	Environment Canada	Environner Canada
	Forestry Service	Service des Forêts

A PRELIMINARY REPORT ON STUDIES OF THE
IMPACT OF PERMETHRIN ON TROUT STREAMS
IN THE GASPE, 1977.
by
P. D. KINGSBURY

CCRI FIIE REPORT NO. 81
October, 1977

Chemical Control Research Institute Fisheries and Environment Canada
25 Pickering Place
Ottawa, Ontario
KlG 3Z8

CONFIDENTIAL - NOT FOR PUBLICATION This report may not be cited or published in whole or in part without the written consent of The Director, Chemical Control Research Institute, Canadion Forestry Service, Environment Canada, 25 Pickering Place, Ottowa, Ontario K1A OW3, Canada.

In 1976, field studies on the effects of aerial applications of the synthetic pyrethroid Permethrin (NRDC - 143) on aquatic ecosystems were initiated by the Chemical Control Research Institute (CCRI).* These studies showed that applications of $140 \mathrm{~g} / \mathrm{ha}$ Permethrin ($2 \mathrm{oz} / \mathrm{acre}$) presented substantial hazards to aquatic environments, but application rates of $70 \mathrm{~g} / \mathrm{ha}$ (l oz/acre) or less did not, at first appraisal, appear to be overly hazardous to the integrity of aquatic systems (Kingsbury 1977, Kingsbury, in press). In 1977, further studies were carried out on Permethrin at application rates of $70 \mathrm{~g} / \mathrm{ha}$ and $35 \mathrm{~g} / \mathrm{ha}$ (1 oz and $0.5 \mathrm{oz} /$ acre) . Studies were carried out in small, fast-flowing forest trout streams in contrast to the 1976 studies, where the treated systems were small lakes and a moderate flowing, sand-bottomed forest stream populated by cyprinids, sticklebacks and mudminnows.

The generous support given for these studies by Chipman Chemicals Ltd. and Shell Canada Ltd., is greatfully acknowledged.

SITE DESCRIPTIONS

Studies were carried out in three similar streams on the North coast of the Gaspe peninsula near Ste-Anne-des-Monts. All three were fastflowing, gravel-bottomed streams flowing north from the surrounding hills into the St. Lawrence River. Ruisseau de la Grande Tourelle, located east of Ste-Anne-des-Monts, served as the untreated control stream. A short stretch of Ruisseau Landry and a small feeder stream were treated with

[^0]$70 \mathrm{~g} /$ ha Permethrin. Ruisseau Landry flows into Petite Rivière du Cap Chat shortly before it, in turn, flows into Rivière du Cap Chat. A short stretch of Ruisseau du Petit Capucin and one of its branches were treated with $35 \mathrm{~g} / \mathrm{ha}$ Permethrin. This stream is further west along the coast from Ste-Anne-des-Monts than Ruisseau Landry.

Two sample stations were studied in each of the treated streams: an upstream station on the tributary and a mainstream station further downstream past the junction of another tributary stream. In both cases, the volume of water carried by the tributary streams were half or less of the flow within the mainstream and the tributary stations were subsequently shallower (mean depths about 10 to 15 cm) than the mainstream stations (mean depths about 25 to 30 cm). The untreated control station on Ruisseau de la Grande Tourelle was somewhat intermediate in flow and depth (mean depth about 15-20 $\mathrm{cm})$ to the treated stations. Bottom types at all stations were fairly similar consisting primarily of small rocks and gravel.

MEIHODS
Treatment Procedures: Ruisseau Landry and Ruisseau du Petit Capucin were treated with Permethrin on 16 June* and 20 June**, respectively. Applications were made by CCRI's Cessna 185 aircraft, fitted with a Micronair ${ }^{R}$ spray emission system. The spray plane began the treatment just downstream of the mainstream station and flew up the stream valleys treating each stream right to the end of the tributary branches (at least 2 km upstream from the tributary stations).

[^1]Invertebrate Drift: The numbers and kinds of invertebrates drifting downstream with the current were measured over about a two-week period around the treatment dates at each sampling station. Drift nets were set for 15minute periods each morning and evening with the nets sampling a 46 cm wide portion of the stream's flow from surface to bottom, including the surface film. Additional drift net sets were made on the day of spray application at each treatment station. Water level, stream velocity and water temperature measurements were made at the same time drift samples were being taken.

Bottom Fauna Populations: Bottom fauna populations at each sampling station were measured periodically by two methods: Surber sampling and collecting invertebrates from rocks. Four $0.093 \mathrm{~m}^{2}$ (foot square) Surber samples (Surber, 1936) were taken on each sampling occasion, and at the same time, four rocks, approximately 20 cm in diameter, were collected and the aquatic organisms on them removed and preserved. Surber samples were preserved in their entirety in the field with formaldehyde, and the organisms in them were later separated from the substrate in the lab with the aid of a "bubbler" (Kingsbury and Beveridge, 1977). Benthic organisms collected by both methods were counted and identified to order or family, using the classification of Usinger (1974) .

Fish: Samples of native fish populations from the study streams were collected periodically by using an electroshocker to stun the fish and then capturing them with a dip net. Fish captured were measured and weighed in the field, and their stomachs were removed and preserved with formaldehyde for subsequent analysis of the stomach contents in the laboratory. The volume of the stomach contents of each fish was recorded and their composition determined under a dissecting microscope.

Blocking seines were set across the treated streams downstream of the mainstream station for several days following the Permethrin applications to capture any dead or distressed fish carried by the current.

RESULTS

Invertebrate Drift: Extremely large increases in the drift of aquatic invertebrates was seen in both Permethrin-treated streams following spray application with no indication of substantial increase evident in the control stream (Appendix A, Tables A-I to A-III). The impact on both streams were similar in terms of numbers and types of organisms affected with mayfly nymphs (Ephemeroptera), stonely nymphs (Plecoptera), caddisfly larvae (Trichoptera) and midge larvae (Diptera:Chironomidae) being the most seriously affected groups. Dramatic increases in drift occurred sooner after spray application in Ruisseau Landry ($70 \mathrm{~g} / \mathrm{ha}$) but were somewhat longer lasting in Ruisseau du Petit Capucin ($35 \mathrm{~g} / \mathrm{ha}$). In both streams, impact was greatest over the first few hours following treatment and lasted for about three days. Noticeable increases in the drift of terrestrial organisms were also seen in the treated streams as opposed to the untreated control (Appendix A, Tables A-IV to A-VI), but these were much less dramatic than increases in the drift of aquatic organisms. The impact on terrestrial organisms were considerably greater at Ruisseau Landry ($70 \mathrm{~g} / \mathrm{ha}$) than at Ruisseau du Petit Capucin ($35 \mathrm{~g} / \mathrm{ha}$). At Ruisseau Landry, the greatest increase was among Homoptera while Diptera were noticeably affected at both streams. The greatest impact on terrestrial organisms at both streams occurred later than the greatest impact on aquatic organisms, but still only a short time after spray application.

Bottom Fauna Populations: Bottom fauna populations in all three streams were predominated by mayfly nymphs prior to treatments (Appendix B). Caddisfly larvae were more abundant and of greater significance in terms of total numbers of aquatic insects in Ruisseau Landry than in the other streams. Bottom fauna populations in Ruisseau de la Grande Tourelle (untreated control), as measured by both Surber samples (Table B-I) and collections from rocks (Table B-II), were fairly stable in numbers and composition over the summer. Large increases in midge larvae populations were evident in August, caddisfly larvae populations were elevated, over summer levels, in August and October and mayfly nymph populations fell to low levels in Surber samples in October, while remaining abundant on rocks.

The application of $70 \mathrm{~g} /$ ha Permethrin to Ruisseau Landry caused decreases in the abundance of all orders of aquatic insects at both tributary (Tables B-III and IV) and mainstream (Tables $B-V$ and VI) stations. By the first week of July, aquatic invertebrates had almost disappeared from the stream. Only very small numbers of some groups of aquatic insects were found in the stream after June, this being especially true for mayfly nymphs. Midge larvae were found again in the stream in large mumbers in August and October, and some sign of partial recovery among caddisfly larvae was evident at the mainstream station at this time, though not at the tributary station. A thick covering of algae was present on the stream bed at both stations in August and October. The effects on bottom fauna populations resulting from the application of $35 \mathrm{~g} / \mathrm{ha}$ Permethrin to Ruisseau du Petit Capucin were less dramatic, encompassed fewer groups of aquatic insects and were shorter-lasting than occurred with the higher dosage applied to Ruisseau Landry. The impact on mayfly nymphs at both the tributary (Tables B-VII to VIII) and mainstream (Tables B-IX and X) stations was still severe, but not all individuals were
eliminated and substantial recovery of mayfly nymph populations was evident in August and October. The impact on mayfly nymphs of the family Baetidae was distinctly greater than on members of the family Heptageniidae. Relatively little depression of caddisfly larvae populations was evident after the treatment and this group was found in numbers far above prespray levels at both stations in August and October. Midge larvae populations showed few changes related to the treatment and increased sharply in August and October. A substantial decrease in numbers of blackfly larvae (Diptera: Simuliidae) found on rocks at the tributary station was evident following treatment.

Fish: No evidence of fish mortality was found following the treatments of Ruisseau Landry or Ruisseau du Petit Capucin. No fish were captured in the blocking seines set across the two streams, nor were any dead or distressed fish seen during extensive searches of the treated streams. Healthy populations of small brook trout, Salvelinus fontinalis (Mitchill), were always found in large numbers in all the study streams, while slimy sculpins, Cottus cognatus (Richardson), were consistently found at both stations in Ruisseau Landry, the only stream in which they occurred.

Brook trout in Ruisseau de la Grande Tourelle were feeding primarily on aquatic insects the second week of June, but terrestrial arthropods became important items in their diet for the rest of the year beyond this point (Appendix C, Tables C-I to IV). Mayfly nymphs remained important items of the diet until October, and caddisfly larvae first diminished and then increased in importance as the year progressed. Midge larvae reached their peak contribution to the diet of brook trout in August, the same time they were most abundant in bottom samples.

Brook trout in Ruisseau Landry were feeding on quite a varied diet of mayfly nymphs, stonefly nymphs, caddisfly larvae, a number of groups of aquatic diptera larvae, earthworms (Oligochaeta) and a few terrestrial arthropods prior to the Permethrin application (Tables C-V to XII). Following the treatment, they gorged themselves on affected aquatic insects, particularly stonefly nymphs and mayfly nymphs. For the rest of the year they fed almost exclusively on terrestrial organisms with some feeding on cranefly larvae (Diptera:Tipulidae) and earthworms evident in October. Despite the lack of aquatic insect food in the stream from the end of June on, the mean volumes of food found in brook trout stomachs remained close to or greater than prespray levels throughout the rest of the year. Slimy sculpins in this stream were able to find mayfly nymphs, caddisfly larvae and stonefly nymphs to feed on up to ten days after treatment, but beyond this point fed primarily on diptera larvae (Tipulidae, Simuliidae, Chironomidae and Enpididae), earthworms and snails (Table C-XIII to XX). Caddisfly larvae and aquatic coleoptera larvae were found to some extent in their stomach contents during November.

In Ruisseau du Petit Capucin, brook trout again switched to a diet predominated by terrestrial arthropods in July and August, following extreme gorging on mayfly and stonely nymphs right after the Permethrin treatment (Tables C-XXI to XXVIII). Midge larvae and caddisfly larvae were becoming more important in August and by October, caddisfly larvae were the most important items in the diets of brook trout at both stations. Although there appeared to be more aquatic insect food material present in this stream late in the year than in Ruisseau Landry, the mean volumes of food present in brook trout stomachs remained close to or below prespray levels.

CONCLUSIONS

The application of $70 \mathrm{~g} / \mathrm{ha}$ Permethrin to Ruisseau Landry virtually eliminated populations of most groups of aquatic insects in this stream. Repopulation of the stream by midge larvae was evident in the year of treatment, but other groups of aquatic insects had not yet shown appreciable signs of substantial recovery by November. Trout in the stream were forced to feed almost exclusively on terrestrial organisms entering the stream, but appeared to still manage to find reasonable quantities of food.

The disruption to the aquatic invertebrate fauna of Ruisseau du Petit Capucin caused by an application of $35 \mathrm{~g} / \mathrm{ha}$ Permethrin, appeared at first to be similar to that seen in Ruisseau Landry, but severe depression of bottom-dwelling populations was limited to the mayfly nymphs and significant recovery of this group was apparent by November. The diet of brook trout in this stream also shifted towards utilization of terrestrial food organisms, but not to the extent or for the duration found in Ruisseau Iandry.

It is apparent that applications of Permethrin at $70 \mathrm{~g} / \mathrm{ha}$ can cause severe disruption to the invertebrate fauna of trout streams. The effects of half this dosage on aquatic insects are substantially less but still considerable. The ultimate effects of these levels of disruption of fish food organisms on fish growth will be considered in a final report on this year's studies after calculating condition coefficients for the fish sampled from each stream.

REFERENCES

Kingsbury, P. D. 1976. Studies of the impact of aerial applications of the synthetic pyrethroid NRDC-143 on aquatic ecosystems. Information Report CC-X-127, Chemical Control Research Institute, Nov. 1976.
Kingsbury, P. D. In press. Effects of an aerial application of the synthetic pyrethroid Permethrin on a forest stream. Man. Ent., in press.

Kingsbury, P. D. and J. W. G. Beveridge. 1977. A simple bubbler for sorting bottom fauna samples by elutriation. Can. Ent. 109:1265-1268.
Surber, E. W. 1936. Rainbow trout and bottom fauna production in one mile of stream. Trans. Amer. Fish Soc. 66:193-202.
Usinger, R. L. (ed). 1974. Aquatic insects of California with keys to North American genera and California species. Univ. of California Press, Berkley, 1974.

