { Sprucewoods Aug. } \\ & 1 \\ & 1 \end{aligned}$	Cg	0.42	T**	T**	T**	T**
236	Sprucewoods Sevin-1 \#1E	pm embryo	0.92	T**	0.005	0.005	0.010
237	Sprucewoods Sevin-1 \#1C	pm embryo	0.94	T**	N.D.	0.005	0.005

238	Sprucewoods Aug．5， 1973 Sevin－ 1 非		Cg	0.42	0.009	N．D．	0.015	0.024	
239	Sprucewoods Aug．5， 1973 Sevin－ 1 非2		Fm	0.31	0.010	0.016	0.018	0.044	
240	Sprucewoods Sevin－1 \＃1B	Pm	embryo	1.41	T＊＊	0.004	0.006	0.010	
241	Sprucewoods Sevin－1 \＃1A		embryo	1.11	0.003	T＊＊	0.013	0.016	
242	Sprucewoods Sevin－1 \＃1D	Pm	embryo	1.10	T＊＊	0.004	0.007	0.011	
243	$\underset{\text { Belair Aug. 3, } 1973 \text { West-1 }}{\substack{\text { Be } \\ \hline}}$		Cg	0.40	0.011	0.014	0.026	0.051	
244	Belair Aug． 1973 West－1非1	Least	Chipmunk	1.44	T＊＊	T＊＊	T＊＊	T＊＊	1
245	Sprucewoods Aug．6， 1973 Sevin－ 2 非		Sc	0.11	0.039	N．D．	0.071	0.110	N I
246	Sprucewoods Aug．6， 1973 Sevin－ 2 （S）\＃5		Sc	0.12	T＊＊	N．D．	N．D．	T＊＊	
247	Sprucewoods Aug．4， 1973 Sevin－ 2 \＃1		Cg	0.21	0.014	0.021	0.070	0.105	
248	Sprucewoods Aug．5， 1973 Sevin－ 2 （S）\＃3		Cg	0.31	0.012	0.075	0.015	0.102	
249	Sprucewoods Aug．5， 1973 Sevin－ 2 （S）\＃2		Cg_{g}	0.41	T＊＊	N．D．	N．D．	T＊＊	
250	Belair Aug．1， 1973 Control－2非 4		Cg	0.51	T＊＊	N．D．	N．D．	T＊＊	
251	Belair Aug．3， 1973 Control－2 \＃9	Least	Crimprunk	1.31	T＊＊	N，D．	N．D．	T＊＊	
252	Belair Aug．1， 1973 Control－2 \＃2	Least	Chipmunk	0.31	0.010	0.015	0.043	0.068	
253	Belair Aug．1， 1973 Control－2非1	Least	Chipmiunk	0.32	T＊＊	0.032	0.028	0.060	

254	Belair A	$\underset{\# 5}{\text { Aug. 1, } 1973}$	Control－2		Cg	0.51	0.007	0.011	0.018	0.036
255	Belair A	$\begin{aligned} & \text { Aug. 2, } 1973 \\ & ⿰ ⿰ 三 丨 ⿰ 丨 三 \end{aligned}$	Control－2	Least	Chipmunk	1.42	T＊＊	N．D．	0.003	0.003
256	Belair A	$\underset{\text { Aug. }}{\substack{\text { A }}} 1973$	Control－2		P_{m}	0.11	0.025	0.060	0.080	0.165
257	Belair A	$\begin{aligned} & \text { Aug. 2, } 1973 \\ & \text { 非8 } \end{aligned}$	Control－2		Pm	0.41	T＊＊	N．D．	0.009	0.009
258	Belair A	$\begin{aligned} & \text { Aug. } 2,1973 \\ & \# 6 \end{aligned}$	Control－2	Least	Chipmunk	1.41	0.003	0.009	0.006	0.018
259	Sprucewo	$\begin{aligned} & \text { roods Aug. 5, } \\ & 2 \text { 非1 } \end{aligned}$	$1973 \text { BT- }$	Least	Chipmunk	1.72	0.003	T＊＊	0.004	0.007
260	Sprucewo 2	$\begin{aligned} & \text { roods Aug. } 6 \text {, } \\ & 2 \end{aligned}$	$1973 \text { BT- }$		Fm	0.43	T＊＊	N．D．	0.006	0.006
261	Belair C	Control－ 1 \＃	1F．	Cg	embryo	0.11	0.039	0.106	0.059	0.204
262	Belair A	$\underset{\# 2}{\text { Aug. 3, } 1973}$	Control－1	Least	Chipmunk	1.42	T＊＊	0.003	0.007	0.010
263	Belair C	Control－1	\＃1F	Cg	embryo	0.11	T＊＊	0.114	0.071	0.185
264	Belair C	Control－1	\＃15	Cg	embryo	0.11	0.034	0.095	0.053	0.182
265	Belair A	$\underset{\sharp 1}{\text { Aug. 2, } 1973}$	Control－1		C9，	0.31	T＊＊	T＊＊	0.045	0.045
266	Belair C	Control－1	\＃1D	Cg	embryo	0.11	T＊＊	0.023	0.034	0.057
267	Belair C	Control－1	\＃1A	Cg	embryo	0.11	T＊＊	N．D．	0.026	0.026
268	Belair C	Control－1	\＃16	Cg	embryo	0.11	T＊＊	N．D．	0.026	0.026
269	Sprucewo 1	$\begin{aligned} & \text { poods Aug. 6, } \\ & 1 \end{aligned}$	$1973 \text { Fenitro- }$		Zh	0.41	0.005	0.006	0.018	0.020

