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Abstract 25 

Understanding and investigating synergies between LiDAR (light detection and ranging) and SAR 26 

(synthetic aperture radar) provides new and innovative opportunities to characterize above-ground 27 

biomass. We demonstrate a spatial modeling framework that integrates above-ground biomass transects, 28 

derived from plot-based field data and small-footprint discrete return LiDAR, with complete wall-to-wall 29 

spaceborne L-band and C-band SAR to predict biomass over a larger area. Transect intervals of 2000 m, 30 

1000 m, and 500 m were tested. Co-kriging, regression kriging, and regression co-kriging were used to 31 

extend the LiDAR-derived biomass transects. LiDAR-derived above-ground biomass and L-band 32 

backscatter (HV polarization) was moderately correlated, with a maximum semivariance distance 33 

between the LiDAR-derived biomass and SAR data of 374 m. Regression kriging at a sample interval of 34 

500 m showed the smallest root mean squared error (RMSE) and mean absolute error (MAE) at 203.9 Mg 35 

ha-1 and 131.6 Mg ha-1, respectively.  The mean error (ME) showed an average bias of -14.0 Mg ha-1. 36 

Predictions using regression co-kriging at a sample interval of 2000 m resulted in the highest RMSE and 37 

MAE values at 238.2 Mg ha-1 and 164.6 Mg ha-1, respectively. ME also was highest, averaging -37.4 Mg 38 

ha-1. Regardless of the spatial modeling technique employed, lower errors in predicted above-ground 39 

biomass were associated with smaller transect intervals. Moderate correlations between the LiDAR-40 

derived above-ground biomass and the radar data impacted the predictive accuracy of the spatial models; 41 

however, overall variation in above-ground biomass in the study area was well represented. This study 42 

demonstrated that a sampling framework integrating LiDAR data with space-borne radar data using a 43 

spatial modeling approach can provide spatially-explicit above-ground biomass estimates for large areas. 44 

Such a sampling framework can be used in combination with ground plot and land cover data to assess 45 

carbon stocks under conditions where more common optical remote sensing approaches are difficult to 46 

implement. 47 

 48 

1. Introduction 49 

The impacts of climate change on many natural systems have been documented and reported by the 50 

Intergovernmental Panel on Climate Change (IPCC). It is recognized that changes in atmospheric 51 

concentration of greenhouse gasses (GHGs) such as CO2 and modified land cover are key drivers of these 52 

changes (IPCC, 2007). Numerous studies have investigated the potential impacts of climate change on 53 

physical and biological processes (e.g., Bellard et al., 2012; Coops and Waring, 2011; Parmesan and 54 

Yohe, 2003; Zhu et al., 2012). Impacts on forest vegetation from climate change will increasingly affect 55 
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forest ecosystems processes (Metsaranta, Dymond, Kurz, & Spittlehouse, 2011). Gradual increases in 56 

temperature, changes in rainfall patterns or modification of atmospheric conditions such as cloud cover, 57 

will also likely impact vegetation growth, regeneration and natural rates of mortality (Chapin et al., 2010).  58 

Sustainable land management practices and policies are critical for mitigating climate change through the 59 

reduction of atmospheric CO2. 60 

Forests are important at multiple scales, from providing habitat for animals and non-timber products at 61 

local scales (Ahrends et al., 2010) to influencing climate systems and the carbon cycle globally (Lewis et 62 

al., 2009).  Atmospheric carbon is removed from the atmosphere and sequestered in a number of pools, 63 

including soils, with sequestration in the form of forest vegetation forming a large and dynamic pool. 64 

Although terrestrial soils contain more carbon than the atmosphere and vegetation biomass together 65 

(Eswaran, Van Den Berg, & Reich, 1993), soil carbon is less dynamic and more difficult to monitor.  66 

Forests on the other hand can be monitored, and their dynamics understood. Consequently, forests are an 67 

important component in mitigating the effects of climate change. However, when forests are cleared and 68 

converted to other land types or degraded, much of their stored carbon is released into the atmosphere as 69 