APPENDIX "A"
 INVERTEBRATE DRIFT

Aquatic organisms caught in 15 minute drift net sets, Ruisseau de la Grande Tourelle, untreated control station, 7 June to 22 June, 1977. Gaspe, Quebec

Days before or after Permethrin
application to:

Water level (cm)	32	37	35	36	33	33	30	30	30	30	32	32
Ephemeroptera:Heptageniidae	18	14	10	14	10	17	6	8	2	11	38	7
:Baetidae	64	61	8	47	28	72	15	76	12	13	31	8
Plecoptera	11	10	1	8	7	8	-	14	1	7	1	4
Megaloptera:Sialidae	-	-	-	-	1	3	-	2	1	-	-	-
Trichoptera	22	10	-	1	4	4	-	1	3	1	13	3
Coleoptera:Hydrophilidae	-	3	-	-	-	-	-	-	-	-	-	-
:Unknown	-	-	1	-	-	-	-	-	-	-	1	-
Diptera:Tipulidae	2	6	4	-	-	-	-	2	1	2	-	2
:Dixidae	2	6	-	-	-	-	-	-	-	1	2	2
:Simuliidae	19	14	3	2	4	4	3	11	2	4	5	6
:Chironomidae	39	40	7	4	30	20	6	28	8	16	21	7
:Heleidae	-	-	-	-	1	-	-	-	-	-	-	-
:Rhagionidae	-	2	1	-	-	-	-	-	-	1	-	-
:Empididae	-	-	-	-	1	2	-	1	-	-	-	-
:Unknown	-	-	-	-	3	-	-	2	-	-	-	-
Nematomorpha	-	-	-	-	-	-	-	-	-	1	1	-
Nematoda	-	-	-	-	1	-	-	-	1	-	-	-
Oligochaeta	$\bar{\square}$	5	1	2	3	1	-	-	-	-	-	-
Gastropoda	2	6	-	-	1	-	1	-	-	-	-	-
Hydracarina	1	-	-	-	1	-	-	1	-	1	1	-
Total aquatic organisms	180	177	36	89	95	131	31	146	31	58	114	39

Days before or after Permethrin application to:												
Ruisseau Landry	+0 pm	+1 am	$+1 \mathrm{pm}$	+2 am	+2 pm	+3 am	+4 am	+4 pm	+5 am	+5 pm	+6 am	+6 pm
Ruisseau de Petit Capucin	-4 pm	-3 am	$-3 \mathrm{pm}$	-2 am	-2 pm	-1 am	+0 am	+0 pm	+1 am	+2 pm	+2 am	+2 pm
Water Ievel (cm)	31.	31	29	28	28	28	27.5	27	27	26	26	26
Ephemeroptera:Heptageniidae	2	4	5	28	4	2	14	-	-	5	2	1
:Baetidae	3	11	15	37	6	7	12	7	3	6	-	1
Flecoptera	2	2	3	10	4	1	2	-	-	3	1	-
Megaloptera:Sialidae	-	-	-	-	-	-	-	-	-	-	-	-
Trichoptera	10	5	5	9	4	5	5	2	7	9	-	1
Coleoptera:Hydrophilidae	-	-	-	-	-	-	-	-	-	-	-	-
:Unknown	2	-	-	-	-	-	1	1	-	-	-	-
Diptera:Tipulidae	-	-	-	1	-	-	-	-	-	1	-	-
:Dixidae	-	-	-	-	-	-	-	-	-	-	-	-
:Simuliidae	2	4	6	5	1	1	6	-	-	3	1	-
:Chironomidae	9	8	14	12	11	3	11	8	15	2	1	12
:Heleidae	-	-	-	-	-	-	-	-	-	-	-	-
:Rhagionidae	-	-	-	-	-	-	-	-	-	-	-	-
:Empididae	1	-	-	-	-	-	-	-	-	1	-	-
:Unknown	-	-	-	-	-	-	-	-	-	-	-	-
Nematomorpha	-	-	-	-	1	-	-	4	1	-	1	2
Nematoda	-	-	-	-	-	-	-	-	-	-	-	-
Oligochaeta	-	-	-	-	-	-	-	-	-	-	-	-
Gastropoda	-	-	1	-	-	-	-	-	-	-	-	-
Hydracarina	1	1	1	-	1	1	-	-	-	-	-	-
Total aquatic organisms	32	35	50	103	32	20	51	22	26	30	6	17

Aquatic organisms caught in 15 minute drift net sets, Ruisseau Landry tributary station, 7 June to 30 June, 1977. Gaspé, Quebec

TABLE A-II (cont.)

Days after Permethrin application	$\pm 5 \mathrm{~min}$	+ $\frac{1}{2} \mathrm{~h}$	+l h	+2 h	+3 h	+6 h	+12 h	+15 h	+1 am	+l pm			+3	4 am
Water Level (cm)	14	14	14	14	14	14	14	14	13.5	13.5	13	13	12.5	9.5
Ephemeroptera:Heptageniidae	32*	3,136*	23,360*	18,688*	6,816*	1,344*	512*	160*	192*	51	19	15	5	1
:Baetidae	64*	13,152*	54,496*	14,880*	5,024*	2,272*	672*	640*	448*	116	58	59	12	1
Plecoptera	768*	5,152*	13,216*	10,976*	7,424*	3,680*	2,368*	1,856*	672*	212	81	72	21	-
Megaloptera:Sialidae	-	-	480*	640*	416*	256*	96*	-	-	7	2	7	1	-
Trichoptera	448*	8,352*	13,248*	8,736*	4,256*	1,056*	512*	384*	224*	112	58	70	21	3
Coleoptera:Hydrophilidae	-	-	-	-	-	-	-	-	-	-	-	1	-	-
: Elmidae	-	-	-	-	-	-	-	-	-	-	-	1	-	-
: Unknown	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Diptera:Tipulidae	-	-	-	-	128*	160*	32*	-	-	5	-	-	-	-
:Blephariceridae	-	544*	544*	128*	-	-	-	-	-	-	-	-	-	-
:Dixidae	-	--	-	64*	32*	-	-	-	-	-	-	-	-	-
:Simuliidae	-	96*	320*	160*	-	96*	-	-	-	4	1	1	-	-
:Chironomidae	640*	3,904*	5,696*	5,728*	1,984*	1,216*	704*	672*	224*	127.	78	85	26	2
: Heleidae	-	-	-	-	-	32*	-	-	-	-	-	-	-	-
:Rhagionidae	-	-	32*	64*	-	-	-	-	-	-	-	1	-	-
:Empididae	-	-	-	-	96*	64*	96*	-	32*	2	-	1	-	1
:Unknown	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Nematomorpha	1	-	-	-	-	-	1	1	-	-	1	-	2	-
Oligochaeta	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Gastropoda	-	-	-	-	-	-	-	-	-	-	-	-	-	1
Hydracarina	-	-	288*	320*	224*	160*	128*	32*	-	1	2	2	-	-
Total Aquatic Organisms	1,953	34,336	111,680	60,384	26,400	10,336	5,121	3,745	1,792	637	300	315	88	9

[^2]Aquatic organisms caught in 15 minute drift net sets, Ruisseau du Petit Capucin tributary station, 9 June to 23 June, 1977. Gaspe, Quebec.

Days before Permethrin application	-11 am	-11 pm	-10 am	-10 pm	-8 am	-8 pm	-3 am	-3 pm	-2 am	-2 pm	-1 am	-1 pm	-0 am
Water level (cm)	24	28	21	20	20	20	16	15	15	15	15	14	14
Ephemeroptera:Heptageniidae	2	4	3	1	-	-	-	8	3	1	3	3	3
:Baetidae	3	14	5	3	2	2	8	14	17	4	6	15	12
Plecoptera	1	2	4	-	1	1	2	3	-	-	3	-	3
Megaloptera:Sialidae	-	-	-	-	-	-	-	-	-	-	-	-	-
Trichoptera	-	3	4	1	-	2	1	8	6	6	4	4	12
Coleoptera:Elmidae	-	-	-	-	-	-	-	-	-	-	-	-	-
: Dytiscidae	-	-	-	-	-	-	-	-	-	-	-	-	-
Diptera:Tipulidae	-	-	-	-	-	-	-	-	-	-	-	-	-
:Blephariceridae	-	-	-	-	-	-	-	-	-	-	-	-	-
:Dixidae	-	-	-	-	-	-	-	-	-	-	-	-	-
:Simuliidae	3	3	2	2	1	-	4	4	4	2	5	6	4
:Chironomidae	1	2	3	1	2	1	1	8	2	1	-	1	2
: Rhagionidae	-	-	-	-	-	-	-	-	-	-	-	-	-
:Empididae	-	1	-	-	-	-	-	-	-	-	-	-	-
Nematomorpha	-	-	-	-	-	-	-	-	-	4	2	1	-
Nematoda	-	-	-	-	-	-	-	-	-	-	-	-	-
Oligochaeta	-	-	-	-	-	-	- .	-	-	-	-	-	-
Gastropoda	-	-	-	-	-	-	-	-	-	-	-	-	-
Hydracarina	-	-	-	-	1	-	-	-	-	3	-	-	-
Total aquatic organisms	10	29	21	8	7	6	16	45	32	21	23	30	36

Days after Permethrin application	+5 mi	+1/2 h	+1 h	+2 h	+3 h	+5 h	+12 ${ }^{\frac{1}{2}} \mathrm{~h}$	+16 h	1 am	+1 pm	+2 am	+2 pm	r3 am
Water level (cm)	14	14	14	14	14	14	14	14	14	14	14	12.5	13
Ephemeroptera: Heptag eniidae	6	256*	7,296*	29,893*	11,392*	2,400*	1,376*	608*	24	608*	20	9	4
:Baetidae	4	5,664*	97,920*	55,226*	23,008*	5,280*	4,272*	2,176*	300	2,112*	57	29	24
Plecoptera	5	352*	768*	11,653*	7,008*	2,912*	1,184*	160*	72	608*	9	6	1
Megaloptera:Sialidae	-	-	-	-	-	-	32*	-	-	-	-	-	, -
Trichoptera	13	768*	26,112*	40,786*	20,288*	3,616*	3,776*	1,312*	294	2,016*	48	51	26
Coleoptera:Elmidae	-	-	-	-	-	-	-	-	-	-	-	-	-
: Dytiscidae	-	-	12	-	-	32*	-	-	-	-	-	-	-
Diptera:Tipulidae	-	-	-	-	64*	-	-	-	-	-	-	1	-
:Blephariceridae	-	-	-	-	-	-	-	-	-	-	1	1	-
:Dixidae	-	-	-	253*	64*	-	-	-	-	-	-	-	-
:Simuliidae	6	96*	192*	-	992*	416*	80*	160*	16	64*	1	8	2
:Chironomidae	3	256*	384*	2,786*	1.728*	352*	208*	* 64*	12	-	6	11	3
: Rhagionidae	-	-	-	-	-	-	-	-	-	32*	-	-	-
:Ermpididae	-	-	-	-	-	-	-	-	-	-	-	-	-
Nematormorpha	4	1	-	-	-	-	-	-	-	-	1	5	-
Nematoda	-	-	-	-	-	-	-	-	-	1	-	-	-
Oligochaeta	-	-	-	-	-	\cdots	-	-	-	-	-	-	-
Gastropoda	-	-	-	-	-	-	-	-	-	-	-	-	-
Hydracarina	-	32*	-	253*	160*	-	-	-	-	-	-	1	-
Total aquatic organisms	41	7,425	132,684	140,850	64,704	15,008	10,928	4,480	718	5,441	143	122	60

[^3]Terrestrial organisms caught in 15 minute drift net sets, Ruisseau de la Grande Tourelle, untreated control station, 7 June to 22 June, 1977. Gaspé, Quebec.

Days before or after Permethrin application to:												
Ruisseau Landry	+0 pm	+1 am	+1 pm	+2 am	+2 pm	+3 am	+4 am	+4 pm	+5 am	+5 pm	+6 am	+6 pm
Ruisseau du Petit Capucin	-4 pm	-3 am	-3 pm	-2 am	-2 pm	-1 am	+0 am	+0 pm	+1 am	+1 pm	+2 am	+2 pm
Water level (cm)	31	31	29	28	28	28	27.5	27	27	26	26	26
Collembola	-	-	1	-	1	-	2	-	-	-	-	-
Ephemeroptera	-	-	-	-	-	-	-	-	-	-	-	-
Plecoptera	-	-	-	-	-	-	-	-	-	-	-	-
Hemiptera	-	1	-	-	2	-	1	2	-	-	-	-
Homoptera	-	2	2	2		3	2	-	-	1	2	5
Trichoptera	-	-	-	-	-	-	-	-	-	-	-	-
Lepidoptera	-	1	2	1	2	-	-	-	-	-	-	-
Hymenoptera	-	1	2	-	1	-	6	3	-	-	2	12
Coleoptera	1	-	2	1	1	-	-	2	-	-	-	-
Diptera	-	43	-	22	37	26	30	48	22	10	22	65
Arachnida	1	3	1	3	3	-	1	2	-	-	1	4
Total Terrestrial Organisms	2	51	8	29	48	29	42	57	22	11	27	86

TABLE A-V

Terrestrial organisms caught in 15 minute drift net sets, Ruisseau Landry tributary station, 7 June to 30 June, 1977. Gaspé, Quebec.

Days before Permethrin application	-9 am -8 am -7am $-7 \mathrm{pm}-6 \mathrm{am}-6 \mathrm{pm}-4 \mathrm{am}-4 \mathrm{pm}-3 \mathrm{am}-3 \mathrm{pm}-1 \mathrm{am}-1 \mathrm{pm}-0 \mathrm{am}$												
Water Level (cm)	18	20	18	18	18	18	16	16	15.5	15.5	16	14	14
Collembola	-	-	-	1	1	-	-	-	-	-	1	-	2
Ephemeroptera	-	-	-	-	-	-	-	-	-	-	-	3	-
Plecoptera	-	-	-	-	-	-	-	-	-	1	-	1	-
Hemiptera	-	-	-	-	-	-	-	-	-	-	-	-	-
Homoptera	3	-	-	1	1	-	-	-	-	-	2	10	3
Trichoptera	-	-	-	-	-	-	-	-	-	-	-	-	-
Lepidoptera	1	-	-	-	-	-	-	-	-	-	-	-	-
Hymenoptera	3	-	2	4	3	-	-	1	1	1	2	4	2
Coleoptera	-	-	-	1	-	1	-	-	-		-	5	-
Diptera	18	3	9	12	4	7	15	31	11		12	102	-
Arachnida	3	1	-	1	-	-	-	-	-	-	1	1	-
Total Terrestrial Organisms	28	4	11	20	9	8	15	32	12	9	18	126	7

TABLE A-V (cont.)