Belair Aug. 1, 1973 East - 2

T** $=$ Trace ($<0.003 \mathrm{ppm}$) \quad,
N.D. $=$ Not Detected \quad N

Analysis of DDT Residues in Mice Brains－North Vancouver Island

Serial Number	Sample Description	Mass （g）	$\begin{gathered} \text { DDE } \\ (\mathrm{ppm}) \end{gathered}$	$\frac{\mathrm{o}, \mathrm{p}-\mathrm{DDT}}{(\mathrm{ppm})}$	$\begin{aligned} & \mathrm{p}, \mathrm{p}^{\prime}-\mathrm{DDT} \\ & (\mathrm{p} p \mathrm{~m}) \end{aligned}$	$\begin{aligned} & \text { Total } \\ & \text { DDT (ppm) } \\ & \hline \end{aligned}$
289	```Keogh R.B.C. Aug 21, 1973 Plot 12 #7 Pm```	0.60	0.012	0.020	T	0.032
290		C． 30	T	T	N．D．	T
291	$\begin{aligned} & \text { Keogh L.B.C. Aug 19, } 1973 \\ & \text { Plot } 7 \end{aligned}$	0.10	T	T	N．D．	T
292	$\begin{gathered} \text { Keogh R.B.C. Aug 19, } 1973 \\ \text { Plot 12A \#2 Pm Ó } \end{gathered}$	0.10	T	T	N．D．	T
293	$\begin{gathered} \text { Keogh R.B.c. Aug 19, } 1973 \\ \text { Plot 12A } \begin{array}{l} \text { \# } 3 \mathrm{Pm} \dot{o}^{*} \end{array} \end{gathered}$	0.10	0.017	T	0.046	0.063
294	$\begin{gathered} \text { Keogh R.B.C. Aug } 21,1973 \\ \text { Plot 12A } \begin{array}{l} \text { \#17 Pm } \sigma^{7} \end{array} \end{gathered}$	0.60	T	T	0.014	0.014
295	$\begin{gathered} \text { Keogh L.B.C. Aug 19, } 1973 \\ \text { Plot 7A } \\ \not ⿰ ⿰ 三 丨 ⿰ 丨 三 \end{gathered}$	0.50	T	T	T	T
296	Keogh R．B．C．Aug 19， 1973 Plot 12A 非5 Pm	0.50	T	T	T	T
297	$\begin{aligned} & \text { Keogh L.B.C. Aug 19, } 1973 \\ & \text { Plot } 7 \end{aligned}$	0.10	T	0.015	T	0.015
298	$\begin{aligned} & 3 \text { Island L.B.C. Aug 19, } 1973 \\ & \# 6 \mathrm{Pm} \text { o } \end{aligned}$	0.10	0.016	0.032	0.066	0.114
299	$\begin{aligned} & 3 \text { Is } 1 \text { and L.B.C. Aug } 21,1973 \\ & \text { \#12 Pm } \sigma^{\prime} \end{aligned}$	0.60	T	T	T	T
300	$\begin{gathered} \text { Keogh R.B.C. Aug } 19,1973 \\ \text { Plot 12A } 44 \mathrm{Pm} \boldsymbol{\sigma}^{-6} \end{gathered}$	0.60	T	T	T	T

301	$\begin{aligned} & 3 \text { Island L.B.C. Aug 21, } 1973 \\ & \text { \# } 14 \text { Pm } 0^{7} \end{aligned}$	0.40	0.010	T	T	0.010	
302	$\begin{gathered} \text { Maynard L.B.C. Aug } 21,1973 \\ \text { Plot } 9 \\ \text { 非 } 6 \operatorname{Pm} \sigma^{\prime} \end{gathered}$	0.60	T	T	0.010	0.010	
303	$\begin{array}{cl} \text { Keogh L.B.C. Aug } \\ \text { Plot } 7 & \text { 19, } \\ \# 2 \\ \text { Pm } 0^{*} \end{array}$	0.50	T	T	T	T	
304	$\begin{array}{cl} \text { Keogh L.B.C. Aug } 19,1973 \\ \text { Plot } 7 \mathrm{~B} & { }^{\boldsymbol{H}} 2 \mathrm{Pm} \mathrm{O}^{-1} \end{array}$	0.10	T	N.D.	0.035	0.035	
305	$\begin{aligned} & \text { Keogh R.B.C. Aug 19, } 1973 \\ & \text { Plot 12 } \begin{array}{ll} \text { El Pm } \\ \hline \end{array} \end{aligned}$	0.50	T	N.D.	T	T	
306	$\begin{array}{cl} \text { Keogh L.B.C. Aug } 19,1.973 \\ \text { Plot } 7 \mathrm{~A} \end{array}$	0.10	T	T	T	T	1
307		0.10	T	T	0.048	0.048	1 0 1
308	$\begin{aligned} & 3 \text { Island I.B.C. Aug 19, } 1973 \\ & \# 8 \mathrm{Pm} \mathrm{O} \end{aligned}$	0.10	T	T	T	T	
309	$\begin{aligned} & \text { Keogh R.B.C. Aug } 21,1973 \\ & \text { Plot } 12 \mathrm{~A} \\ & \# 15 \mathrm{Pm} \end{aligned}$	0.40	0.004	T	0.020	0.024	
310	$\begin{aligned} & \text { Keogh L.B.C. Aug } 19,1973 \\ & \text { Plot } 7 \end{aligned}$	0.10	T	N.D.	0.051	0.051	
311	```3 Island L.B.C. Aug 19, 1973 #2 Pm O"```	0.10	T	T	0.048	0.048	
312	$\begin{gathered} \text { Keogh L.B.C. Aug } 19,1973 \\ \text { Plot } 7 \\ \# 3 \text { Pm } \sigma^{\prime} \end{gathered}$	0.20	T	T	0.019	0.019	
313	$\begin{aligned} & \text { Keogh R.B.C. Aug } 20,1973 \\ & \text { Plot } 12 \text { \#2 Pm } \end{aligned}$	0.50	0.003	T	0.010	0.013	
314	$\text { Keogh R.B.C. Aug } \underset{H 1}{20,} 1973$	0.50	T	I	0.012	0.012	