CO2.  As of 2007, deforestation, including decay and peat fires and drained peat soils, is estimated to 70 

account for approximately 18 % of the global carbon emissions and is the second largest source of 71 

anthropogenic GHG emissions worldwide and the largest source for most tropical countries (IPCC, 2007). 72 

More damaging is that deforestation and degradation of tropical forests also removes globally important 73 

carbon sinks that currently sequester large quantities of CO2 from the atmosphere, and which are critical 74 

to future climate stabilization (Stephens et al., 2007). 75 

The principle of placing monetary value on forests based on the amount of carbon they store and their 76 

condition has produced national and regional strategies such as Reducing Emissions from Deforestation 77 

and Forest Degradation (REDD+) (Kimberly & Curran, 2009; Tacconi, Mahanty, & Suich, 2010; van de 78 

Sand, 2012). Through the retention of carbon and the avoidance of emissions from deforestation, REDD+ 79 

potentially may provide financial incentives to conserve forests and slow the drivers of land use change 80 

(Corbera, Soberanis, & Brown, 2009; Miles & Kapos, 2008). Spatially explicit maps of above-ground 81 

biomass are thus essential for quantifying the amount of carbon sequestered in forests, and changes in 82 

forest carbon stocks and forested areas.  83 

The overall goal of this study is to test and demonstrate data integration methods for producing spatially 84 

explicit biomass products suitable for application over a range of environments, including remote or less 85 

data rich regions. We propose that samples of airborne LiDAR data, calibrated with field data, can be 86 

used in conjunction with space-borne radar data to produce viable wall-to-wall maps of above-ground 87 
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biomass. In support of this goal, we first provide background and context for this information need and 88 

describe the potential of various remotely sensed data sources.  We then suggest appropriate data sets and 89 

methods, followed by an example. Finally we discuss the implementation opportunities and 90 

considerations associated with this approach. 91 

1.1 Remote sensing and forest biomass 92 

Obtaining comprehensive, timely and reliable forest inventory data is usually costly and labour intensive, 93 

especially for large areas (Kangas, Grove, & Scott, 2006). The advent of remote sensing technology has 94 

provided a practical and economical means to measure and monitor vegetation cover and structure, 95 

especially over large areas (Xie, Sha, & Yu, 2008).  Optical data are commonly used for land cover 96 

mapping, capture of change, empirical estimates of structural attributes, and to provide strata for 97 

improving attribute estimation. Estimating biomass with optical data is also well established; see Lutz et 98 

al., 2008 for a review.  However, the presence of clouds, shadows, and haze can impact the quality and 99 

completeness of data from optical sensors, especially in tropical areas (Roy, Ju, Mbow, Frost, & 100 

Loveland, 2010). 101 

Synthetic Aperture Radar (SAR) (Santoro et al., 2011; Thiel, Thiel, & Schmullius, 2009) and 102 

Interferometric SAR (InSAR) (Simard et al., 2006) have also been used for biomass assessment, 103 

particularly for areas with persistent cloud cover, because of their cloud penetration capacity, large spatial 104 

coverage, and sensitivity to forest biomass. As with most space-borne remote sensing technologies, 105 

obtaining accurate biomass estimates using these technologies is challenging as most direct observational 106 

methods suffer from saturation constraints (i.e., there is a clear upper limit to the level of forest biomass 107 

that can be estimated) or are less accurate at high biomass levels (Ardö, 1992; Duncanson, Niemann, & 108 

Wulder, 2010; Imhoff, 1995). In addition, challenges with using SAR can include poor accuracy and 109 

temporally unstable relationships due to variability in weather conditions such as moisture conditions, 110 

frost, and wind (Kasischke, Tanase, Bourgeau-Chavez, & Borr, 2011; Ranson & Sun, 1997). The possible 111 

use of InSAR for assessing biomass is also of interest due to the demonstrated provision of height 112 

measurements with no apparent saturation limit. For example, Solberg et al. (2010) showed the effective 113 

use of single-pass X-band InSAR data for measuring forest biomass in the boreal region of southern 114 

Norway and reported a linear relationship between biomass and InSAR heights with no apparent 115 

saturation effect. However, obtaining accurate height measurements requires reducing or compensating 116 

for temporal decorrelation, which necessitates the use of multiple baselines to improve interferometric 117 

processing or the use of single-pass interferometry. These requirements lower operational uptake given 118 