Days after Permethrin application	+5 min	$+\frac{1}{2} \mathrm{~h}$	+1 h	+2 h	+3 h	+6 h	$+12 \mathrm{~h}$	+15 h	+1 am	+1 pm		+2 pm	+3 am	+14 am
Water level (cm)	14	14	14	14	14	14	14	14	13.5	13.5	13	13	12.5	9.5
Collembola	384*	-	96*	96*	-	-	-	-	-	2	1	3	-	1
Ephemeroptera	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Plecoptera	-	-	-	-	-	-	-	-	-	-	-	2	-	-
Hemiptera	32*	-	-	-	-	-	-	-	-	1	-	-	1	1
Homoptera	32**	352*	448*	1,888*	2,432*	2,976*	1,120*	640*	1,856*	70	84	44	12	1
Trichoptera	32*	-	-	32*	-	-	-	-	-	2	3	3	2	-
Lepidoptera	-	32*	32*	-	32*	-	32*	-	64*	7	3	1	1	10
Hymenoptera	32*	32*	32*	192*	128*	160*	96*	-	-	12	10	22	7	11
Coleoptera	96*	64*	32*	-	32*	-	-	-	-	7	2	-	1	5
Diptera	480*	160*	480*	572*	320*	288*	416*	160*	256*	301	169	436	107	31
Arachnida	32*	32*	64*	96*	64*	64*	32*	-	32*	3	-	1	1	1
Total Terrestrial Organisms	1,088	704	1,184	2,880	3,008	3,488	1,696	800	2,208	405	272	512	132	61

Terrestrial organisms caught in 15 minute drift net sets, Ruisseau du Petit Capucin tributary station,
9 June to 23 June, 1977. Gaspé, Quebec.

TABLE A-VI (cont.)

Days after Permethrin application	+5 min	+12 h	+l h	+2 h	+3 h	+5 h	+12 ${ }^{\frac{1}{2}} \mathrm{~h}$	+16 h	+1	+1 pm	+2 am	+2 pm	+3 am
Water level (cm)	14	14	14	14	14	14	14	14	14	14	14	12.5	13
Collembola	1	32*	-	-	96*	-	-	32*	1	-	8	4	5
Ephemeroptera	-	-	-	-	-	32*	-	-	-	-	-	-	-
Plecoptera	1	-	-	-	-	-	16*	-	-	-	5	-	-
Hemiptera	-	64*	-	-	32*	-	16*	64*	-	-	-	-	2
Homoptera	-	-	-	-	160*	-	112*	32*	3	32*	-	-	-
Trichoptera	-	-	-	-	-	-	-	-	-	-	-	-	
Lepidoptera	-	-	-	-	-	32*	-	-	-	-	-	-	-
Hymenoptera	4	-	-	-	96*	-	128*	64*	-	32*	8.	8	-
Coleoptera	1	-	1	-	32*	-	16*	-	1	-	1	5	-
Diptera	46	128*	384*	253*	288*	416*	368*	-	24	96*	62	132	68
Unknown Insecta	-	-	-	-	-	-	-	-	-	-	8	8	3
Arachnida	3	-	-	253*	74*	-	16*	32*	1	-	3	3	3
Total terrestrial organisms	56	224	385	506	768	480	672	224	30	160	95	160	81

* numbers extrapolated from subsamples

APPENDIX "B"

BOTIOM FAINA POPULATIONS

Bottom fauna populations*, Ruisseau de la Grande Tburelle, untreated control station, 11 June to 4 October, 1977. Gaspé, Québec.

	11 June	16 June	19 June	23 June	27 June
Ephemeroptera:Heptageniidae :Baetidae	16.0 ± 4.1	11.7 ± 9.4	6.0 ± 6.2	10.2 ± 8.0	6.5 ± 2.6
	0.5 ± 0.6	2.0 ± 0.8	1.2 ± 0.5	2.5 ± 1.0	1.2 ± 3.3
Plecoptera	2.8 ± 4.9	1.8 ± 1.2	0.2 ± 0.5	1.0 ± 0.8	0.8 ± 0.5
Trichoptera	4.0 ± 4.5	1.0 ± 0.8	1.8 ± 1.0	3.0 ± 2.6	0.8 ± 1.0
Diptera:Tipulidae	0.2 ± 0.5	0.2 ± 0.5	0.2 ± 0.5	0.5 ± 0.6	0.5 ± 0.6
:Psychodidae				-	
:Culicidae	-	-	-	-	-
:Simuliidae	-	-	-	-	-
:Chironomidae	1.0 ± 0.8	1.0 ± 0.8	0.5 ± 0.6	1.0 ± 2.0	0.8 ± 0.5
:Heleidae	-	-	-	-	-
:Rhagionidae	-	0.2 ± 0.5	-	-	-
: Empididae	-	-	-	-	0.2 ± 0.5
:Unknown	-	-	-	-	-
Nematomorpha	-	-	-	-	-
Gastropoda	-	-	-	-	-
Pelecypoda	0.5 ± 0.6	-	-	-	-
Hydracarina	-	-	0.2 ± 0.5	-	-
Total	26.0 ± 7.6	18.8 ± 4.2	10.5 ± 5.5	18.8 ± 10.8	10.8 ± 3.2