315	$\begin{aligned} & \text { Keogh L.B.C. Aug } 19,1973 \\ & \text { Plot } 7 \\ & { }_{\\|} 7 \mathrm{Pm} \mathrm{O}^{-1} \end{aligned}$	0.20	T	T	0.018	0.018	
316	$\begin{array}{ll} 3 \\ \\ \text { Island } 7 & \text { L.B.C. Aug } \\ \hline \text { Pm } \end{array}$	0.10	T	T	0.045	0.045	
317	$\text { Maynard L.B.C. Aug 20, } 1973$ 非3 $\operatorname{Pm} \sigma^{\pi}$	0.05	0.004	0.006	0.045	0.055	
318	$\begin{array}{ll} \text { Keogh R.B.C. Aug 20, } \\ \text { Plot } 7 & \text { \#12 Pm } \end{array}$	0.10	T	T	0.042	0.042	
319	$\begin{aligned} & \text { Keogh L.B.C. Aug } 21,1973 \\ & \text { Plot } 7 \\ & \mathbb{\#} 13 \operatorname{Pm} \oint_{+} \end{aligned}$	0.40	0.005	0.008	0.025	0.038	
320	$\begin{aligned} & 3 \text { Island L.B.C. Aug 21, } 1973 \\ & { }^{\# 13} 13 \\ & \text { Pm } \sigma^{+} \end{aligned}$	0.30	T	N.D.	T	T	
321	$\begin{gathered} \text { Keogh R.B.C. Aug } 20,1973 \\ \text { Plot } 7 \\ \# 11 \text { Pm } 0^{7} \end{gathered}$	0.50	T	T	T	T	$\stackrel{1}{\omega}$
322	$\begin{gathered} \text { Keogh R.B.C. Aug } 21,1073 \\ \text { Plot 12A } \begin{array}{l} 16 \mathrm{Pm} \sigma^{\prime} \end{array} \end{gathered}$	$\bigcirc .50$	T	T	0.006	0.006	1
323	$\begin{aligned} & \left.3 \underset{\text { Is }}{ } \begin{array}{l} \text { Is land L.B.C. Aug } \\ \text { Pm } \\ \hline \end{array}\right) 19,1973 \\ & \hline \end{aligned}$	0.30	T	T	0.012	0.012	
324		0.60	T	T	T	T	
325	$\begin{gathered} \text { Keogh R.B.C. Aug } 20,1973 \\ \text { Plot 12A } \begin{array}{l} \text { \#12 } \\ \text { Pm } 0^{+} \end{array} \end{gathered}$	0.50	T	T	0.008	0.008	
326	$\underset{\$ 4}{\operatorname{Maynard}} \underset{\mathrm{Pm}_{0}}{\operatorname{Man}} 20,1973$	0.50	T	0.006	T	0.006	
327	$\text { Keogh R.B.C. Aug 20, } 1973$ $\text { Plot } 12 \text { 非 } 3 \mathrm{Pm}$	0.60	T	0.004	T	0.004	
328	$\begin{aligned} & \text { Keogh R.B.C. Aug } 20,1973 \\ & \text { Plot } 12 \end{aligned}$	0.50	T	T	0.009	0.009	

0.40 T Plot 7A 非6 Sc

Maynard L．B．C．Aug 21， 1973 Plot 9 非

3 Island L．B．C．Aug 20， 1973 \＃ $11 \quad$ Pm

Keogh R．B．C．Aug 20， 1973 Plot 12A \＃8 Pm O＂

3 Island L．B．C．Aug 20， 1973 \＃ 10 Pm q

Keogh R．B．C．Aug 20， 1973 Plot 7B \＃7 Pm（ ${ }^{*}$

Maynard L．B．C．Aug 19， 1.973 \＃ $1 \quad$ Pm O

Keogh R．B．C．Aug 20， 1973 Plot 12A \＃9 Pm

Keogh R．B．C．Aug 20， 1973 Plot $7 B$ \＃6 Pm 0^{\prime}

Keogh L．B．C．Aug 20， 1973 Plot 7A \＃！ $5 \mathrm{Pm} 0^{-}$

3 Island L．B．C．Aug 19， 1973非 $1 \quad$ Pm O

Keogh L．B．C．Aug 21， 1973 Plot 7B $\ddagger: 8$ Pm O

Keogh R．B．C．Aug 20， 1973 Plot 7E 报5 Pm 0

343	$\text { Keogh R.B.C. Aug, 20, } 1973$ Plot 12A \#14 Pm	0.10	T	I	T	T		
344	```Keogh R.B.C. Aug 20, 1973 Plot 7 #G Pm q```	0.20	T	T	0.013	C. 013		
345	```Keogh R.B.C. Aug. 20, 1973 Plot 7 #1C Pm &```	0.70	T	T	0.006	0.006		
346	```Keogh R.B.C. A.ug 20, 1073 Plot 12 fll3 Pm O```	0.10	T	T	0.035	0.035		
347	```Keogh R.B.C. Aug 20, 1973 Plot 12 i:5 Pm```	0.60	T	T	0.007	0.007		
348		0.20	T	T	T	I	1	
349	$3 \underset{45}{\text { Island }} \underset{\text { L.B.C. Aug }}{\text { Pm }} \sigma^{\prime} 19,1.973$	0.10	0.015	I	0.108	0.123	$\stackrel{\omega}{\omega}$	
350	```Keogh R.B.C. Aug 20, 1973 Plot 12 #4 Pm```	0.10	T	T	0.060	0.060		
351	```Keogh R.B.C. Aug 20, 1973 Plot 12A #:11 Pm (r```	0.10	C.. 117	T	0.470	0.487		
352	Keogh R.B.C. Aug 20, 1973 Plot 12A \#10 Pm	0.50	0.003	1	0.016	0.019		
353	$\begin{aligned} & \text { Maynard L.B.C. A.ug, 21, } 1973 \\ & \text { Plot } 9 \\ & ; \sharp \& \operatorname{Pm} 0^{\prime} \end{aligned}$	9. 70	T	T	I	7		
354	$\begin{gathered} \text { Keogh R.B.C. Aug. } 20,1973 \\ \text { Plot } 7 \mathrm{~B} \end{gathered}$	0.50	T]	T	T		
355	$\begin{gathered} \text { Keogh R.B.C. Aug 20, } 1973 \\ \text { Plot 7B } \\ \$ 3 \text { Pm } \end{gathered}$	0.30	T	N.D.	T	T		
356	$\begin{aligned} & 3 \text { Island L.B.C. Aug } 19,1973 \\ & { }_{\\|} 4 \end{aligned}$	0.50	T	N.n.	T	T		