 

5 

that there are no space-borne L- or P-band SAR satellites currently operational, and no SAR sensors with 119 

single-pass configuration, except TanDEM-X lunched in 2010. 120 

Airborne laser scanning or light detection and ranging (LiDAR) has received a great deal of scientific and 121 

operational attention for forest characterization in recent years (Hyyppä et al., 2012). Although highly 122 

accurate, LiDAR data for large area monitoring is challenging because of operational considerations that 123 

limit widespread use, such as high data costs, aircraft scheduling and logistics, and large data volumes 124 

(Wulder et al., 2008). Wulder et al. (2008) discussed several factors that can affect cost. For instance, 125 

improvements in pulse rates enable higher flying heights which mean fewer lines are required to cover an 126 

area with the desired hit density; however, fuel costs, especially for remote locations, can be a key cost 127 

driver. Given the inverse relationship between spatial coverage and spatial resolution (Franklin, Lavigne, 128 

Wulder, & Stenhouse, 2002), cost may be the primary obstacle to using LiDAR for large-area forest 129 

characterizations (Wulder & Seemann, 2003).  Even with anticipated reductions in LiDAR data costs in 130 

the near future (Li, Andersen, & McGaughey, 2008), it is still unlikely that LiDAR data would be 131 

available to provide wall-to-wall forest characterization measurements for large or remote locations 132 

(Wulder et al., 2012). A more likely scenario would be the integration of LiDAR with other data sources, 133 

where samples of LiDAR data provide highly accurate estimates of forest stand characteristics used to 134 

calibrate or validate broader observations obtained from other data sources (Wulder et al., 2012). 135 

However, there are examples where the expense in LiDAR collection is justified by the information needs 136 

present, such as the requirement for elevation data (e.g. Woods et al., 2011). 137 

The ability to obtain frequent observations, demonstrated relationships with biomass, and the all-weather 138 

data collection capacity encourage further research with radar data.  SAR and InSAR provide 139 

complimentary sets of information to LiDAR data for estimating forest biomass (Hyde et al., 2006; 140 

Wulder et al., 2012). In this integrative framework, forest biomass estimates derived from LiDAR data are 141 

used to calibrate (and subsequently validate) the wide area observations made by radar. For example 142 

Mitchard et al. (2012) combined direct observations of L-band radar, space-borne LiDAR, and ground 143 

data to map above-ground biomass for Lopé National Park (LNP) in Gabon, an area of 5,000 km2.  144 

PALSAR backscatter (HH and HV polarization), elevation data, and a radar-derived forest degradation 145 

index (RFDI) were used to produce an unsupervised vegetation classification consisting of 40 classes for 146 

the entire national park. Each vegetation class was then assigned an average biomass value estimated by 147 

ground and LiDAR data. The LiDAR data consisted of sample profiles, covering only 17.85 km2 but 148 

which intersected all 40 vegetation classes. They estimated the carbon stock of the LNP to be 173 Mg C 149 

ha-1, which was consistent with the field data average of 181 Mg C ha-1. The outcome was a 100 m spatial 150 

resolution biomass map for the LNP with an estimated uncertainty of ±25.0%. 151 
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The complimentary information content of LiDAR and radar promotes the investigation of additional 152 

analysis options, especially those incorporating spatial inter-relationships determined by geostatistics. 153 

Hudak et al., (2002), in an important paper, considered the integration of LiDAR with Landsat Enhanced 154 

Thematic Mapper + (ETM+) imagery to address some of the considerations still relevant today, such as 155 

exploiting the high accuracy of LiDAR acquired in a sampling configuration with wall – to – wall nature 156 

of most satellite imagery. Hudak et al. (2002) compared five spatial and a-spatial methods to integrate the 157 

two datasets and provided significant insights into the most appropriate methods that should be applied 158 

with this type of data.  Results from Hudak et al., (2002) suggested that the spatial models (kriging and 159 

co-krigging), produced less biased results than regression and that co-krigging methods were preferable to 160 

either the aspatial or spatial models alone because they preserved the vegetation pattern like regression 161 

yet improved estimation accuracies above those predicted from the regression models alone.  162 