[^4]```
TABLE B-I (cont.)
```

|  | 30 June | 3 July | 7 July | 11-12 Aug. ** | 4 Oct |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Ephemeroptera:Heptageniidae :Baetidae | $6.8 \pm 5.0$ | $11.2 \pm 8.2$ | $8.2 \pm 4.9$ | $4.8 \pm 5.2$ | $0.2 \pm 0.5$ |
|  | $1.0 \pm 1.4$ | $2.2 \pm 1.5$ | $2.2 \pm 1.5$ | $6.2 \pm 3.9$ | $0.8 \pm 1.5$ |
| Plecoptera | $1.0 \pm 0.8$ | $1.5 \pm 1.3$ | $1.0 \pm 2.0$ | $3.9 \pm 2.7$ | $1.2 \pm 1.5$ |
| Trichoptera | $1.5 \pm 1.7$ | $1.2 \pm 1.0$ | $1.2 \pm 1.5$ | $3.5 \pm 3.5$ | $6.5 \pm 9.1$ |
| Diptera:Tipulidae | $1.0 \pm 1.4$ | $3.0 \pm 2.7$ | $0.8 \pm 0.5$ | $1.1 \pm 1.7$ | - |
| :Psychodidae |  |  | - | $0.1 \pm 0.4$ | - |
| :Culicidae | - | $0.2 \pm 0.5$ | - | - | - |
| :Simuliidae | - | - | - | $0.1 \pm 0.4$ | - |
| :Chironomidae | $1.8 \pm 1.7$ | $0.8 \pm 1.0$ | $0.8 \pm 1.0$ | $28.8 \pm 18.6$ | $3.0 \pm 2.1$ |
| :Heleidae | - | - |  | $0.1 \pm 0.4$ | - |
| :Rhagionidae | - | - | - | - | $0.2 \pm 0.5$ |
| :Empididae | - | - | - | - | - 0.5 |
| :Unknown | - | - | - | - | $0.2 \pm 0.5$ |
| Nematomorpha | - | $0.2 \pm 0.5$ | - | - | - |
| Gastropoda | - | - | - | $0.1 \pm 0.4$ | - |
| Pelecypoda | $0.2 \pm 0.5$ | - | - | - | - |
| Hydracarina | - | - | - | $0.2 \pm 0.5$ | - |
| Total | $13.2 \pm 5.6$ | $20.8 \pm 6.4$ | $14.2 \pm 6.2$ | $49.0 \pm 25.5$ | $12.2 \pm 12.5$ |

** Four Surber samples taken on each day.

Aquatic invertebrates* collected from rocks taken from Ruisseau de la Grande Tourelle, untreated control stream 11 June to 4 October, 1977. Gaspé, Quebec.


[^5]** Four rocks sampled on each day.

## TABLE B-III

Bottom fauna populations*, Ruisseau Landry tributary station, 11 June to 5 October, 1977.
Gaspé, Québec.

|  | 11 June | 15 June | 19 June | 23 June | 30 June | 7 July | 12 Aug | 5 Oct |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ephemeroptera:Heptageniidae | $6.5 \pm 3.0$ | $14.8 \pm 5.6$ | $2.2 \pm 3.9$ | $2.5 \pm 2.1$ | - | - | - | - |
| :Baetidae | $0.8 \pm 1.0$ | $1.8 \pm 2.4$ | $0.5 \pm 1.0$ | - | - | - | - | - |
| Plecoptera | $0.8 \pm 1.0$ | $0.5 \pm 0.6$ | $1.0 \pm 0.8$ | $0.8 \pm 1.0$ | $0.8 \pm 0.5$ | - | - | $0.5 \pm 0.6$ |
| Trichoptera | $1.8 \pm 2.1$ | $7.0 \pm 2.2$ | $2.0 \pm 2.2$ | $1.8 \pm 1.7$ | $1.2 \pm 2.5$ | $0.2 \pm 0.5$ | - | - |
| Coleoptera:Elmidae | - | - | - | - | $0.2 \pm 0.5$ | - | - | - |
| Diptera:Tipulidae | $0.2 \pm 0.5$ | - | - | - | - | - | - | $0.8 \pm 0.5$ |
| . :Blephariceridae | - 0. | $0.2 \pm 0.5$ | $0.2 \pm 0.5$ | - | - | - | - |  |
| :Simuliidae | $0.2 \pm 0.5$ | $0.5 \pm 0.6$ | - | - | - | - | - | - |
| :Chironomidae | $5.5 \pm 4.7$ | $2.2 \pm 2.2$ | $0.2 \pm 0.5$ | $0.5 \pm 0.6$ | $0.2 \pm 0.5$ | $0.2 \pm 0.5$ | $9.0 \pm 3.7$ | $20.8 \pm 4.8$ |
| :Heleidae | $0.2 \pm 0.5$ | - | - | - | - | - | $0.2 \pm 0.5$ | $0.2 \pm 0.5$ |
| :Rhagionidae | $0.8 \pm 0.5$ | $0.2 \pm 0.5$ | $0.2 \pm 0.5$ | - | $0.5 \pm 0.6$ | - | - | - |
| : Empididae | $4.2 \pm 7.8$ | $0.2 \pm 0.5$ | $0.2 \pm 0.5$ | $0.5 \pm 0.6$ | $1.5 \pm 2.4$ | - | $0.2 \pm 0.5$ | $0.5 \pm 0.6$ |
| :Unknown | $0.2 \pm 0.5$ | - | - |  | - | - | - |  |
| Nematomorpha | - | - | - | $0.2 \pm 0.5$ | - | - | - | - |
| Oligochaeta | - | - | - | - | - | - | - | $0.2 \pm 0.5$ |
| Pelecypoda | $0.2 \pm 0.5$ | - | - | - | - | - | - | - |
| Hydracarina | - | - | - | - | - | - | - | $0.5 \pm 0.6$ |
| Total | $21.5 \pm 12.4$ | $27.5 \pm 6.5$ | $7.2 \pm 9.3$ | $6.2 \pm 4.5$ | $4.5 \pm 3.5$ | $0.5 \pm 0.6$ | $12.0 \pm 6.0$ | $23.5 \pm 4.4$ |

* Mean numbers and standard deviations of organisms collected in four $0.093 \mathrm{~m}^{2}$ Surber samples.

Aquatic invertebrates* collected from rocks taken from Ruisseau Landry tributary station, 11 June to 5 October, 1977. Gaspé, Quebec

|  | 11 June | 15 June | 19 June | 23 June | 30 June | 7 July | 12 Aug | 5 Oct |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ephemeroptera:Heptageniidae :Baetidae | $5.2 \pm 2.8$ | $8.8 \pm 2.2$ | $0.2 \pm 0.5$ | - | $0.2 \pm 0.5$ | - | - | - |
|  | $1.2 \pm 1.0$ | $6.0 \pm 4.2$ | - | - | - | - | - | - |
| Plecoptera | - | - | - | - | - | - | - | $0.2 \pm 0.5$ |
| Trichoptera:larvae :pupae | $3.8 \pm 6.2$ | $1.8 \pm 2.9$ | $1.0 \pm 1.4$ | $0.5 \pm 1.0$ | - | - | $0.2 \pm 0.5$ | $0.2 \pm 0.5$ |
|  | $3.0 \pm 3.6$ | $0.2 \pm 0.5$ | $0.8 \pm 1.0$ | $0.2 \pm 0.5$ | $0.2 \pm 0.5$ | - | - | - |
| Diptera: $\begin{gathered}\text { Blephariceridae } \\ \text { :Simuliidae }\end{gathered}$ | $0.8 \pm 1.5$ | $1.5 \pm 2.4$ | - | - | - | - | - | - |
|  | $1.0 \pm 1.4$ | $1.2 \pm 1.5$ | - | - | - | - | - | - |
| :Chironomidae | $8.8 \pm 6.1$ | $4.0 \pm 4.2$ | - | $0.2 \pm 0.5$ | $0.5 \pm 0.6$ | $0.5 \pm 0.6$ | $15.5 \pm 9.5$ | $24.0 \pm 14.4$ |
| :Empididae | - | - | - | - | - | - | $0.2 \pm 0.5$ | - |
| Nematoda | - | - | $0.2 \pm 0.5$ | - | - | - | - | - |
| Hydracarina | - | - | - | $0.2 \pm 0.5$ | - | - | - | - |
| Total | $23.8 \pm 15.8$ | $23.5 \pm 8.7$ | $2.2 \pm 1.7$ | $1.2 \pm 1.0$ | $1.0 \pm 0.8$ | $0.5 \pm 0.6$ | $16.0 \pm 9.5$ | $24.5 \pm 14.9$ |

[^6]Bottom fauna populations*, Ruisseau Landry mainstream station, Il June to 5 October, 1977. Gaspé, Québec.

|  | 11 June | 15 June | 19 June | 23 June | 3 July | 7 July | 12 Aug | 5 Oct |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ephemeroptera:Heptageniidae | $24.8 \pm 5.0$ | $25.2 \pm 13.2$ | - | $0.2 \pm 0.5$ | - | - | - | - |
| : Baetidae | $1.0 \pm 0.6$ | $4.0 \pm 4.2$ | $0.5 \pm 0.6$ | $0.5 \pm 0.6$ | - | - | - | $0.2 \pm 0.5$ |
| Plecoptera | $0.2 \pm 0.5$ | $0.2 \pm 0.5$ | $1.8 \pm 1.7$ | - | - | - | $0.2 \pm 0.5$ | $0.5 \pm 0.6$ |
| Megaloptera:Sialidae | - | $0.2 \pm 0.5$ | - | - | - | - | - | - |
| Trichoptera | $7.0 \pm 0.8$ | $5.8 \pm 5.0$ | $3.5 \pm 1.3$ | $0.8 \pm 0.5$ | $0.5 \pm 0.6$ | $0.2 \pm 0.5$ | $1.0 \pm 0.8$ | $1.5 \pm 1.7$ |
| Diptera:Tipulidae | $0.2 \pm 0.5$ | $0.2 \pm 0.5$ | - | $0.2 \pm 0.5$ | - | - | - | $1.8 \pm 1.7$ |
| :Simuliidae | $1.2 \pm 0.5$ | $0.5 \pm 0.6$ | - | $0.2 \pm 0.5$ | $0.2 \pm 0.5$ | - | - | - |
| :Chironomidae | $1.5 \pm 1.3$ | $0.5 \pm 1.0$ | $0.2 \pm 0.5$ | $1.2 \pm 1.0$ | $3.2 \pm 2.6$ | $0.5 \pm 0.6$ | $38.0 \pm 29.0$ | $6.0 \pm 6.4$ |
| :Heleidae | - | - | $0.2 \pm 0.5$ | $0.2 \pm 0.5$ | $0.5 \pm 1.0$ | - | - | - |
| :Rhagionidae | $1.0 \pm 1.2$ | $1.2 \pm 1.0$ | $0.2 \pm 0.5$ | $0.7 \pm 0.5$ | - | $0.5 \pm 0.6$ | - | $0.2 \pm 0.5$ |
| :Empididae | $0.8 \pm 1.5$ | $1.0 \pm 0.8$ | $0.5 \pm 0.6$ | $0.8 \pm 0.5$ | $1.8 \pm 2.4$ | $0.8 \pm 0.5$ | - | $0.5 \pm 0.6$ |
| Turbellaria | - | - | - | - | - | - | - | $0.2 \pm 0.5$ |
| Oligochaeta | - | $0.2 \pm 0.5$ | - | - | $0.2 \pm 0.5$ | - | $0.2 \pm 0.5$ | $3.5 \pm 2.6$ |
| Pelecypoda | $0.2 \pm 0.5$ | - | $0.2 \pm 0.5$ | - | - | - | - | - |
| Hydracarina | - | $0.2 \pm 0.5$ | - | - | - | - | $0.2 \pm 0.5$ | - |
| Amphipoda | - | - | - | $0.2 \pm 0.5$ | $0.2 \pm 0.5$ | - | - | - |
| Total | $38.0 \pm 7.2$ | $39.5 \pm 20.0$ | $7.2 \pm 4.6$ | $5.2 \pm 1.7$ | $6.8 \pm 2.5$ | $2.0 \pm 1.6$ | $39.8 \pm 30.2$ | $15.0 \pm 2.2$ |

Aquatic invertebrates* collected from rocks taken from Ruisseau Landry mainstream station, 11 June to 5 October, 1977. Gaspé, Quebec.


* Mean numbers and standard deviations of organisms collected from four rocks approximately 20 cm in diameter.

Bottom fauna populations*, Ruisseau du Petit Capucin tributary station, 11 June to 4 October, 1977
Gaspé, Québec.

|  | 11 June | 17 June | 23 June | 27 June | 3 July | 7 July | 11 Aug | 4 0ct |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ephemeroptera:Heptageniidae :Baetidae | $28.2 \pm 16.4$ | $19.0 \pm 3.3$ | $7.0 \pm 5.5$ | $4.8 \pm 4.3$ | $8.2 \pm 2.9$ | $2.0 \pm 2.2$ | $3.5 \pm 4.5$ | $1.5 \pm 1.0$ |
|  | $9.8 \pm 7.1$ | $9.0 \pm 3.4$ | $4.0 \pm 2.7$ | $0.2 \pm 0.5$ | - | - | $1.0 \pm 0.8$ | $2.0 \pm 2.7$ |
| Plecoptera | $1.0 \pm 0.0$ | $1.8 \pm 1.5$ | $1.5 \pm 1.3$ | $1.0 \pm 1.4$ | $0.8 \pm 0.5$ | $2.0 \pm 1.8$ | - | $5.0 \pm 5.0$ |
| Megaloptera:Sialidae | - | - | - | - | - | - | - | $0.2 \pm 0.5$ |
| Trichoptera | $2.5 \pm 3.0$ | $2.5 \pm 2.1$ | $2.2 \pm 1.7$ | $5.2 \pm 5.3$ | $4.5 \pm 1.7$ | $3.8 \pm 3.9$ | $14.2 \pm 8.3$ | $14.7 \pm 10.5$ |
| Coleoptera:Hydrophilidae | - | $0.2 \pm 0.5$ | - | - | - | - | - | - |
| Diptera:Tipulidae | - | - | $0.2 \pm 0.5$ | $0.5 \pm 0.6$ | - | - | - | $0.5 \pm 1.0$ |
| :Blephariceridae | - | - | $0.2 \pm 0.5$ |  | - | - | - |  |
| :Simuliidae | $0.5 \pm 0.6$ | $0.5 \pm 0.6$ | $0.2 \pm 0.5$ | $1.0 \pm 1.4$ | $0.5 \pm 1.0$ | $1.2 \pm 2.5$ | $0.8 \pm 0.5$ | $1.2 \pm 2.0$ |
| :Chironomidae | $0.5 \pm 1.0$ | $0.5 \pm 0.6$ | $1.2 \pm 2.5$ | $0.2 \pm 0.5$ | $2.0 \pm 2.2$ | $0.5 \pm 1.0$ | $15.8 \pm 3.0$ | $29.0 \pm 19.9$ |
| :Heleidae | - | - | - | - | - | - | $0.2 \pm 0.5$ | $1.0 \pm 1.4$ |
| :Rhagionidae | $0.2 \pm 0.5$ | - | 0.5-0.6 | - | $1.8 \pm 1.7$ | $0.5 \pm 0.6$ | - | $1.5 \pm 1.7$ |
| :Empididae | - | $0.2 \pm 0.5$ | $0.5 \pm 0.6$ | $0.2 \pm 0.5$ | - | - | - | $0.5 \pm 1.0$ |
| Nematoda | - | - | - | - | - | - | - | $0.2 \pm 0.5$ |
| Turbellaria | - | - | - | - | - | - | - | $1.2 \pm 1.9$ |
| Oligochaeta | - | - | $0.5 \pm 1.0$ | - | - | - | - | $0.5 \pm 0.6$ |
| Pelecypoda | $0.2 \pm 0.5$ | - | $0.2 \pm 0.5$ | - | $0.2 \pm 0.5$ | - | - | - |
| Total | $43.0 \pm 25.2$ | $33.8 \pm 6.4$ | $18.0 \pm 11.6$ | $13.2 \pm 8.1$ | $18.0 \pm 6.7$ | $10.0 \pm 9.3$ | $35.5 \pm 15.4$ | $59.2 \pm 35.9$ |

[^7]Aquatic invertebrates* collected from rocks taken from Ruisseau du Petit Capucin mainstream station 11 June to 4 October, 1977. Gaspé, ?Quebec

|  | 11 June | 17 June | 23 June | 27 June | 3 July | 7 July | 11 Aug | 4 Oct |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ephemeroptera:Heptageniidae :Baetidae | $22.8 \pm 5.6$ | $13.5 \pm 5.0$ | $1.8 \pm 1.7$ | $2.2 \pm 2.9$ | $2.5 \pm 2.4$ | $5.0 \pm 6.6$ | $15.5 \pm 9.3$ | $2.2 \pm 2.6$ |
|  | $39.0 \pm 27.0$ | $45.0 \pm 58.8$ | $0.2 \pm 0.5$ | - | - | $0.2 \pm 0.5$ | $14.8 \pm 5.7$ | $12.0 \pm 7.4$ |