357	Keogh R．B．C．Aug 20， 1973 Plot 12A \＃6 Pm	0.50	T	T	0.021	0.021
358	$\begin{aligned} & \text { Keogh L.B.C. Aug 19, } 1973 \\ & \text { Plot } 7 \quad \text { \#6 } \operatorname{Pm} 0^{\prime} \end{aligned}$	0.10	T	T	0.105	0.105
359	$\begin{gathered} \text { Keogh L.B.C. Aug 19, } 1973 \\ \text { Plot 7A } \\ \# 3 \mathrm{Pm} \end{gathered}$	0.10	0.014	T	0.074	0.088
360	$\begin{aligned} & \text { Keogh R.B.C. Aug 20, } 1.973 \\ & \text { Plot } 7 \\ & \# 8 \text { Pm }+ \end{aligned}$	0.50	T	T	0.012	0.012
361	$\underset{\sharp ⿰ ⿰ 三 丨 ⿰ 丨 三 八}{\text { Manard L．B．C．Aug }} \underset{\operatorname{Pm} 0^{\top}}{ } 20,1973$	0.60	T	T	0.018	0.018
362	Maynard L．B．C．Aug 19， 1973	0.10	T	T	0.032	0.032

$T=$ Trace $(<0.002 \mathrm{ppm})$
N．D．$=$ Not detected．

TABLE 5

Analysis of DDT Residues in Mice Brains - Anticosti Island

Serial Number	Sample Description	Mass (g)	$\begin{gathered} \text { DDF } \\ (\mathrm{ppm}) \end{gathered}$	$\begin{gathered} \mathrm{o}, \mathrm{p}-\mathrm{DDT} \\ (\mathrm{ppm}) \end{gathered}$	$\underline{p, p^{\prime}-D D T}(\mathrm{ppm})$	Total DDT (ppm)
363	```Anticosti Is. Sept. 21, 1973 Plot A #4 Pm &```	0.40	T	N.D.	0.362	0.362
364	Anticosti Is. Sept. 20, 1973 Plot A, Line 1 \#] Pm O^{7}	0.50	T	T	0.148	0.148
365	$\begin{aligned} & \text { Anticosti Is. Sept. } 21,1973 \\ & \text { Plot A } \end{aligned}$	0.80	T	T	0.040	0.040
366	```Anticosti Is. Sept. 21, 1973 Plot D #1 Pm. %```	0.80	T	T	0.008	0.008
367	$\begin{array}{cc} \text { Anticosti Is. Sept } 19,1973 \\ \text { Plot A } & \text { \#1 Pm } \end{array}$	0.60	T	T	0.012	0.012
368	$\begin{aligned} & \text { Anticosti Is. Sept. 20, } 1973 \\ & \text { Plot A 非2 Pm }+ \end{aligned}$	0.50	T	T	T	T
369	Anticosti Is. Sept. 20, 1973 Plot B, Line 2 鱾 Pm. $\%$	0.40	0.004	T	0.008	0.012

$\mathrm{T}=$ Trace (0.002 ppm)
N.D. $=$ Not Detected.

TABLF 6

Analysis of DDT Residues in Forest Slugs - North Vancouver Island

Serial Number	Sample Description	Mass (g)	$\begin{gathered} \text { DDF } \\ (\mathrm{ppb}) \end{gathered}$	$\begin{gathered} \mathrm{o}, \mathrm{p}^{-\mathrm{DDT}} \\ (\mathrm{ppb}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{p}, \mathrm{p}^{\prime}-\mathrm{DDT} \\ (\mathrm{ppb}) \end{gathered}$	$\begin{aligned} & \text { Total } \\ & \text { DDT (ppb) } \end{aligned}$	
370	Keogh R.B.C. Aug., 1973 Plot 12-12A DDT/57 Forest Slugs Slug $\\|_{1}$	20.0	0.6	0.6	1.2	2.4	
371	Keogh R.B.C. Aug., 1973 Plot 12-12A DDT/57 Forest Slugs Slug \#2	20.0	0.3	0.7	T	1.0	
372	Keogh L.B.C. Aug. 20, 1973 Plot 7B Forest Slugs Slug \#1	20.0	0.4	1.0	0.9	2.3	
373	Keogh L.B.C. Aug. 20, 1973 Plot 7B Forest Slugs Slug 非2	20.0	T	T	T	T	
374	```Keogh, L.B.C. Aug. 20, 1.973 Plot 7B Forest Slugs Slug 非3```	20.0	0.3	0.5	T	0.8	

Analysis of DDT Residues* in Five Fish and Larva. Samples

Keough River - Vancouver Island

Serial No.	J.dentificationNo.	Mass of the Sample (g)	Concentration (ppm) of DDT Residues **				
			nDF.	o, p -DDT	DDD	$\mathrm{p}, \mathrm{P}^{\prime}-\mathrm{DDT}$	$\begin{aligned} & \text { Total } \\ & \text { DDT } \end{aligned}$
375	Pacific Salmon Parr	5.10	0.002	0.001	0.001	0.002	0.006
376	Rainbow Trout Parr	5.10	0.002	0.002	0.003	0.007	0.015
377	Rainbow Trout	5.00	0.002	0.001	0.001	0.003	0.007
378	Freshwater Sculpins	3.50	0.001	0.001	0.001	0.001	0.004
379	Caddisfly Larva. +	0.50	0.007	0.011	0.010	0.024	0.052

* Average of two determinations
** Residue concentrations are expressed on wet weight basis.
+ Results uncertain due to insufficient sample.