 163 

We believe Hudak et al., (2002) provides important insights for our work, and provides a proven, tried 164 

and tested, framework with which to assess how above-ground biomass predictions can be estimated 165 

using a LiDAR sampling framework, multivariate kriging, and wall-to-wall radar data to extend the 166 

biomass predictions to un-sampled areas. LiDAR is sensitive to tree crown characteristics and height of 167 

tress while radar is sensitive to the size and arrangement of structural elements of groups of trees (Sexton, 168 

Bax, Siqueira, Swenson, & Hensley, 2009; Tsui, Coops, Wulder, Marshall, & McCardle, 2012). Given 169 

these relationships between the LiDAR-derived forest biomass and radar measurements, accuracy in 170 

predicted biomass over large areas is expected to improve compared to predictions using SAR data alone. 171 

1.2 Geostatistics 172 

Geostatistics provide techniques to estimate variables that vary in space (Curran & Atkinson, 1998). 173 

Semivariograms are typically used to estimate the degree of dissimilarity (or variance) between multiple 174 

pairs of measurements and provides information on the scale and pattern of the spatial variance (Curran, 175 

1988, Journel & Huijbregts, 1978). In order to describe the semivariogram and apply it in further analysis, 176 

it is necessary to fit a mathematical model from which insights can be gained into the overall variance in 177 

the scene (Webster, 1985). Generally, the variance that is spatially independent can be estimated by the 178 

nugget, the sill can provide an indication of the maximum semivariance observed where there is no spatial 179 

autocorrelation, and the range represents the lag value (95% of the maximum variance or above) where 180 

semivariance reaches a maximum    181 

Ordinary kriging, the most common form of kriging (Krige, 1966), is a spatial modeling technique that 182 

provides optimal and unbiased estimates of unknown vales from sample data (Curran & Atkinson, 1998). 183 
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The technique is only appropriate when there is spatial dependence in the data; it provides estimates by 184 

assigning weights to each sample data point that is in close proximity to the area of interest.  Key to this 185 

process is that the weights are determined from the spatial dependence represented by the semivariogram 186 

(Curran & Atkinson, 1998); sample data closer to the estimate are given more weight because they are 187 

more likely to be similar to the unknown value. 188 

Co-kriging extends ordinary kriging to account for more variables and is typically more appropriate when 189 

the primary variable to be estimated (in this study, forest biomass) is under-sampled with respect to the 190 

secondary variable (in this study, the radar observations) (Curran & Atkinson, 1998). Similar to kriging, 191 

estimates are calculated using the autocorrelation of the primary variable; however, co-kriging also 192 

exploits the crosscorrelation of the primary and secondary variable. If the two variables are cross-193 

correlated (i.e., the spatial variability of the primary variable is also correlated with the spatial variability 194 

of the secondary variable), this information can be used to make predictions of the primary variable 195 

(Bivand, Pebesma, & Gómez-Rubio, 2008). Isotopic co-kriging requires that the data for the primary and 196 

auxiliary variables be measured at all sampling locations. Heterotropic co-kriging requires that only some 197 

of the sample points contain measurements of both primary and secondary variables (Wackernagel 2003). 198 

In cases involving remote sensing data, collocated co-kriging is a particular heterotopic situation and is 199 

applied when auxiliary variables are measured at all locations but the primary variable is available at only 200 

a few locations. 201 

Regression kriging is a hybrid approach that combines either a simple or multiple linear regression model 202 

with kriging of the regression residuals (Goovaerts, 1997). The value of a target variable at some location 203 

can be modeled as a sum of deterministic (obtained from the regression) and stochastic (obtained from 204 

kriging of the residuals) components. 205 

2. Methodology 206 

2.1 Study Area  207 

The study site is an intensively managed forest area dominated by Douglas-fir (Pseudotsuga menziesii 208 

(Mirb.) Franco) and western red cedar (Thuja plicata Donn ex D. Don) located on Vancouver Island, 209 