| Plecoptera | - | - | - | - | - | - | $0.2 \pm 0.5$ | $0.5 \pm 1.0$ |
| Trichoptera:larvae :punae | $0.8 \pm 1.0$ | $1.8 \pm 2.9$ | $0.2 \pm 0.5$ | 1.5 ${ }^{-}$ | - ${ }^{-}$ | - ${ }^{-}$ | $82.2 \pm 56.4$ | $9.5 \pm 4.0$ |
|  | $0.8 \pm 1.5$ | $0.5 \pm 1.0$ | $0.2 \pm 0.5$ | $1.5 \pm 1.7$ | $1.5 \pm 1.7$ | $0.8 \pm 1.5$ |  | $0.2 \pm 0.5$ |
| Diptera:Simuliidae :Chironomidae | $43.5 \pm 40.6$ | $13.8 \pm 25.5$ | $2.2 \pm 2.6$ | $8.8 \pm 12.2$ | $0.2 \pm 0.5$ | $0.2 \pm 0.5$ | $7.2 \pm 12.5$ | $0.8 \pm 1.5$ |
|  | $1.2 \pm 1.5$ | $0.2 \pm 0.5$ | $0.2 \pm 0.5$ | $0.2 \pm 0.5$ | $0.8 \pm 1.0$ | $5.5 \pm 7.3$ | $30.5 \pm 18.2$ | $27.5 \pm 23.1$ |
| Nematomorpha | - | $0.2 \pm 0.5$ | - | - | - | - | - | - |
| Total | $108.0 \pm 31.1$ | $75.0 \pm 82.4$ | $5.0 \pm 1.4$ | $12.8 \pm 11.4$ | $5.0 \pm 4.1$ | $11.8 \pm 13.0$ | $150.5 \pm 68.5$ | $52.8 \pm 26.9$ |

* Mean numbers and standard deviations of organisms collected from four rocks approximately 20 cm in diameter.

Bottom fauna populations*, Ruisseau du Petit Capucin mainstream station, ll June to 4 October, 1977
Gaspé, Québec.

|  | 11 June | 17 June | 23 June | 27 June | 3 July | 7 July | 11 Aug | 4 Oct |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ephemeroptera:Heptageniidae :Baetidae | $7.0 \pm 3.7$ | $18.0 \pm 5.8$ | $1.2 \pm 1.0$ | $2.0 \pm 1.8$ | $3.8 \pm 1.2$ | $0.5 \pm 1.0$ | $1.8 \pm 2.4$ | $0.2 \pm 0.5$ |
|  | $2.5 \pm 1.3$ | $3.5 \pm 3.7$ | $1.2 \pm 1.5$ | $0.2 \pm 0.5$ | $0.2 \pm 0.5$ | $0.2 \pm 0.5$ | - | $0.2 \pm 0.5$ |
| Plecoptera | - | $1.2 \pm 1.0$ | $2.0 \pm 3.4$ | $1.5 \pm 1.9$ | - | $0.2 \pm 0.5$ | $1.5 \pm 2.4$ | $0.5 \pm 0.6$ |
| Trichoptera:larvae :pupae | $1.5 \pm 1.7$ | $2.2 \pm 1.7$ | $1.5 \pm 1.3$ | $1.2 \pm 1.5$ | $2.8 \pm 1.5$ | $0.5 \pm 0.6$ | $16.5 \pm 16.2$ | $\begin{array}{r} 14.2 \pm 16.4 \\ 0.2^{\prime} \pm 0.5 \end{array}$ |
| Lepidoptera | - | - | - | - | - | $0.2 \pm 0.5$ | - | - |
| Coleoptera:Dytiscidae <br> - Elmidae | - | - | - | - | $0.2+0.5$ | - | $0.2 \pm 0.5$ | - |
| :Elmidae | - | - | - | - | $0.2 \pm 0.5$ | - | - | - |
| Diptera:Tipulidae <br> :Blepharicerid <br> :Simuliidae <br> :Chironomidae <br> :Heleidae <br> :Rhagionidae <br> :Empididae <br> :Unknown | - | - | - | - | $0.5 \pm 1.0$ | $0.2 \pm 0.5$ | $1.0 \pm 1.2$ | $0.8 \pm 1.0$ |
|  | - | $0.2 \pm 0.5$ | $0.2 \pm 0.5$ | - | - | - | - | - |
|  | $0.2 \pm 0.5$ | $1.8 \pm 1.5$ | $0.5 \pm 0.6$ | $0.8 \pm 1.0$ | - | - | $0.5 \pm 0.6$ | - |
|  | $0.5 \pm 0.6$ | $0.8 \pm 1.0$ | $0.5 \pm 0.6$ | $0.2 \pm 0.5$ | $1.2 \pm 1.2$ | $0.2 \pm 0.5$ | $45.5 \pm 41.8$ | $8.0 \pm 12.1$ |
|  | - | - | - | - | - | - | $0.2 \pm 0.5$ | $1.2 \pm 1.5$ |
|  | - |  | - | $0.2 \pm 0.5$ | $0.8 \pm 1.0$ | - | $0.2 \pm 0.5$ | $2.0 \pm 2.2$ |
|  | $0.2 \pm 0.5$ | $0.2 \pm 0.5$ | - | - | - | - | $1.2 \pm 1.5$ | $2.0 \pm 2.2$ |
|  | - | - | - | - | - | - | - | $0.5 \pm 0.6$ |
| Nematoda | - | - | - | - | $0.2 \pm 0.5$ | - | - | $0.2 \pm 0.5$ |
| Turbellaria | - | - | - | - | - | - | - | $0.5 \pm 1.0$ |
| Oligochaeta | $0.2 \pm 0.5$ | - | $0.2 \pm 0.5$ | - | - | - | - | $7.2 \pm 4.3$ |
| Total | $12.2 \pm 6.7$ | $28.0 \pm 6.8$ | $7.5 \pm 4.7$ | $6.2 \pm 2.2$ | $9.8 \pm 2.5$ | $2.2 \pm 1.7$ | $68.8 \pm 34.5$ | $38.0 \pm 24.4$ |

* Mean numbers and standard deviations of organisms collected in four $0.093 \mathrm{~m}^{2}$ Surber samples.

Aquatic invertebrates* collected from rocks taken from Ruisseau de Petit Capucin tributary station, 11 June to 4 October, 1977. Gaspé, Quebec

|  | 11 June | 17 June | 23 June | 27 June | 3 July | 7 July | 11 Aug | 4 Oct |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ephemeroptera:Heptageniidae | $9.5 \pm 5.5$ | $13.8 \pm 9.9$ | $3.0 \pm 2.8$ | $1.8 \pm 2.2$ | $2.8 \pm 1.5$ | $0.8 \pm 0.5$ | $1.5 \pm 1.3$ | 13.0 | $\pm 9.2$ |
| :Baetidae | $22.5 \pm 31.9$ | $20.8 \pm 20.5$ | - | - | - | $0.2 \pm 0.5$ | $14.0 \pm 5.8$ | 50.8 | $\pm 34.7$ |
| Trichoptera:larvae | $1.2 \pm 1.0$ | $1.0 \pm 1.4$ | $0.2 \pm 0.5$ | $0.2 \pm 0.5$ | $0.2 \pm 0.5$ | $0.2 \pm 0.5$ | $49.5 \pm 26.6$ | 43.8 | $\pm 25.5$ |
| :pupae | $2.8 \pm 2.8$ | $0.5 \pm 0.6$ | $1.8 \pm 2.1$ | $0.5 \pm 1.0$ | - | - | - | 21.8 | $\pm 11.3$ |
| Coleoptera:Noteridae | - | - | - | - | - | - | $0.2 \pm 0.5$ |  | - |
| Diptera:Tipulidae | - | - | - | - | - | - | - | 0.2 | $\pm 0.5$ |
| :Blephariceridae | - | - | - | $0.2 \pm 0.5$ | - | - | - |  | - |
| :Simuliidae | $8.2 \pm 9.1$ | $0.8 \pm 1.5$ | $1.8 \pm 1.7$ | $4.2 \pm 6.0$ | $1.8 \pm 3.5$ | $1.8 \pm 3.5$ | $5.8 \pm 8.8$ | 8.5 | $\pm \quad 5.4$ |
| :Chironomidae | $1.8 \pm 2.8$ | $0.2 \pm 0.5$ | - | $1.5 \pm 1.7$ | $2.2 \pm 3.3$ | $1.2 \pm 1.0$ | $9.0 \pm 3.8$ | 329.8 | $\pm 324.5$ |
| Turbellaria | - | - | - | - | - | - | $0.2 \pm 0.5$ | 0.2 | $\pm 0.5$ |
| Oligochaeta | $0.2 \pm 0.5$ | - | - | - | - | - | - |  | - |
| Hydracarina | - | - | - | - | - | - | $0.2 \pm 0.5$ | $0.5 \pm$ | $\pm 1.0$ |
| Total | $46.2 \pm 44.1$ | $37.0 \pm 28.5$ | $6.8 \pm 2.4$ | $8.5 \pm 4.6$ | $7.0 \pm 2.9$ | $4.2 \pm 4.5$ | $80.5 \pm 36.0$ | 468.5 | $\pm 303.4$ |

* Mean numbers and standard deviations of organisms collected from four rocks approximately 20 cm in diameter.


## APPENDIX "C"

## FISH STOMACH CONIENIS

## TABLE C-I

Brook trout sampled for stomach content analysis from Ruisseau de la Grande Tourelle, 14 June to 4 October, 1977. Gaspé, Québec.

|  |  | 14 June | 19 June | 30 June | 13 Aug | $40 c t$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. of Fish Sampled |  | 10 | 10 | 10 | 14 | 12 |
| Mean Total Length (mm) |  | 80.6 | 67.6 | 88.5 | 77.1 | 77.9 |
| Range |  | 55-110 | 52-95 | 55-118 | 33-131 | 59-96 |
| Mean Fork Length (mm) |  | 77.5 | 65.3 | 85.5 | 73.7 | 74.3 |
| Range |  | 54-105 | 49-92 | 54-115 | 32-124 | 56-92 |
| Mean Weight (g) |  | 5.9 | 4.06 | 7.84 | 5.97 | 4.02 |
| Range |  | 1.5-12.5 | 1.9-9.4 | 1.5-15.3 | 1.2-18.0 | 1.6-7.2 |
| Mean Volume Stomach Contents | (ml) | 0.08 | 0.09 | 0.30 | 0.08 | 0.19 |
| Range |  | 0.0-0.2 | 0.05-0.2 | 0.05-1.2 | 0.05-0.3 | 0.05-0.7 |

Percent occurrence of various food items in brook trout stomachs, Ruisseau de la Grande Tourelle, 14 June to 4 October, 1977. Gaspẹ, Québec.

|  | 14 June | 19 June | 30 June | 13 Aug | $40 c t$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| AQUATIC INSECTS |  |  |  |  |  |
| Ephemeroptera:Heptageniidae | 30 | 60 | 60 | 50 | 8 |
| :Baetidae | 70 | 60 | 80 | 50 | 33 |
| Plecoptera | 30 | 80 | 20 | 21 | 50 |
| Trichoptera:larvae | 60 | 70 | 30 | 50 | 83 |
| :pupae | 10 | 0 | 10 | 7 | 0 |
| Coleoptera | 0 | 0 | 0 | 0 | 17 |
| Diptera:Tipulidae | 10 | 10 | 0 | 0 | 8 |
| :Simuliidae:larvae | 20 | 40 | 30 | 0 | 0 |
| :pupae | 0 | 10 | 0 | 7 | 0 |
| :Chironomidae:larvae | 70 | 70 | 80 | 86 | 33 |
| :pupae | 20 | 30 | 0 | 21 | 0 |
| :Heleidae | 20 | 0 | 10 | 0 | 0 |
| :Empididae | 10 | 30 | 20 | 0 | 17 |
| OTHER AQUATIC INVERIEBRATES |  |  |  |  |  |
| Oligochaeta | 10 | 0 | 20 | 0 | 8 |
| Gastropoda | 0 | 0 | 10 | 0 | 8 |
| Hydracarina | 10 | 10 | 10 | 7 | 17 |
| TERRESTIRIAL ARTHROPODS |  |  |  |  |  |
| Collembola | 0 | 10 | 0 | 0 | 0 |
| Ephemeroptera | 0 | 0 | 20 | 0 | 0 |
| Plecoptera | 0 | 0 | 20 | 0 | 0 |
| Hemiptera | 10 | 0 | 80 | 36 | 25 |
| Trichoptera | 0 | 0 | 10 | 0 | 0 |
| Iepidoptera | 0 | 0 | 20 | 0 | 33 |
| Hymenoptera | 0 | 30 | 40 | 29 | 17 |
| Coleoptera | 0 | 20 | 50 | 29 | 0 |
| Diptera | 0 | 60 | 80 | 57 | 58 |
| Diplopoda | 0 | 0 | 10 | 0 | 0 |
| Arachnida | 10 | 10 | 20 | 21 | 2 |
| EMPTY STOMACHS | 10 | 0 | 0 | 0 | 0 |

Mean percentage of the volume of brook trout stomach contents contributed by various food items, Ruisseau de la Grande Tourelle, 14 June to 4 October, 1977. Gaspé, Québec.

|  | 14 June | 19 June | 30 June | 13 Aug | $40 c t$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| AQUATIC INSECTS |  |  |  |  |  |
| Ephemeroptera:Heptageniidae | 4.8 | 7.5 | 5.1 | 11.8 | 1.7 |
| : Baetidae | 25.2 | 11.5 | 21.3 | 8.9 | 5.0 |
| Plecoptera | 6.1 | 25.0 | 4.0 | 2.5 | 6.2 |
| Trichoptera:larvae | 26.7 | 12.3 | 5.5 | 13.6 | 33.8 |
| :pupae | 1.1 | 0.0 | 0.5 | 2.8 | 0.0 |
| Coleoptera | 0.0 | 0.0 | 0.0 | 0.0 | 1.7 |
| Diptera:Tipulidae | 2.8 | 0.5 | 0.0 | 0.0 | 1.4 |
| :Simuliidae:larvae | 1.7 | 4.5 | 2.0 | 1.4 | 0.0 |
| :pupae | 0.0 | 0.2 | 0.0 | 0.0 | 0.0 |
| :Chironomidae:larvae | 18.3 | 8.5 | 6.0 | 26.4 | 1.4 |
| :pupae | 1.7 | 3.0 | 0.0 | 1.8 | 0.0 |
| :Heleidae | 1.7 | 0.0 | 0.3 | 0.0 | 0.0 |
| :Empididae | 1.1 | 2.5 | 1.0 | 0.0 | 0.8 |
| OTHER AQUATIC INVERIEBRATES |  |  |  |  |  |
| Oligochaeta | 4.4 | 0.0 | 4.0 | 0.0 | 2.1 |
| Gastropoda | 0.0 | 0.0 | 1.0 | 0.0 | 2.1 |
| Hydracarina | 0.6 | 3.0 | 0.3 | 0.4 | 0.8 |
| TERRESTRIAL ARIHROPODS |  |  |  |  |  |
| Collembola | 0.0 | 0.5 | 0.0 | 0.0 | 0.0 |
| Ephemeroptera | 0.0 | 0.0 | 1.5 | 0.0 | 0.0 |
| Plecoptera | 0.0 | 0.0 | 1.5 | 0.0 | 0.0 |
| Hemiptera | 1.7 | 0.0 | 18.0 | 6.4 | 3.8 |
| Trichoptera | 0.0 | 0.0 | 2.5 | 0.0 | 0.0 |
| Lepidoptera | 0.0 | 0.0 | 1.6 | 0.0 | 6.7 |
| Hymenoptera | 0.0 | 6.0 | 6.5 | 5.0 | 1.2 |
| Coleoptera | 0.0 | 2.5 | 2.7 | 2.5 | 0.0 |
| Diptera | 0.0 | 12.0 | 12.9 | 13.2 | 23.6 |
| Diplopoda | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 |
| Arachnida | 2.2 | 0.5 | 0.8 | 3.2 | 8.8 |

Mean numbers of various food items in brook trout stomachs in which they occurred, Ruisseau de la Grande Tourelle, 14 June to 4 October, 1977. Gaspé, Québec.

|  | 14 June | 19 June | 30 June | 13 Aug | 4 Oct |
| :---: | :---: | :---: | :---: | :---: | :---: |
| AQUATIC INSECTS |  |  |  |  |  |
| Ephemeroptera:Heptageniidae | 2 | 1 | 2 | 1 | 1 |
| :Baetidae | 2 | 2 | 5 | 2 | 2 |
| Plecoptera | 1 | 2 | 1 | 1 | 3 |
| Trichoptera:larvae | 2 | 2 | 3 | 2 | 10 |
| :pupae | 1 | - - | 1 | 1 | 0 |
| Coleoptera | - | - | - | - | 2 |
| Diptera:Tipulidae | 1 | 1 | - | - | 2 |
| :Simuliidae:larvae | 2 | 2 | 2 | - | - |
| :pupae | - | 1 | - | 1 | - |