TABLE 8

Analysis of DDT Residues* in Manitoba Soil: Spruce-wood Area, 1973

$\begin{gathered} \text { Serial } \\ \text { No. } \\ \hline \end{gathered}$	$\begin{gathered} \text { Identification } \\ \text { No. } \\ \hline \end{gathered}$		Wt of Soil (g)	Moisture Content (percent)	$\begin{gathered} \text { Soil } \\ \mathrm{pH} \end{gathered}$	Concentration (ppm) of DDT Residues**					
			DDE			ㅇ, $\mathrm{P}^{-D D T}$	DDD	$\mathrm{p}, \mathrm{P}^{\prime}-\mathrm{DDT}$	$\begin{gathered} \text { Total } \\ \text { DDT } \\ \hline \end{gathered}$		
380	Belair	No. 1 Control		50	11.0	6.54	0.002	0.001	N.D.	0.004	0.007
381	Belair	No. 1 East	50	9.0	5.90	0.001	0.001	N.D.	0.002	0.004	
382	Belair	No. 1 West	50	8.5	5.68	0.001	0.001	N.D.	0.004	0.006	
383	Line 1	Scots Pine	50	17.0	6.37	0.004	0.008	0.001	0.036	0.048	
384	Belair	No. 2 Control	50	7.0	6. 56	0.001	0.001	N.D.	0.001	0.003	
385	Belair	No. 2 East	50	6.0	5.99	0.001	N.D.	N.D.	0.003	0.004	
386	Belair	No. 2 West	50	9.0	5.46	0.002	0.001	N.D.	0.009	0.012	
387	BT 2		50	21.5	6.79	0.001	0.001	T	0.004	0.006	
388	BT 4		50	19.5	6.77	0.003	0.001	T	0.003	0.007	
389	Sevin		50	29.0	7.22	0.003	0.001	T	0.009	0.013	

* Average of two determinations.
** DDT concentration expressed in wet weight basis

T Traces (< 0.001 ppm)
N.D. Not Detectable.

TABLE 9

Analysis of DDT Residues in Soil - North Vancouver Island

$\begin{gathered} \text { Serial } \\ \text { No. } \\ \hline \end{gathered}$	Sample Description	plı	$\begin{gathered} \text { Moisture } \\ \% \\ \hline \end{gathered}$	$\begin{gathered} \text { DDE } \\ (\mathrm{ppb}) \end{gathered}$	$\begin{gathered} \mathrm{o}, \mathrm{p}-\mathrm{DDT} \\ (\mathrm{ppb}) \end{gathered}$	$\begin{gathered} \mathrm{p}, \mathrm{p}^{\prime} \mathrm{DDT} \\ (\mathrm{ppb}) \\ \hline \end{gathered}$	$\begin{gathered} \text { Total } \\ \text { DDT (ppb) } \\ \hline \end{gathered}$
390	$\begin{aligned} & 3 \text { Island L.B.C. Aug. } 211973 \\ & \text { Plot } 8 \end{aligned}$	4.90	53.5	4.7	1.2	28.8	34.7
391	Keogh L.B.C. Aug. 21, 1973 Plot 7B	4.70	20.5	T	T	1.0	1.0
392	Keogh L.B.C. Aug. 21, 1973 Plot 7A	4.40	20.0	0.4	T	0.3	0.7
393	```Maynard L.B.C. Aug. 21, }197 Plot 9```	4.50	43.0	3.2	0.8	12.6	16.6
394	Keogh R.B.C. Aug. 21, 1973 Plot 12A	5.10	50.5	2.9	2.3	4.8	10.0
395	```Keogh L.B.C. Aug. 21, 1973 Plot 7```	4.50	21.5	1.4	0.6	5.4	7.4
396	Keogh R.B.C. Aug. 21, 1973 Control Plot 12	4.85	14.0	T	T	5.5	5.5

$T=$ Trace $(<0.3 \mathrm{ppb})$
Sample size $=50 \mathrm{~g}$.

TABLE 10

Analysis of DDT Residues in Soil - Anticosti Island

$\begin{gathered} \text { Serial } \\ \text { No. } \\ \hline \end{gathered}$	Sample Description	p\#	$\begin{gathered} \text { Moisture } \\ \% \\ \hline \end{gathered}$	$\begin{gathered} \text { DDE } \\ (\mathrm{ppb}) \end{gathered}$	$\begin{gathered} \mathrm{o}, \mathrm{p}-\mathrm{DDT} \\ (\mathrm{ppb}) \end{gathered}$	$\begin{gathered} \mathrm{p}, \mathrm{p}^{\prime}-\mathrm{DDT} \\ (\mathrm{ppb}) \end{gathered}$	$\begin{gathered} \text { Total } \\ \text { DDT (ppb) } \\ \hline \end{gathered}$
397	Anticosti Is. Plot A	4.70	57.0	0.7	0.5	5.3	6.5
398	Anticosti Is. Plot E	5.05	43.0	0.3	T	4.6	4.9
399	```Anticosti Is. Plot C```	4.10	74.5	0.7	0.8	8.9	10.4
400	Unmarked Sample	4.40	73.0	1.8	T	3.2	5.0
401	Anticosti Is. Plot D	5.00	62.5	0.4	T	1.2	1.6

$T=$ Trace ($<0.3 \mathrm{ppb}$)

Sample size $=50 \mathrm{~g}$.