British Columbia, Canada. The area covers a 5 km by 5 km area around Oyster River (UTM Zone 10, 210 

NAD83: Upper left 329450E, 5531300N; Lower right 337550E, 5523500N), with a mean elevation of 211 

240 m, and a range of 120 m to 460 m above sea level (Fig. 1). The site consists of predominately second-212 

growth coniferous forest comprised  of 70% Douglas-fir, 17% western red cedar, 3% western hemlock 213 

(Tsuga heterophylla (Raf.) Sarg.), and 10% red alder (Alnus rubra Bong.). It is highly productive 214 
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compared to most of Canada, with rotation cycles as short as 60 years (Morgenstern et al., 2004). The 215 

stand density ranges from 350 to 1200 stems ha-1, with tree heights ranging between 10.0 and 35.0 m and 216 

diameter at breast height (dbh) ranging between 12.0 cm and 31.2 cm (Tsui et al., 2012).  The present 217 

forest is the result of harvest of the original forest from 1920 to 1950. Much of the area did not regenerate 218 

naturally (Goodwin, 1937) and, as a result, some of the area was planted starting in the late 1940s, with 219 

second growth harvesting and subsequent planting beginning in 1989. The harvesting history has resulted 220 

in a patchwork of second growth stands at different successional stages. The site is located within the dry 221 

maritime Coastal Western Hemlock biogeoclimatic subzone (CWHxm), of the biogeoclimatic ecosystem 222 

classification (BEC) system of British Columbia.  This subzone is characterized by cool summers and 223 

mild winters, with mean annual precipitation of 1,500 mm and a mean annual temperature of 9.1 0C 224 

(Meidinger & Pojar, 1991). A large portion of the forest was commercially harvested in the 2011 winter 225 

and replanted during the 2011 spring subsequent to the imagery used in this study.. 226 

 227 

2.2 Data: Biomass map 228 

The spatially explicit predictions of above-ground biomass used as the reference data set was estimated 229 

by Tsui et al. (2012) from plot-based field data and small-footprint discrete-return LiDAR. LiDAR data 230 

were acquired in August 2008 at a mean flying altitude of 2,303m with a bald earth density of between 231 

0.4 - 1.0 points m-2 and a non-ground density of 0.7 points m-2.  Standard plot-based LiDAR metrics (i.e., 232 

mean first return height, standard deviation, coefficient of variation, percentiles of first return heights, 233 

percentages of first returns above 2m, and percentage of first returns above the first return mean height) 234 

were computed. Biomass, species and age class were determined using 18 fixed-area field plots 235 

measuring 30 m x 30 m, with all trees greater than 10 cm dbh within the plot measured for dbh, height, 236 

height to the base of the live crown, and species.  Above-ground biomass for each tree was calculated 237 

using species-specific biomass equations and then summed to obtain plot-level biomass values.  The final 238 

LiDAR-based biomass model had a root mean squared error (RMSE) of 56.43 Mg ha-1, a relative RMSE 239 

of 18%, and an adjusted R2 of 0.82. 240 

Mapping of the empirical model produced a spatially explicit above-ground biomass image at a spatial 241 

resolution of 20 m, which matched the spatial resolution of the coarsest radar co-variable used in this 242 

study (Fig. 1).  Final biomass values ranged from 0 to 1100 Mg ha-1 with a mean biomass value of 304 Mg 243 

ha-1. 244 
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2.3 Data: Radar  245 

Co-incident to the LiDAR-derived biomass data, five radar images were acquired over the study site.  246 

Three Fine Beam Dual polarization (FBD) images acquired by the Phased Array type L-band Synthetic 247 

Aperture Radar (PALSAR) instrument on the Advanced Land Observing Satellite (ALOS), and two 248 

RADARSAT-2 Quad-pol Fine Beam images. All data sets were stored in single-look complex (SLC) 249 

format (Table 1). 250 

PALSAR and RADARSAT-2 SLC data were multi-looked using factors of 2 and 8, and factors of 1 and 2 251 

respectively, for range and azimuth directions and then calibrated to obtain SAR backscatter images. 252 