| :Chironomidae:larvae | 2 | 2 | 3 | 37 | 2 |
| :pupae | 1 | 3 | - | 1 | - |
| :Heleidae | 1 | - | 1 | - | - |
| :Empididae | 1 | 2 | 1 | - | 2 |
| OIHER AQUATIC INVERTEBRATES |  |  |  |  |  |
| Oligochaeta | 1 | - | 1 | - | 1 |
| Gastropoda | - | - | 1 | - | 1 |
| Hydracarina | 1 | 3 | 1 | 1 | 1 |
| TERRESTRIAL ARTHROPODS |  |  |  |  |  |
| Collembola | - | 1 | - | - | - |
| Ephemeroptera | - | - | 1 | - | - |
| Plecoptera | - | - | 1 | - | - |
| Hemiptera | 1 | - | 4 | 1 | 2 |
| Trichoptera | - | - | 3 | - | - |
| Iepidoptera | - | - | 2 | - | 2 |
| Hymenoptera | - | 1 | 2 | 3 | 1 |
| Coleoptera | - | 1 | 1 | 2 | - |
| Diptera | - | 1 | 3 | 6 | 8 |
| Diplopoda | - | - | 1 | - | - |
| Arachnida | 1 | 1 | 1 | 1 | 2 |

Brook trout sampled for stomach content analysis from Ruisseau Landry tributary station, 14 June to 5 October, 1977. Gaspé, Québec.


Percent occurrence of various food items in brook trout stomachs, Ruisseau Landry tributary station, 14 June to 5 October, 1977. Gaspé, Québec.

|  | 14 June | 18 June | 27 June | 12-13 Aug | 5 Oct |
| :---: | :---: | :---: | :---: | :---: | :---: |
| AQUATIC INSECTS |  |  |  |  |  |
| Ephemeroptera:Heptageniidae :Baetidae | $\begin{aligned} & 10 \\ & 40 \end{aligned}$ | $\begin{aligned} & 100 \\ & 100 \end{aligned}$ | $\begin{aligned} & 8 \\ & 0 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ |
| Plecoptera | 40 | 100 | 17 | 0 | 0 |
| Megaloptera:Sialidae | 0 | 54 | 8 | 0 | 0 |
| Trichoptera:larvae :pupae | $\begin{aligned} & 40 \\ & 10 \end{aligned}$ | $\begin{array}{r} 100 \\ 0 \end{array}$ | $\begin{array}{r} 33 \\ 0 \end{array}$ | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 7 \\ & 0 \end{aligned}$ |
| Coleoptera | 0 | 0 | 0 | 0 | 14 |
| Diptera:Tipulidae:larvae :pupae | $\begin{aligned} & 20 \\ & 20 \end{aligned}$ | 38 0 | 17 | 0 | 36 0 |
| :Blephariceridae | 0 | 38 | 0 | 0 | 0 |
| :Simuliidae:larvae | 10 | 46 | 0 | 0 | 0 |
| :pupae | 0 | 8 | 0 | 0 | 0 |
| :Chironomidae:larvae | 90 | 100 | 33 | 36 | 36 |
| :pupae | 20 | 8 | 0 | 7 | 0 |
| :Empididae | 50 | 15 | 58 | 0 | 0 |
| OTHER AQUATIC INVERIEBRATES |  |  |  |  |  |
| Nematomorpha | 0 | 0 | 0 | 7 | 0 |
| Oligochaeta | 20 | 0 | 0 | 0 | 14 |
| Gastropoda | 0 | 0 | 0 | 0 | 14 |
| Hydracarina | 0 | 8 | 0 | 14 | 36 |
| IERRESTIRIAL ARIHROPODS |  |  |  |  |  |
| Collembola | 0 | 0 | 0 | 7 | 0 |
| Ephemeroptera | 10 | 8 | 0 | 14 | 0 |
| Hemiptera | 30 | 77 | 58 | 64 | 43 |
| Trichoptera | 0 | 0 | 0 | 7 | 0 |
| Lepidoptera | 0 | 54 | 25 | 21 | 50 |
| Hymenoptera | 20 | 15 | 67 | 64 | 36 |
| Coleoptera | 10 | 8 | 58 | 7 | 64 |
| Diptera | 10 | 100 | 100 | 100 | 78 |
| Arachnida | 10 | 8 | 25 | 14 | 7 |

Mean percentage of the volume of brook trout stomach contents contributed by various food items, Ruisseau Landry tributary station, 14 June to 5 October, 1977. Gaspé, Québec.

|  | 14 June | 18 June | 27 June | 12-13 Aug | 5 Oct |
| :---: | :---: | :---: | :---: | :---: | :---: |
| AQUATIC INSECTS |  |  |  |  |  |
| Ephemeroptera:Heptageniidae | 0.5 | 15.0 | 0.8 | 0.0 | 0.0 |
| :Baetidae | 6.8 | 19.0 | 0.0 | 0.0 | 0.0 |
| Plecoptera | 9.5 | 25.0 | 1.2 | 0.0 | 0.0 |
| Megaloptera:Sialidae | 0.0 | 1.6 | 0.8 | 0.0 | 0.0 |
| Trichoptera:larvae | 13.0 | 14.8 | 2.9 | 0.0 | 1.1 |
| :pupae | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Coleoptera | 0.0 | 0.0 | 0.0 | 0.0 | 1.4 |
| Diptera:Tipulidae:larvae | 12.5 | 0.8 | 2.9 | 0.0 | 13.6 |
| :pupae | 7.5 | 0.0 | 0.0 | 0.0 | 0.0 |
| :Blephariceridae | 0.0 | 0.7 | 0.0 | 0.0 | 0.0 |
| :Simuliidae:larvae | 0.2 | 0.4 | 0.0 | 0.0 | 0.0 |
| :pupae | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 |
| :Chironomidae:larvae | 10.6 | 5.6 | 1.9 | 4.3 | 3.2 |
| :pupae | 0.4 | 0.1 | 0.0 | 1.1 | 0.0 |
| :Empididae | 11.5 | 0.8 | 7.1 | 0.0 | 0.0 |
| OTHER AQUATIC INVERTEBRATES |  |  |  |  |  |
| Nematomorpha | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 |
| Oligochaeta | 13.5 | 0.0 | 0.0 | 0.0 | 7.8 |
| Gastropoda | 0.0 | 0.0 | 0.0 | 0.0 | 1.4 |
| Hydracarina | 0.0 | 0.1 | 0.0 | 1.4 | 2.5 |
| TERRESTRIAL ARTHROPODS |  |  |  |  |  |
| Collembola | 0.0 | 0.0 | 0.0 | 0.7 | 0.0 |
| Ephemeroptera | 0.5 | 0.2 | 0.0 | 1.6 | 0.0 |
| Hemiptera | 3.5 | 3.6 | 5.5 | 20.8 | 9.3 |
| Trichoptera | 0.0 | 0.0 | 0.0 | 1.4 | 0.0 |
| Iepidoptera | 0.0 | 1.4 | 2.6 | 5.1 | 11.4 |
| Hymenoptera | 2.0 | 0.2 | 9.2 | 22.8 | 8.6 |
| Coleoptera | 0.5 | 0.3 | 9.2 | 0.4 | 13.6 |
| Diptera | 5.0 | 10.2 | 54.6 | 39.3 | 25.4 |
| Arachnida | 0.5 | 0.2 | 1.2 | 0.8 | 0.7 |

Mean numbers of various food items in brook trout stomachs in which they occurred, Ruisseau Landry tributary station, 14 June to 5 October, 1977. Gaspé, Québec.

|  | 14 June | 18 June | 2'/ June | 12-13 Aug | 5 Oct |
| :---: | :---: | :---: | :---: | :---: | :---: |
| AQUATIC INSECTS |  |  |  |  |  |
| Ephemeroptera:Heptageniidae | 1 | 12 | 2 | - | - |
| :Baetidae | 2 | 16 | - | - | - |
| Plecoptera | 1 | 22 | 2 | - | - |
| Megaloptera:Sialidae | - | 2 | 2 | - | - |
| Trichoptera:larvae | 2 | 10 | 2 | - | 1 |
| :pupae | 1 | - | - | - | - |
| Coleoptera | - | - | - | - | 1 |
| Diptera:Tipulidae:larvae | 2 | 1 | 1 | - | 1 |
| :pupae | 1 | - | - | - | - |
| :Blephariceridae | - | 2 | - | - | - |
| :Simuliidae:larvae | 1 | 1 | - | - | - |
| :pupae | - | 1 | - | - | - |
| :Chironomidae:larvae | 4 | 7 | 2 | 2 | 2 |
| :pupae | 1 | 1 | - | 1 | - |
| :Empididae | 2 | 2 | 3 | - | - |
| OIHER AQUATIC INVERIEBRATES |  |  |  |  |  |
| Nematomorpha | - | - | - | 1 | - |
| Oligochaeta | 1 | - | - | - | 1 |
| Gastropoda | - | - | - | - | 1 |
| Hydracarina | - | 1 | - | 1 | 2 |
| TERRESTRIAL ARIHROPODS |  |  |  |  |  |
| Collembola | - | - | - | 1 | - |
| Ephemeroptera | 1 | 2 | - | 2 | - |
| Hemiptera | 2 | 3 | 2 | 2 | 2 |
| Trichoptera | - | - | - | 1 | - |
| Lepidoptera | - | 2 | 2 | 2 | 1 |
| Hymenoptera | 1 | 1 | 2 | 2 | 2 |
| Coleoptera | 1 | 1 | 2 | 2 | 2 |
| Diptera | 6 | 7 | 16 | 3 | 5 |
| Arachnida | 1 | 1 | 1 | 1 | 1 |

Brook trout sampled for stomach content analysis from Ruisseau Landry mainstream station, 13 June to 5 October, 1977. Gaspé, Québec.

|  | 1.3 June | 18 June | 27 June | 5 Oct |
| :---: | :---: | :---: | :---: | :---: |
| No. of Fish Sampled | 10 | 10 | 10 | 11 |
| Mean Total Length (mm) | 81.0 | 85.1 | 91.7 | 79.6 |
| Range | 60-128 | 69-206 | 66-132 | 47-136 |
| Mean Fork Length (mm) | 77.3 | 81.6 | 86.7 | 76.5 |
| Range | $58-121$ | $66-102$ | 62-126 | $46-130$ |
| Mean Weight (g) | 5.49 | 7.39 | 9.22 | 6.11 |
| Range | 1.9-17.0 | $3.2-14.0$ | $3.0-22.9$ | 0.9-23.0 |
| Mean Volume Stomach Contents (ml) | 0.10 | 1.05 | 0.16 | 0.32 |
| Range | $0.0-0.3$ | 0.4-1.7 | 0.05-0.4 | 0.0-2.6 |

TABLE C-X

Percent occurrence of various food items in brook trout stomachs, Ruisseau Landry mainstream station, 13 June to 5 October, 1977. Gaspé, Québec.

|  | 13 June | 18 June | 27 June | 5 Oct |
| :---: | :---: | :---: | :---: | :---: |
| AQUATIC INSECTS |  |  |  |  |
| Ephemeroptera:Heptageniidae | 20 | 60 | 0 | 0 |
| :Baetidae | 50 | 90 | 0 | 9 |
| Odonata:Anisoptera | 0 | 10 | 0 | 0 |
| Plecoptera | 10 | 100 | 20 | 0 |
| Megaloptera:Sialidae | 0 | 60 | 0 | 0 |
| Trichoptera:larvae | 60 | 100 | 20 | 9 |
| :pupae | 10 | 0 | 0 | 0 |
| Coleoptera | 0 | 20 | 0 | 9 |
| Diptera:Tipulidae | 10 | 0 | 0 | 9 |
| :Simuliidae | 0 | 30 | 10 | 0 |
| :Chironomidae:larvae | 30 | 70 | 50 | 0 |
| :pupae | 0 | 10 | 0 | 0 |
| :Heleidae | 0 | 0 | 0 | 0 |
| :Rhagionidue | 0 | 0 | 0 | 9 |
| : Empididae | 30 | 0 | 10 | 0 |
| OIHER AQUATIC INVERIEBRAIES |  |  |  |  |
| Nematomorpha | 0 | 10 | 0 | 0 |
| Oligochaeta | 0 | 0 | 0 | 9 |
| Hydracarina | 30 | 10 | 20 | 27 |
| TERRESTRIAL ARIHROPODS |  |  |  |  |
| Collembola | 0 | 0 | 0 | 9 |
| Ephemeroptera | 10 | 0 | 0 | 0 |
| Orthoptera | 0 | 0 | 0 | 9 |
| Plecoptera | 0 | 0 | 10 | 0 |
| Hemiptera | 0 | 10 | 0 | 18 |
| Lepidoptera | 0 | 20 | 60 | 36 |
| Hymenoptera | 0 | 0 | 20 | 9 |
| Coleoptera | 0 | 20 | 20 | 64 |
| Diptera | 30 | 40 | 60 | 64 |
| Arachnida | 10 | 0 | 0 | 18 |

Mean percentage of the volume of brook trout stomach contents contributed by various food items, Ruisseau Landry mainstream station, 13 June to 5 October, 1977. Gaspé, Québec.

|  | 13 June | 18 June | 27 June | 5 Oct |
| :---: | :---: | :---: | :---: | :---: |
| AQUATIC INSECTS |  |  |  |  |
| Ephemeroptera:Heptageniidae | 4.4 | 1.8 | 0.0 | 0.0 |
| : Baetidae | 17.2 | 8.0 | 0.0 | 3.0 |
| Odonata:Anisoptera | 0.0 | 0.1 | 0.0 | 0.0 |
| Plecoptera | 1.7 | 62.7 | 5.0 | 0.0 |
| Megaloptera:Sialidae | 0.0 | 2.0 | 0.0 | 0.0 |
| Trichoptera:larvae | 35.0 | 20.8 | 5.0 | 0.5 |
| :pupae | 5.0 | 0.0 | 0.0 | 0.0 |
| Coleoptera | 0.0 | 0.2 | 0.0 | 2.0 |
| Diptera:Tipulidae | 2.2 | 0.0 | 0.0 | 2.0 |
| :Simuliidae | 0.0 | 0.3 | 0.5 | 0.0 |
| :Chironomidae:larvae | 11.1 | 2.0 | 5.2 | 0.0 |
| :pupae | 0.0 | 0.1 | 0.0 | 0.0 |
| :Heleidae | 0.0 | 0.0 | 0.0 | 0.0 |
| :Rhagionidae | 0.0 | 0.0 | 0.0 | 2.0 |
| :Empididae | 8.9 | 0.0 | 4.0 | 0.0 |
| OTHER AQUATIC INVERTEBRATES |  |  |  |  |
| Nematomorpha | 0.0 | 0.2 | 0.0 | 0.0 |
| Oligochaeta | 0.0 | 0.0 | 0.0 | 5.0 |
| Hydracarina | 3.9 | 0.1 | 1.5 | 5.5 |
| TERRESTRIAL ARTHROPODS |  |  |  |  |
| Collembola | 0.0 | 0.0 | 0.0 | 1.0 |
| Ephemeroptera | 2.2 | 0.0 | 0.0 | 0.0 |
| Orthoptera | 0.0 | 0.0 | 0.0 | 5.0 |
| Plecoptera | 0.0 | 0.0 | 5.0 | 0.0 |
| Hemiptera | 0.0 | 0.1 | 0.0 | 2.5 |
| Lepidoptera | 0.0 | 0.6 | 40.0 | 13.0 |
| Hymenoptera | 0.0 | 0.0 | 7.9 | 2.5 |
| Coleoptera | 0.0 | 0.2 | 4.0 | 23.0 |
| Diptera | 5.6 | 0.8 | 21.9 | 28.0 |
| Arachnida | 2.8 | 0.0 | 0.0 | 5.0 |

Mean numbers of various food items in brook trout stomachs in which they occurred, Ruisseau Landry mainstream station, 13 June to 5 October, 1977. Gaspé, Québec.

|  | 13 June | 18 June | 27 June | 5 Oct |
| :---: | :---: | :---: | :---: | :---: |
| AQUATIC INSECTS |  |  |  |  |
| Ephemeroptera:Heptageniidae | 2 | 3 | - | - |