TABLE 11

Analysis of DDT Residues in Soil, Sediment, Water, Foliage, Fish, Mammal, Insect and Air
Samples Collected from Priceville Area, New Brunswick - May 1972

$\begin{gathered} \text { Serial } \\ \text { No. } \end{gathered}$	Sample Description	sample size (g)	moisture (\%)	pH	Temp. (${ }^{\circ} \mathrm{C}$)	DDT (ppm)			$\begin{gathered} \text { Total } \\ \text { DDT } \\ (\mathrm{ppra}) \end{gathered}$
						DDE	o, $\mathrm{p}-\mathrm{DDT}$	P, P^{\prime}-DDT	
402	Soil * Plot I	50	46	6.7		0.074	0.098	0.552	0.724
403	Soil * Plot II	50	44	6.5		0.096	0.117	0.818	1.031
404	Soil * Plot III	50	41	6.4		0.058	0.076	0.543	0.677
405	Sediment 1 Crooked Bridge Brook	25	> 55	6.8		0.170	0.300	0.046	0.516
406	Sediment 2 Crooked Bridge Brook	25	"	6.6		0.163	0.419	0.098	0.680
407	Sediment 3 Crooked Bridge Brook	25	"	6.7		0.241	0.613	0.925	1.779
408	Sediment 4 Crooked Bridge Brook	25	"	6.2		0.175	0.235	0.110	0.520
409	Sediment 5 Crooked Bridge Brook	25	"	6.3		0.056	0.134	0.110	0.300
410	Water - Crooked Bridge Brook	250		6.0	12.5	T	T	0.001	0.001
411	Water - Crooked Bridge Brook	250		6.3	12.1	T	T	T	T
412	Water - Pond	250		6.7	8.3	T	T	0.008	0.008
413	Water - Creek	250		6.4	10.7	T	T	0.001	0.001
414	Water - Spring	250		6.5	11.2	N.D.	N.D.	0.002	0.002
415	Spruce* Foliage	20	37			N.D.	N.D.	0.182	0.182
416	Spruce* Foliage	20	41			N.D.	N.D.	0.193	0.193
417	Spruce* Foliage	20	39			N.D.	N.D.	0.196	0.196
418	Spruce* Foliage	20	43			0.010	0.020	0.150	0.130
419	Spruce* Foliage	20	46			0.045	0.068	0.492	0.605
420	Spruce* Foliage	20	42			0.034	0.095	0.654	0.783

421	Spruce budworm - Sample 1	4	0.178	0.024	0.108	0.310
422	Spruce budworm - Sample 2	3	0.450	0.032	0.270	0.752
423	Spruce budworm - Sample 3	5	0.033	0.023	0.120	0.176
424	Fish - Trout \# 1	5	4.570	0.322	0.674	5.566
425	Fish - Trout \# 2	5	3.800	0.522	1.120	5.442
426	Fish - Trout \# 3	5	6.680	0.641	0.662	7.983
427	Fish - Trout \# 4	5	5.390	0.747	1.301	7.438
428	Fish - Trout \# 5	5	6.270	0.589	0.627	7.486
429	Fish - Trout \# 6	5	8.250	0.813	0.650	9.713
430	Vole \# 1 (Whole body)	2.5	0.018	0.022	0.353	0.393
431	Vole \# 2 (Whole body)	1.8	0.070	0.052	0.323	0.445
432	Vole \# 3 (Whole body)	2.1	0.051	0.041	0.470	0.572
433	Vole \# 4 (Whole body)	2.4	0.055	0.050	0.430	0.535
434	Vole \# 5 (Whole body)	1.3	0.026	0.099	0.232	0.357
435	Air samples* (in DMF bubbler) Ground level A-I		0.016	0.045	0.075	0.136
436	Air samples* 6' high A-I		0.018	0.060	0.030	0.108
437	Air samples* Ground level B-II		0.031	0.061	0.081	0.173
438	Air samples* 6' high B-II		0.031	0.085	0.037	0.153
439	Air samples* Ground level C-III		0.020	0.042	0.045	0.107
440	Air samples* 6' high C-III		0.022	0.051	0.029	0.102

$T=$ Traces ($<0.001 \mathrm{ppm}$)
N.D. $=$ Not detectable

* Average of two determinations.

$$
\square-2-2-2
$$

路
ZI ヨTGVL

457	$6 B$	64	4.7	N.D.	N.D.	N.D.	N.D.
458	$6 C$	69	4.9	N.D.	N.D.	0.072	
$459 *$	32	7.3	1.720				
460		34	7.3	1.200			

N.D. $=$ Not detected
$\dagger \quad=$ Very wet sample, hard to sieve.

* Soil samples from the C.C.R.I. premises for comparison; chromatograms showed numerous interference peaks around the $\underline{o}, \mathrm{p}$ and P, P 'DDT peaks; so no estimatdon was made. Presence of these isorers in appreciable quantities was apparent.

Fig. 1. Schematic representation of extraction and cleanup procedure for DDT residues in animal tissues. [The procedure was simplified for samples recorded in tables 3 to 5 by omitting steps 6,7,8,10,13 and 14].

Fig. 2 Schematic representation of extraction and cleanup procedure for DDT residues present in soil samples.

Fig. 3. Chromatogram of mouse brain extract before cleanup.

Fig. 4. Chromatogram of mouse brain extract after multistage cleanup.

Fig. 5. Chromatogram of mouse brain extract after cleanup (Simplified).