Radiometric, geometric, and terrain correction of the ALOS PALSAR and RADARSAT-2 data were 253 

performed using the Alaska Satellite Facility (ASF) MapReady software package. Following radiometric 254 

and geometric correction, conversion from sigma nought to gamma nought, which normalizes the radar 255 

cross-section, was completed for an improved representation of backscatter values for distributed targets 256 

such as forests. In addition to backscatter images, InSAR coherence magnitudes were also calculated 257 

using PALSAR and RADARSAT-2 complex image pairs (i.e., two radar images with similar orbits with 258 

amplitude and phase information). By measuring the difference in the phase of the microwave pulses after 259 

interacting with an object (e.g., a tree branch), the coherence of the phase can be calculated. As the phase 260 

difference or phase shift increases, mainly caused by random fluctuations (e.g., wind induced 261 

movements), the coherence decreases within a range from 1 to 0. Since vegetation causes signal 262 

coherence to decrease because the exact point of scattering and the travel path of the signals vary between 263 

the radar scenes, coherence is highest for open areas and decreases as vegetation increases (Rosen et al., 264 

2000). Lastly, the RADARSAT-2 data were down-sampled to a spatial resolution of 20 m and reduced to a 265 

spatial subset equivalent to the extent of the estimated above-ground biomass data set. For a more 266 

complete description of the radar processing steps completed, see Tsui et al. (2012). 267 

2.4 Above-ground biomass sampling 268 

Sample forest biomass values were extracted from the processed biomass data set for the study area. 269 

Sampling of these data consisted of both a north-south and east-west continuous transect with each 270 

transect line consisting of a data point every 20 m.  Transect lines were separated by three distances, 500 271 

m, 1000m, or 2000m, with a total number of points of n= 5,540; n= 3,020; and n = 1,512 respectively 272 

(Fig. 2). Histograms of the three forest biomass data sets exhibited a strong positive skew. Therefore each 273 

biomass data set was normalized using a log transformation followed by a normal score transformation to 274 

obtain a sample distribution closely resembling a standard normal distribution (Olea, 1977)  before 275 
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geostatistical analyses were performed. After modeling, all predicted above-ground biomass values were 276 

transformed back to the original units (i.e., Mg h-1) before evaluating the various models.  277 

2.5 Biomass modeling 278 

Above-ground biomass, derived from LiDAR height measurements, was used as the primary variable, and 279 

backscatter intensities and coherence magnitudes from ALOS PALSAR and RADARSAT-2 data were 280 

used as the wall-to-wall co-variables. The PALSAR and RADARSAT-2 radar backscatter coefficients and 281 

coherence magnitudes were also transformed to normalize the data prior to use in the estimation 282 

processes. Sampling of the primary variable was performed to simulate airborne profiling LiDAR 283 

observations. Co-kriging, regression kriging, and regression co-kriging were performed using algorithms 284 

found in the GSTAT package designed for R (Pebesma, 2004). 285 

For each biomass data set, created from the three sampling strategies, the most suitable mathematical 286 

model was determined by fitting the most common semivariogram models to each of the estimated 287 

semivariograms  using weighted least squares and evaluating the quality of fit through the residual sum of 288 

squared errors. To support the process of predicting biomass values at non-sampled locations, wall-to-wall 289 

coverage of the secondary variable was included in the kriging process, as illustrated in Fig. 3 for 1000 m 290 

transects. For co-kriging, a model semivariogram was also calculated for the secondary variable 291 

(PALSAR HV polarization), as well as a cross-semivariogram describing the cross-correlation between 292 

the primary and secondary variables. Even though it is possible to model any number of co-variables, it 293 

has been shown that co-kriging results are virtually identical to kriging outputs when spatial cross-294 

correlation between the primary and secondary variable is minimal or absent (Wackernagel, 2003).  . Care 295 

was taken when developing the three semi-variogram models required for each co-kriging operation to 296 

ensure that each model conformed to the linear model of co-regionalization (i.e., all models (direct and 297 

cross) have the same shape and range, but have different sills and nuggets to ensure that the covariance 298 

matrices were always positive) (Goovaerts, 1997). 299 

A three stage process was followed to obtain predictions from regression kriging and regression co-300 