| :Baetidae | 1 | 9 | - | 1 |
| Odonata:Anisoptera | - | 1 | - | - |
| Plecoptera | 1 | 105 | 3 | - |
| Megaloptera:Sialidae | - | 2 | - | - |
| Trichoptera:larvae | 2 | 13 | 1 | 1 |
| :pupae | 1 | - | - | - |
| Coleoptera | - | 2 | - | 3 |
| Diptera:Tipulidae | 1 | - | - | 1 |
| :Simuliidae | - | 1 | 1 | - |
| :Chironomidae:larvae | 2 | 6 | 1 | - |
| :pupae | - | 1 | - | - |
| :Heleidae | - | - | - | - |
| :Rhagionidae | - | - | - | 2 |
| :Empididae | 1 | - | 2 | - |
| OTHER AQUATIC INVERITEBRAIES |  |  |  |  |
| Nematomorpha | - | 1 | - | - |
| Oligochaeta | - | - | - | 8 |
| Hydracarina | 2 | 1 | 2 | 1 |
| TERRESTRIAL ARTHROPODS |  |  |  |  |
| Collembola | - | - | - | 1 |
| Ephemeroptera | 1 | - | - | - |
| Orthoptera | - | - | - | 1 |
| Plecoptera | - | - | 1 | - |
| Hemiptera | - | 1 | - | 1 |
| Lepidoptera | - | 2 | 3 | 2 |
| Hymenoptera | - | - | 3 | 2 |
| Coleoptera | - | 1 | 2 | 1 |
| Diptera | 1 | 2 | 2 | 2 |
| Arachnida | 1 | - | - | 1 |

Slimy sculpins sampled for stomach content analysis from Ruisseau Landry tributary station, 14 June to 5 October, 1977. Gaspé, Ơuébec.

|  | l4 June | 18 June | $12-13$ Aug | 5 oct |
| :---: | :---: | :---: | :---: | :---: |
| No. of Fish Sampled | 8 | 10 | 2 | 10 |
| Mean Total Length (m) | 52.8 | 55.5 | 51.0 | 52.3 |
| Range | $47-61$ | $46-70$ | $38-64$ | $44-66$ |
| Mean Weight (g) | 1.26 | 2.06 | 2.10 | 1.31 |
| Range | $0.9-2.0$ | $0.9-3.8$ | $1.1-3.1$ | $0.7-2.5$ |
| Mean Volume Stomach Contents (ml) | 0.06 | 0.08 | 0.22 | 0.04 |
| Range | $0.05-0.1$ | $0.0-0.1$ | $0.05-0.4$ | $0.0-0.05$ |

Percent occurrence of various food items in slimy sculpin stomachs, Ruisseau Landry tributary station, 14 June to 5 October, 1977. Gaspe, Quebec.

|  | 14 June | 18 June | 12-13 Aug | $50 c t$ |
| :---: | :---: | :---: | :---: | :---: |
| AQUATIC INSECTS |  |  |  |  |
| Ephemeroptera:Heptageniidae | 12 | 60 | 0 | 0 |
| :Baetidae | 50 | 50 | 0 | 10 |
| Plecoptera | 25 | 40 | 0 | 0 |
| Trichoptera | 50 | 80 | 0 | 20 |
| Coleoptera | 0 | 0 | 0 | 20 |
| Diptera:Tipulidae | 0 | 0 | 0 | 10 |
| :Simuliidae:larvae | 0 | 0 | 50 | 0 |
| :pupae | 0 | 20 | 0 | 0 |
| :Chironomidae:larvae | 50 | 60 | 50 | 80 |
| :pupae | 0 | 10 | 0 | 0 |
| :Empididae | 0 | 0 | 50 | 0 |
| OTHER AQUATIC INVERTEBRATES |  |  |  |  |
| Oligochaeta | 0 | 0 | 50 | 0 |
| Gastropoda | 0 | 0 | 50 | 10 |
| Hydracarina | 0 | 0 | 0 | 10 |
| TERRESTIRIAL ARTHROPODS |  |  |  |  |
| Lepidoptera:larvae | 0 | 10 | 0 | 0 |
| EMPTY STOMACHS | 0 | 10 | 0 | 10 |

Mean percentage of the volume of slimy sculpin stomach contents contributed by various food items, Ruisseau Landry tributary station, 14 June to 5 October, 1977. Gaspé, Québec.

|  | 14 June | 18 June | 12-13 Aug | $50 c t$ |
| :---: | :---: | :---: | :---: | :---: |
| AQUATIC INSECTS |  |  |  |  |
| Ephemeroptera:Heptageniidae | 3.1 | 22.2 | 0.0 | 0.0 |
| : Eaetidae | 30.0 | 20.6 | 0.0 | 6.7 |
| Plecoptera | 5.6 | 8.3 | 0.0 | 0.0 |
| Trichoptera | 30.0 | 31.7 | 0.0 | 14.4 |
| Coleoptera | 0.0 | 0.0 | 0.0 | 6.7 |
| Diptera:Tipulidae | 0.0 | 0.0 | 0.0 | 8.9 |
| :Simuliidae:larvae | 0.0 | 0.0 | 10.0 | 0.0 |
| :pupae | 0.0 | 2.6 | 0.0 | 0.0 |
| :Chironomidae:larvae | 31.2 | 8.6 | 15.0 | 55.6 |
| :pupae | 0.0 | 0.6 | 0.0 | 0.0 |
| :Empididae | 0.0 | 0.0 | 25.0 | 0.0 |
| OTHER AQUATIC INVERTEBRATES |  |  |  |  |
| Oligochaeta | 0.0 | 0.0 | 45.0 | 0.0 |
| Gastropoda | 0.0 | 0.0 | 5.0 | 5.6 |
| Hydracarina | 0.0 | 0.0 | 0.0 | 2.2 |
| TERRESTIRIAL ARIHROPODS |  |  |  |  |
| Lepidoptera:larvae | 0.0 | 5.6 | 0.0 | 0.0 |

Mean numbers of various food items in slimy sculpin stomachs in which they occurred, Ruisseau Landry tributary station, 14 June to 5 October, 1977. Gaspé, Ouébec.

|  | 14 June | 18 June | 12-13 Aug | 5 Oct |
| :---: | :---: | :---: | :---: | :---: |
| AQUATIC INSECTS |  |  |  |  |
| Ephemeroptera:Heptageniidae | 1 | 4 | - | - |
| : Baetidae | 2 | 3 | - | 1 |
| Plecoptera | 2 | 5 | - | - |
| Trichoptera | 1 | 2 | - | 1 |
| Coleoptera | - | - | - | 1 |
| Diptera:Tipulidae | - | - | - | 1 |
| :Simuliidae:larvae | - | - | 2 | - |
| :pupae | - | 2 | - | - |
| :Chironomidae:larvae | 14 | 5 | 5 | 5 |
| :pupae | - | 2 | - | - |
| :Empididae | - | - | 2 | - |
| OTHER AQUATIC INVERTEBRATES |  |  |  |  |
| Oligochaeta | - | - | 1 | - |
| Gastropoda | - | - | 1 | 1 |
| Hydracarina | - | - | - | 1 |
| TERRESTRIAL ARTHROPODS |  |  |  |  |
| Lepidoptera:larvae | - | 1 | - | - |

Slimy sculpins sampled for stomach content analysis from Ruisseau Landry mainstream station, 13 June to 5 October, 1977. Gaspé, Québec.

|  | 13 June | 18 June | 27 June | 5 Oct |
| :---: | :---: | :---: | :---: | :---: |
| No. of Fish Sampled | 3 | 6 | 5 | 12 |
| Mean Total Length (mm) | 50.0 | 39.8 | 66.4 | 61.1 |
| Range | 41-63 | 24-54 | 45-89 | 48-82 |
| Mean Weight (g) | 1.13 | 0.82 | 3.8 | 2.10 |
| Range | 0.2-2.4 | 0.2-1.9 | 0.9-7.7 | 0.9-6.1 |
| Mean Volume Stomach Contents (ml) | 0.05 | 0.05 | 0.15 | 0.05 |
| Range | 0.05 | 0.05 | 0.0-0.3 | 0.0-0.1 |

Percent occurrence of various food items in slimy sculpin stomachs, Ruisseau Landry mainstream station, 13 June to 5 October, 1977. Gaspé, Québec.

|  | 13 June | 18 June | 27 June | 50 ct |
| :---: | :---: | :---: | :---: | :---: |
| AQUATIC INSECTS |  |  |  |  |
| Ephemeroptera:Baetidae | 67 | 33 | 60 | 0 |
| Plecoptera | 33 | 33 | 80 | 0 |
| Trichoptera | 33 | 50 | 80 | 25 |
| Coleoptera | 0 | 0 | 0 | 17 |
| Diptera:Tipulidae | 0 | 0 | 0 | 50 |
| :Simuliidae:larvae | 33 | 17 | 0 | 0 |
| :pupae | 0 | 33 | 0 | 0 |
| :Chironomidae:larvae | 67 | 67 | 20 | 33 |
| :Heleidae | 0 | 0 | 0 | 8 |
| :Empididae | 0 | 0 | 20 | 0 |
| OIHER AQUATIC INVERTEBRATES |  |  |  |  |
| Hydracarina | 0 | 0 | 0 | 17 |
| TERRESTRIAL ARTHROPODS |  |  |  |  |
| Coleoptera | 0 | 0 | 0 | 0 |
| Diptera | 0 | 17 | 0 | 8 |
| EMPTY STOMACHS | 0 | 0 | 20 | 8 |

Mean percentage of the volume of slimy sculpin stomach contents contributed by various food items, Ruisseau Landry mainstream station, 13 June to 5 October, 1977.

Gaspé, Qưébec.

|  | 13 June | 18 June | 27 June | 5 Oct |
| :---: | :---: | :---: | :---: | :---: |
| AQUATIC INSECTS |  |  |  |  |
| Ephemeroptera:Baetidae | 58.3 | 15.0 | 42.5 | 0.0 |
| Plecoptera | 3.3 | 15.0 | 17.5 | 0.0 |
| Trichoptera | 25.0 | 23.3 | 37.5 | 25.4 |
| Coleoptera | 0.0 | 0.0 | 0.0 | 14.5 |
| Diptera:Tipulidae | 0.0 | 0.0 | 0.0 | 39.1 |
| :Simuliidae:larvae | 3.3 | 16.7 | 0.0 | 0.0 |
| :pupae | 0.0 | 10.8 | 0.0 | 0.0 |
| :Chironomidae:larvae | 10.0 | 10.8 | 1.2 | 11.8 |
| :Heleidae | 0.0 | 0.0 | 0.0 | 1.8 |
| :Empididae | 0.0 | 0.0 | 1.2 | 0.0 |
| OIHER AQUATIC INVERTEBRAIES |  |  |  |  |
| Hydracarina | 0.0 | 0.0 | 0.0 | 3.6 |
| TERRESTRIAL ARIHROPODS |  |  |  |  |
| Coleoptera | 0.0 | 0.0 | 0.0 | 3.6 |
| Diptera | 0.0 | 8.3 | 0.0 | 0.0 |

Mean numbers of various food items in slimy sculpin stomachs in which they occurred, Ruisseau Landry mainstream station, 13 June to 5 October, 1977.
Gaspé, Québec.

|  | 13 June | 18 June | 27 June | $50 c t$ |
| :---: | :---: | :---: | :---: | :---: |
| AQUATIC INSECTS |  |  |  |  |
| Ephemeroptera:Baetidae | 4 | 1 | 5 | - |
| Plecoptera | 1 | 10 | 3 | - |
| Trichoptera | 3 | 3 | 3 | 3 |
| Coleoptera | - | - | - | 2 |
| Diptera:Tipulidae | - | - | - | 2 |
| :Simuliidae:larvae | 1 | 1 | 4 | - |
| :pupae | - | 1 | - | - |
| :Chironomidae:larvae | 1 | 2 | - | 1 |
| : Heleidae | - | - | - | 1 |
| : Empididae | - | - | 1 | - |
| OTHER AQUATIC INVERTEBRATES |  |  |  |  |
| Hydracarina | - | - | - | 2 |
| TERRESTRIAL ARIHROPODS |  |  |  |  |
| Coleoptera | - | - | - | 1 |
| Diptera | - | 1 | - | - |

Brook trout sampled for stomach content analysis from Ruisseau du Petit Capucin tributary station, 19 June to 4 October, 1977. Gaspé, Québec.

|  |  | 19 June | 22 June | I July | 4 Oct |
| :---: | :---: | :---: | :---: | :---: | :---: |
| No. of Fish Sampled | 10 | 10 | 10 | 12 |  |
| Mean Total Iength | (mm) | 92.6 | 101.0 | 80.0 | 81.0 |
| Range |  | $61-132$ | $68-148$ | $66-111$ | $49-125$ |
| Mean Fork Length | (mm) | 89.1 | 97.3 | 76.7 | 77.8 |
| Range |  | $58-125$ | $65-144$ | $64-107$ | $47-123$ |
| Mean Weight (g) | 10.91 | 13.73 | 6.55 | 5.73 |  |
| Range | $2.9-27.3$ | $2.8-33.9$ | $3.3-14.7$ | $1.1-14.0$ |  |
| Mean Volume Stomach Contents | (ml) | 0.21 | 2.70 | 0.28 | 0.14 |
| Range | $0.1-0.5$ | $0.09-9.0$ | $0.02-0.5$ | $0.05-0.4$ |  |

Percent occurrence of various food items in brook trout stomachs, Ruisseau du Petit Capucin tributary station, 19 June to 4 October, 1977. Gaspé, Québec.

|  | 19 June | 22 June | 1 July | $40 c t$ |
| :---: | :---: | :---: | :---: | :---: |
| AQUATIC INSECTS |  |  |  |  |
| Ephemeroptera:Heptageniidae <br> :Baetidae | $\begin{array}{r} 70 \\ 100 \end{array}$ | $\begin{aligned} & 90 \\ & 90 \end{aligned}$ | $\begin{aligned} & 10 \\ & 40 \end{aligned}$ | $\begin{array}{r} 0 \\ 17 \end{array}$ |
| Plecoptera | 80 | 100 | 10 | 0 |
| Megaloptera:Sialidae | 0 | 40 | 0 | 0 |
| Trichoptera:larvae :pupae | $\begin{array}{r} 80 \\ 0 \end{array}$ | $\begin{array}{r} 90 \\ 0 \end{array}$ | $\begin{array}{r} 50 \\ 0 \end{array}$ | $\begin{array}{r} 83 \\ 8 \end{array}$ |
| Coleoptera | 0 | 0 | 0 | 25 |
| Diptera:Tipulidae | 0 | 0 | 0 | 17 |
| :Blephariceridae | 0 | 10 | 0 | 0 |
| :Simuliidae:larvae | 30 | 50 | 20 | 0 |
| :pupae | 20 | 0 | 0 | 0 |
| :Chironomidae:larvae | 50 | 30 | 10 | 58 |
| :pupae | 20 | 1) | 0 | 8 |
| :Rhagionidae | 0 | 0 | 0 | 8 |
| : Empididae | 10 | 0 | 0 | 17 |
| OTHER AQUATIC INVERTEBRATES |  |  |  |  |
| Nematomorpha | 0 | 0 | 0 | 8 |
| Oligochaeta | 0 | 10 | 0 | 0 |
| Gastropoda | 0 | 0 | 0 | 25 |
| Hydracarina | 20 | 0 | 0 | 8 |
| TERRESTRIAL ARTHROPODS |  |  |  |  |
| Ephemeroptera | 20 | 0 | 0 | 0 |
| Plecoptera | 0 | 10 | 10 | 0 |
| Hemiptera | 20 | 20 | 20 | 17 |
| Trichoptera | 0 | 10 | 0 | 0 |
| Lepidoptera | 0 | 10 | 0 | 8 |