Fig. 6. Chromatogram of fish tissues after cleanup.

Fig. 7. Chromatogram of forest slug after cleanup.

- 54 -

Fig. 8. Chromatogram of soil samples after cleanup.

The analytical methods used were sensitive, reliable and practicable giving minimum interference in the terminal quantitation using EC gas chromatography (Figs. 3 to 8). The procedures might also be applied with slight modifications to other environmental samples not listed in this report. The minimum detectable limit of the DDT residues varied from 0.2 to 5 ppb depending on the co-extractive impurities present in the substrate samples. The simplified procedure used later on, in analysing some of the animal tissues (Tables 3 to 5) was found to be good demonstrating the practicality of the method developed.

Among the 460 samples of various types (animal tissues, soil, foliage water and air) collected from different parts of Canada and analysed, 445 (97%) contained the insecticide residues showing that DDT is distributed and persistent in all the components of forest and its cycling in the environment involves complex processes. So far little is known about its environmental reactions, partitioning and interactions among the various components in forest, transport in air, soil, water and living organisms. It is likely that much of the sprayed parent insecticide would have disappeared by photodegradation, microbial attack, chemical decomposition, volatilization and leaching (Gould 1966). The DDT residues in fetus tissues of mice are recorded in Table 1. The fetuses are obtained from the mice whose brain samples were analysed for DDT residues during the early part of 1972 (Sundaram 1972). The average DDT residues (ppm) present in brain and fetus samples were as follows:

	DDE	$\underline{o}, \underline{p}-D D T$		$\underline{p}, \mathbf{p}^{\prime}-D D T$
Brain	0.004	T		Total DDT
Fetus	0.010	0.026	0.027	0.031
		0.112	0.147	

The total DDT in the fetus samples was nearly five times higher than that of the brains indicating that DDT residues accumulate in the fetus tissues more than in the adipose tissues of brain.

No spray histories for the 188 mice samples (Table 2) collected from Maniwaki and California Lake areas in Quebec and 7 similar samples (Table 5) obtained from Anticosti Island were available, consequently no meaningful interpretations could be made. The average residue level in brain samples from mainland Quebec was found to be rather high, 0.988 ppm , compared with that in samples from Anticosti Island (0.082 ppm). The soil samples from these areas (Tables 10 and 12) contained only 0.065 (soil:brain, 1:15) and 0.006 (soil:brain, 1:11) ppm respectively.

The mice brain and soil samples (Tables 3 and 8) collected in 1973, 6 years after DDT application at 0.75 lbs A.I./acre, (DeBoo and Hildahl 1967) from Sprucewood area in Manitoba contained 0.037 and 0.011 ppm (soil: brain, 1:3) respectively. The DDE concentration in tissues was 35% of the total whereas in soil the amount was only 18%. Similar studies on samples received from North Vancouver Island (Keough River Basin), sprayed with DDT at the rate of 1 lb A.I./acre in 1957, showed (Tables 4 and 9) on average, the presence of 0.026 ppm of DDT residues in brains and 0.011 ppm in soils. The percent DDE concentration in the samples were 8 and 17 respectively. The concentration levels observed
in these samples were lower than the earlier ones, probably due to the lapse of 16 years since the spray operation and sampling; during the long interval much of the insecticide residues were lost by various physicochemical processes outlined earlier. Forest slug (Table 6), fish and larvae (Table 7) samples collected from this area contained 0.001 , 0.008 and 0.052 ppm respectively which are comparatively lower than the values obtained from Priceville (N.B.) samples (see Table 11).

Table 11 gives the DDT residue data of various types of samples (air, water, soil, sediment, foliage, budworm, fish and vole) collected from Priceville (N.B.) during 1972. This area received the heaviest dosage of DDT totalling 70 oz. A.I. applied per acre since 1956 to 1967 (Yule 1973). It is reflected in the high amounts of DDT residues observed in the samples. The "oven-dry" soil, sediment and spruce foliage samples contained on average $0.810,0.759$ and 0.358 ppm of DDT residues respectively. Water (0.002 ppm) and air samples (0.156 ppm) (see Sundaram 1974 for more information) showed measurable amounts of DDT. The five voles trapped in the area had a mean DDT content of 0.460 ppm . The six fish (trout) samples collected from the stream contained an unusually high amount (8.726 ppm) of DDT residues; 80% of it was DDE (6.992 ppm), 8% was $\mathrm{o}, \mathrm{p}-\mathrm{DDT}$ (0.727 ppm) and only 12% was $\mathrm{p}, \mathrm{p}^{\prime}-\mathrm{DDT}$ (1.007 ppm). The budworm samples also contained significant amounts of DDT residues (0.413 ppm), the source for the toxicant in the insects was the spruce foliage serving as food which contained the translocated insecticide via root penetration from soil.

Apart from the loss of the applied DDT by physicochemical processes for the past seven years, i.e., from 1967, the Priceville area still contains appreciable quantities of DDT in all the four components
of the forest and, as seen from the data is undergoing dynamic cycling (Woodwell et al 1971). An intensive and long-term study would be necessary to understand the complex pathways by which DDT cycles and accumulates from one component to another, its potential interaction within the components, and its long term consequences on the biological and ecological systems of the area. The total effect of the chemical on these systems is proportional, to its persistence and its toxicity. In addition to the DDT residues found in nearly all the samples analysed, the presence of PCBs called aroclors* which are widely distributed in the environment like DDT, are indicated in the chromatograms of animal (Figs. 3-7) and soil (Fig. 8) samples studied. Figures 3-8 contain multiple peaks of the three PCBs (aroclor 1242, 1254 and 1260) most commonly used. An aroclor has many different chlorinated biphenyls present. It can easily be seen by observing these chromatograms (Figs. 3-8), how this can present a problem as interfering contaminants in the analysis of DDT residues. No attempt has been made to estimate them and their presence in these samples is a puzzling one which requires an intensive study.