| Hymenoptera | 40 | 20 | 20 | 0 |
| Coleoptera | 40 | 40 | 60 | 8 |
| Diptera | 100 | 40 | 100 | 67 |
| Arachnida | 20 | 0 | 10 | 17 |
| TERRESTRTAL GASTROPODS | 0 | 0 | 0 | 8 |

Mean percentage of the volume of brook trout stomach contents contributed by various food items, Ruisseau du Petit Capucin tributary station, 19 June to 4 October, 1977. Gaspé, Québec.

|  | 19 June | 22 June | 1 July | $40 c t$ |
| :---: | :---: | :---: | :---: | :---: |
| AQUATIC INSECTS |  |  |  |  |
| Ephemeroptera:Heptageniidae | 10.7 | 22.0 | 1.5 | 0.0 |
| :Baetidae | 38.5 | 38.3 | 2.2 | 0.7 |
| Plecoptera | 12.3 | 27.5 | 1.0 | 0.0 |
| Megaloptera:Sialidae | 0.0 | 0.5 | 0.0 | 0.0 |
| Trichoptera:larvae | 10.8 | 8.3 | 5.2 | 44.6 |
| :pupae | 0.0 | 0.0 | 0.0 | 0.8 |
| Coleoptera | 0.0 | 0.0 | 0.0 | 2.3 |
| Diptera:Tipulidae | 0.0 | 0.0 | 0.0 | 3.8 |
| : Blephariceridae | 0.0 | 0.03 | 0.0 | 0.0 |
| :Simuliidae:larvae | 1.3 | 0.6 | 1.5 | 0.0 |
| :pupae | 0.7 | 0.0 | 0.0 | 0.0 |
| :Chironomidae:larvae | 2.4 | 0.3 | 0.2 | 11.2 |
| :pupae | 1.1 | 0.0 | 0.0 | 1.7 |
| :Rhagionidae | 0.0 | 0.0 | 0.0 | 0.2 |
| :Empididae | 0.8 | 0.0 | 0.0 | 1.9 |
| OTHER AQUATIC INVERTEBRATES |  |  |  |  |
| Nematomorpha | 0.0 | 0.0 | 0.0 | 0.8 |
| Oligochaeta | 0.0 | 0.2 | 0.0 | 0.0 |
| Gastropoda | 0.0 | 0.0 | 0.0 | 6.2 |
| Hydracarina | 0.5 | 0.0 | 0.0 | 1.7 |
| TERRESTRIAL ARIHROPODS |  |  |  |  |
| Ephemeroptera | 2.0 | 0.0 | 0.0 | 0.0 |
| Plecoptera | 0.0 | 0.03 | 0.5 | 0.0 |
| Hemiptera | 0.5 | 0.2 | 4.5 | 2.1 |
| Trichoptera | 0.0 | 0.03 | 0.0 | 0.0 |
| Lepidoptera | 0.0 | 0.1 | 0.0 | 1.2 |
| Hymenoptera | 1.3 | 0.2 | 3.0 | 0.0 |
| Coleoptera | 3.4 | 0.3 | 12.6 | 1.7 |
| Diptera | 12.9 | 1.4 | 67.3 | 14.2 |
| Arachnida | 0.8 | 0.0 | 0.5 | 2.3 |
| TERRESTRIAL GASTROPODS | 0.0 | 0.0 | 0.0 | 2.5 |

Mean numbers of various food items in brook trout stomachs in which they occurred, Ruisseau du Petit Capucin tributary station, 19 June to 4 October, 1977. Gaspé, Quuebec.

|  | 19 June | 22 June | 1 July | $40 c t$ |
| :---: | :---: | :---: | :---: | :---: |
| AQUATIC INSECTS |  |  |  |  |
| Ephemeroptera:Heptageniidae | 4 | 35 | 2 | - |
| :Baetidae | 10 | 62 | 1 | 1 |
| Plecoptera | 3 | 29 | 1 | - |
| Megaloptera:Sialidae | - | 1 | - | - |
| Trichoptera:larvae | 5 | 11 | 1 | 11 |
| :pupae | - | - | - | 1 |
| Coleoptera | - | - | - | 1 |
| Diptera:Tipulidae | - | - | - | 1 |
| :Blephariceridae | - | 1 | - | - |
| :Simul iidae:pupae | 2 | 2 | 2 | - |
| :pupae | 1 | - | - | - |
| :Chironomidae:larvae | 2 | 1 | 1 | 3 |
| :pupae | 2 | - | - | 2 |
| :Rhagionidae | - | - | - | 1 |
| :Empididae | 2 | - | - | 2 |
| OIHER AQUATIC INVERTEBRATES |  |  |  |  |
| Nematomorpha | - | - | - | 1 |
| Oligochaeta | - | 1 | - | - |
| Gastropoda | - | - | - | 1 |
| Hydracarina | 2 | - | - | 1 |
| TERRESTRIAL ARIHROPODS |  |  |  |  |
| Ephemeroptera | 1 | - | - | - |
| Plecoptera | - | 1 | 1 | - |
| Hemiptera | 1 | 1 | 3 | 2 |
| Trichoptera | - | 1 | - | - |
| Lepidoptera | - | 2 | - | 1 |
| Hymenoptera | 1 | 3 | 2 | - |
| Coleoptera | 3 | 1 | 4 | 2 |
| Diptera | 3 | 6 | 7 | 2 |
| Arachnida | 1 | - | 1 | 1 |
| TERRESTRIAL GASIROPODS | - | - | - | 1 |

Brook trout sampled for stomach content analysis from Ruisseau du Petit Capucin mainstream station, 19 June to 4 October, 1977. Gaspé, Québec.

|  |  | 19 June | 22 June | 1 July | 11-14 Aug | 4 Oct |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. of Fish Sampled |  | 10 | 10 | 9 | 22 | 12 |
| Mean Total Length (mm) |  | 72.7 | 75.9 | 85.7 | 65.5 | 80.9 |
| Range |  | 52-109 | 59-110 | 55-120 | 37-113 | 49-112 |
| Mean Fork Length (mm) |  | 69.7 | 72.4 | 81.6 | 63.1 | 77.0 |
| Range |  | 50-103 | 56-105 | 52-116 | 36-109 | 47-107 |
| Mean Weight (g) |  | 5.27 | 5.20 | 7.99 | 4.18 | 5.40 |
| Range |  | 1.7-13.6 | 2.1-15.5 | 1.6-18.1 | 0.5-11.0 | 1.2-9.4 |
| Mean Volume Stomach Contents | (ml) | 0.18 | 0.52 | 0.23 | 0.12 | 0.10 |
| Range |  | 0.05-0.4 | 0.05-2.4 | 0.1-0.5 | 0.0-0.4 | 0.0-0.4 |

Percent occurrence of various food items in brook trout stomachs, Ruisseau du Petit Capucin mainstream station, 19 June to 4 October, 1977. Gaspé, Québec.

|  | 19 June | 22 June | 1 July | 11-14 Aug | $40 c t$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| AQUATIC INSECTS |  |  |  |  |  |
| Ephemeroptera:Heptageniidae :Baetidae | $\begin{array}{r} 0 \\ 70 \end{array}$ | $\begin{array}{r} 50 \\ 100 \end{array}$ | $\begin{array}{r} 0 \\ 22 \end{array}$ | $\begin{aligned} & 0 \\ & 9 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ |
| Plecoptera | 70 | 90 | 0 | 23 | 25 |
| Trichoptera:larvae :Pupae | $\begin{array}{r} 70 \\ 0 \end{array}$ | $\begin{aligned} & 80 \\ & 10 \end{aligned}$ | 22 | $\begin{array}{r} 50 \\ 0 \end{array}$ | $\begin{array}{r} 67 \\ 0 \end{array}$ |
| Megaloptera:Sialidae | 0 | 20 | 0 | 4 | 0 |
| Coleoptera | 0 | 0 | 0 | 0 | 33 |
| Diptera:Tipulidae | 0 | 10 | 0 | 0 | 0 |
| :Blephariceridae | 0 | 10 | 0 | 0 | 0 |
| :Simuliidae:larvae | 0 | 30 | 11 | 0 | 8 |
| :pupae | 20 | 0 | 0 | 0 | 0 |
| :Chironomidae:larvae | 30 | 30 | 0 | 77 | 50 |
| :pupae | 20 | 10 | 0 | 9 | 0 |
| :Rhagionidae | 0 | 0 | 0 | 0 | 8 |
| :Empididae | 0 | 0 | 0 | 14 | 8 |
| OITER AQUATIC INVERTEBRATES |  |  |  |  |  |
| Oligochaeta | 0 | 0 | 0 | 4 | 0 |
| Hydracarina | 0 | 0 | 22 | 14 | 17 |
| TERRESTRIAL ARTHROPODS |  |  |  |  |  |
| Ephemeroptera | 30 | 0 | 0 | 0 | 0 |
| Plecoptera | 0 | 0 | 11 | 0 | 0 |
| Hemiptera | 20 | 20 | 44 | 23 | 0 |
| Trichoptera | 0 | 10 | 33 | 0 | 0 |
| Lepidoptera | 10 | 50 | 78 | 14 | 0 |
| Hymenoptera | 50 | 10 | 56 | 0 | 0 |
| Coleoptera | 60 | 10 | 78 | 9 | 8 |
| Diptera | 80 | 50 | 100 | 77 | 17 |
| Diplopoda | 0 | 0 | 11 | 0 | 0 |
| Arachnida | 30 | 0 | 22 | 0 | 8 |
| IERRESTRIAL GASIROPODS | 0 | 0 | 0 | 0 | 25 |
| EMPTY STOMACHS | 0 | 0 | 0 | 4 | 8 |

Mean percentage of the volume of brook trout stomach contents contributed by various food items, Ruisseau du Petit Capucin mainstream station, 19 June to 4 October, 1977. Gaspé, Québec.

|  | 19 June | 22 June | 1 July | 11-14 Aug | $40 c t$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| AQUATIC INSECTS |  |  |  |  |  |
| Ephemeroptera:Heptageniidae | 0.0 | 4.9 | 0.0 | 0.0 | 0.0 |
| :Baetidae | 13.0 | 35.0 | 5.0 | 0.7 | 0.0 |
| Plecoptera | 11.2 | 41.0 | - | 5.4 | 5.4 |
| Trichoptera:larvae | 15.2 | 6.7 | 1.7 | 6.4 | 30.9 |
| :pupae | 0.0 | 0.2 | 0.0 | 0.0 | 0.0 |
| Megaloptera:Sialidae | 0.0 | 1.5 | 0.0 | 0.5 | 0.0 |
| Coleoptera | 0.0 | 0.0 | 0.0 | 0.0 | 7.7 |
| Diptera:Tipulidae | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 |
| :Blephariceridae | 0.0 | 0.03 | 0.0 | 0.0 | 0.0 |
| :Simuliidae:larvae | 0.0 | 0.5 | 0.2 | 0.0 | 9.1 |
| :pupae | 0.8 | 0.0 | 0.0 | 0.0 | 0.0 |
| :Chironomidae:larvae | 4.1 | 0.53 | 0.0 | 22.5 | 7.3 |
| :pupae | 1.5 | 0.1 | 0.0 | 0.5 | 0.0 |
| :Rhagionidae | 0.0 | 0.0 | 0.0 | 0.0 | 6.4 |
| :Empididae | 0.0 | 0.0 | 0.0 | 1.4 | 1.8 |
| OTHER AQUATIC INVERTEBRATES |  |  |  |  |  |
| Oligochaeta | 0.0 | 0.0 | 0.0 | 0.7 | 0.0 |
| Hydracarina | 0.0 | 0.0 | 1.1 | 2.8 | 2.3 |
| TERRESTRIAL ARIHROPODS |  |  |  |  |  |
| Ephemeroptera | 2.6 | 0.0 | 0.0 | 0.0 | 0.0 |
| Plecoptera | 0.0 | 0.0 | 1.1 | 0.0 | 0.0 |
| Hemiptera | 2.0 | 0.9 | 8.7 | 3.8 | 0.0 |
| Trichoptera | 0.0 | 0.3 | 3.7 | 0.0 | 0.0 |
| Lepidoptera | 0.3 | 2.43 | 20.6 | 4.8 | 0.0 |
| Hymenoptera | 3.8 | 0.5 | 10.0 | 0.0 | 0.0 |
| Coleoptera | 6.7 | 0.5 | 22.8 | 1.9 | 1.8 |
| Diptera | 37.5 | 4.8 | 21.7 | 48.6 | 10.0 |
| Diplopoda | 0.0 | 0.0 | 2.2 | 0.0 | 0.0 |
| Arachnida | 1.3 | 0.0 | 1.3 | 0.0 | 1.8 |
| TERRESTIRIAL GASTROPODS | 0.0 | 0.0 | 0.0 | 0.0 | 15.4 |

Mean numbers of various food items in brook trout stomachs in which they occurred, Ruisseau du Petit Capucin mainstream station, 19 June to 4 October, 1977. Gaspé, Québec.

|  | 19 June | 22 June | 1 July | 11-14 Aug | $40 c t$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| AQUATIC INSECTS |  |  |  |  |  |
| Ephemeroptera:Heptageniidae | - | 5 | - | - | - |
| :Baetidae | 2 | 6 | 1 | 1 | - |
| Plecoptera | 3 | 26 | - | 1 | 1 |
| Trichoptera: Iarvae | 1 | 5 | 1 | 2 | 5 |
| :pupae | - | 1 | - | - | - |
| Megaloptera:Sialidae | - | 2 | - | 1 | - |
| Coleoptera | - | - | - | - | 2 |
| Diptera:Tipulidae | - | 1 | - | - | - |
| :Blephariceridae | - | 1 | - | - | - |
| :Simuliidae:larvae | - | 2 | 2 | - | 1 |
| :pupae | 1 | - | - | - | - |
| :Chironomidae:larvae | 1 | 3 | - | 13 | 2 |
| :pupae | 3 | 1 | - | 2 | - |
| :Rhagionidae | - | - | - | - | 1 |
| :Empididae | - | - | - | 1 | 3 |
| OTHER AQUATIC INVERTEBRATES |  |  |  |  |  |
| Oligochaeta | - | - | - | 2 | - |
| Hydracarina | - | - | 2 | 1 | 2 |
| TERRESTRIAL ARIHROPODS |  |  |  |  |  |
| Ephemeroptera | 1 | - | - | - | - |
| Plecoptera | - | - | 2 | - | - |
| Hemiptera | 3 | 4 | 2 | 1 | - |
| Trichoptera | - | 1 | 1 | - | - |
| Lepidoptera | 1 | 2 | 2 | 2 | - |
| Hymenoptera | 1 | 1 | 2 | - | $\bar{\square}$ |
| Coleoptera | 1 | 1 | 3 | 2 | 2 |
| Diptera | 8 | 2 | 4 | 20 | 2 |
| Diplopoda | - | - | 1 | - | - |
| Arachnida | 1 | - | 1 | - | 1 |
| TERRESTRIAL GASTROPODS | - | - | - | - | 1 |


[^0]:    * Now called the Forest Pest Management Institute (FPMI).

[^1]:    * Permethrin 50\% oil concentrate, Chipman Chemicals Ltd.
    ** Permethrin $300 \mathrm{~g} / \ell$ solution, Shell Canada Ltd.

[^2]:    * numbers extrapolated from subsamples.

[^3]:    * numbers extrapolated from subsamples.

[^4]:    * Mean numbers and standard deviations of organisms collected in four $0.093 \mathrm{~m}^{2}$ Surber samples.

[^5]:    * Mean numbers and standard deviations of organisms collected from four rocks approximately 20 cm in diameter.

[^6]:    * Mean numbers and standard deviations of organisms collected from four rocks approximately 20 cm in diameter.

[^7]:    * Mean numbers and standard deviations of organisms collected in four $0.093{ }^{2}$ surber samples.