[^3]SUMMARY

Animal, foliage, water, soil and air samples amounting to 460 were collected from various forest regions of Canada sprayed with DDT. Quantitative estimation of the DDT isomers and DDE was carried out using gas chromatography, after suitable analytical methodologies have been developed. The residue data confirmed the protracted persistence and dynamic cycling of DDT through nontarget species inhabiting the forest ecosystem even after several years of cessation of spraying. The various inter related factors which influence the insecticide accumulation in non-target species were obscure. The presence of PCBs in the samples analysed was evident but no attempt was made to quantify them.

ACKNOWLEDGMENTS

The authors are indebted to Dr. C.H. Buckner and Mr. Bruce B. McLeod for collecting and supplying nearly all the samples recorded in this report. Thanks are extended to Dr. I.W. Varty (MFRC, Fredericton) for his assistance in sampling some of the samples recorded in Table 11.

The technical assistance of Messrs. W. O'Brien and G.G. Smith is greatly appreciated.

The authors acknowledge with thanks the suggestions and criticisms of Messrs W.W. Hopewe11 and W. Haliburton while preparing this report, and finally, it is a pleasure to acknowledge the support of Dr. J.J. Fettes in this work.

LITERATURE CITED

A.O.A.C. 1955. Official Methods of Analysis (8th edn.), A.O.A.C., Washington, D.C., 1008 pp.

Atkinson, H.J., G.R. Giles, A.J. MacLean and J.R. Wright, 1958. Chemical Methods of Soil Analysis. Contrib. No. 169 (rev.), Chem. Div., Sci. Serv., CDA, Ottawa, Ont. 90 pp.

DeBoo, R.F., and V. Hildah1. 1967. Aerial Spraying for Control of the Jack Pine Budworm in Manitoba. Manitoba Ent. 1: 21-26.

Fettes, J.J. and C.H. Buckner, 1972. Biocides in the Forest - Use and Misuse. Proc. Seventh World For. Cong. Buenos Aires, Argen. Oct. 4-18.

Gould, R.F. 1966. Organic Pesticides in the Environment, Ad. Chem. Series 60, Am. Chem. Soc., Washington, D.C.

Sundaram, K.M.S. 1972. A study of DDT Residues in the Brain Tissues of Small Wild Mammals. Environ. Canada Forestry Serv. Int. Rept. No. CC-16, 49 pp.

Sundaram, K.M.S. 1974. DDT Residues May be Lost from Forest Soil by Direct Volatilization. Environ. Canada Forestry Serv. BiMonthly Res. Notes. 30: 14-15.

Woodwell, G.M., P.P. Craig, and H.A. Johnson. 1971. DDT in the Biosphere: Where Does It Go? Science 174 (4014): 1101-1107.

Yule, W.N. 1970. DDT Residues in Forest Soils. Bull. Environ. Contam. Toxicol. 5: 139-144.

Yule, W.N. and A.D. Tomlin, 1970. DDT Residues in Forest Streams. Ibid. 5: 479-488.

Yule, W.N. Intensive Studies of DDT Residues in Forest Soil. Ibid. 9: 57-64.

APPENDIX I

ABBREVIATIONS AND SYMBOLS

Bb	Blarina brevicauda (Say), Short-tailed shrew
Cg	Clethrionomys gapperi (Vigors), Red-backed shrew
Ct	Citellus tridecemlineatus (Mitchill), Striped ground squirrel
Em	Eutamias minimus (Bachman), Least Chipmunk
Mh	Microsorex hogi (Baird), Pigmy shrew
Ni	Napaeozapus insignis (Miller), Woodland jumping mouse
Pm	Peromyscus maniculatus (Wagner), Deer mouse
Sc	Sorex cinereus (Kerr), Common or Masked shrew
Ts	Tamias striatus (Linn.), Eastern chipmunk
Zh	Zapus hudsonius (Zimmermann), Meadow jumping mouse
9	Female
0^{7}	Male
R.T.	Retention time (min.)
o, $\mathrm{p}^{\text {-DDT }}$	2,2-Bis(ㅇ, ${ }^{\text {- }}$-chloropheny1) $1,1,1$ trichloroethane
$\mathrm{p}, \mathrm{p}^{\prime}-\mathrm{DDT}$	2,2-Bis (p-chloropheny1)1,1,1-trichloroethane
DDE	2,2-Bis(p-chloropheny1)1,1,-dichloroethylene
DDD	2,2-Bis(p-chloropheny1)1,1-dichloroethane

[^0]: * Gas chromatographic analysis of the methanol used in the sample preservation showed negligible amounts of DDT residues.

[^1]: *

 Moisture content of soil samples was determined gravimetrically on duplicate samples after drying 16 hours in an air circulated thermostatic oven at 105° C. Percent moisture was calculated as follows:

 $$
 \% \text { Moisture }=\left[\frac{\text { Moist weight - oven dry weight }}{\text { oven dry weight }}\right] \times 100
 $$

 ${ }^{+}$Soil pH was determined in a $1: 2$ (weight: volume) suspension of soil and distilled water with a IL Porto-matic pH meter (Model 175) employing a glass electrode.

[^2]: * Pooled samples. N.D. = Not detected. $\quad T=\operatorname{Traces}(<0.005 \mathrm{ppm})$.

[^3]: * The polychlorobiphenyls (PCBs) are mixtures of compounds (> 200) derived from biphenyl containing chlorine on any of the ten positions. These PCBs, called aroclors, are designated by a number, e.g., aroclor 1254. The first two numbers represent the fact that it is a biphenyl and the second two numbers represent the weight percent of chlorine. Many of these compounds are more stable and have longer half-life than DDT. They have the necessary physical and chemical characteristics for persistence and biological magnification.