kriging. For regression kriging, the deterministic part of the predictions was performed first by regressing 301 

above-ground biomass on the various radar data sets using ordinary least squares to get an estimate of 302 

forest biomass from the radar variables. Secondly, residuals from the ordinary least squares regression 303 

were interpolated across the study area using ordinary kriging.  Lastly, the deterministic and stochastic 304 

components were combined together to obtain the final predicted value. 305 
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To determine which radar variables were significant for predicting biomass, a stepwise multiple 306 

regression analysis was employed using the regsubsets function from the Leaps package (Leaps 2009) 307 

with a significance level of α = 0.05. To interpolate the regression residuals for the study area, a model 308 

semivariogram was determined following the same procedures outlined for co-kriging. The difference 309 

between regression kriging and regression co-kriging primarily lies in the interpolation of the regression 310 

residuals. Instead of interpolating the residuals using ordinary kriging, regression co-kriging uses a 311 

secondary variable for interpreting the residuals. We selected PALSAR HV backscatter as the secondary 312 

variable for regression co-kriging since this data set had the highest correlation with forest biomass. 313 

2.6 Model Evaluation 314 

Discrepancies between actual and predicted forest biomass were evaluated based on the validation sample 315 

outlined in Fig. 2(d). The validation data consisted of 580 forest biomass points extracted from the 316 

reference above-ground biomass data set. These points were outside the training data set used in the 317 

kriging process. Following Alsamamra et al. (2009), Meng et al. (2009), and Murphy and Katz (1985) 318 

three different and common indices were used to assess the predictions: root mean squared error (RMSE), 319 

mean absolute error (MAE), and mean error (ME).The RMSE and MAE measure the average precision of 320 

the prediction and provide an indication of how close the predictions are to the observed values. The ME 321 

provides an indication of bias in the predictions and it should be close to zero for unbiased methods. 322 

Lastly, t-tests were used to compare whether the residuals differed statistically from one another for each 323 

of the distances between the transects and modeling techniques. 324 

3. Results 325 

Semivariograms were generated to assess the spatial properties of the sampled above-ground biomass, 326 

biomass residuals, and the radar co-variable data sets. For above-ground biomass, all sample intervals 327 

showed similar spatial dependence with similar shape and nugget, partial sill, and range parameters.  328 

Similar results were found for the biomass residuals and the cross-semivariogram data set. For the above-329 

ground biomass and biomass residual data, nugget variance increased as sample interval increased from 330 

500 m to 2000m. The distance where maximum semivariance was observed ranged from 328 m to 374 m 331 

and 313 m to 324 m for the above-ground biomass and residuals, respectively. The cross-semivariograms 332 

between the above-ground biomass and PALSAR HV polarization showed higher nugget variance and a 333 

range distance from 324 m to 374 m.  Less spatial autocorrelation was observed between biomass and 334 

PALSAR HV polarization, while spatial autocorrelation was evident for the biomass and residual datasets.  335 

The Whittle-Matern model had the best fit for all cases and was selected as the theoretical mathematical 336 
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model for the use in spatial predictions.  Example model semivariograms for each variable for the 1000 m 337 

sampling interval are provided in Fig. 4 and Table 2. 338 

Point pairs for each variable were graphed to assess if any global trends existed. No obvious trend was 339 

found among the individual variables.  Anisotropy was also checked. Similar spatial dependence and 340 

semi-variance for all sample intervals at directions of 0, 45, 90, 135, 180, 225, 270, and 315 degrees were 341 

found. 342 

3.1 Biomass Estimates 343 

Above-ground biomass was underestimated in all cases.  Regression kriging at a sample interval of 500 m 344 

showed the smallest RMSE and MAE at 203.9 Mg ha-1 and 131.6 Mg ha-1, respectively.  The ME showed 345 

an average bias of -14.0 Mg ha-1. Moderate correlation (r = 0.68) was observed between the predicted and 346 

reference above-ground biomass. Predictions using regression co-kriging at a sample interval of 2000 m 347 

resulted in the highest RMSE and MAE values at 238.2 Mg ha-1 and 164.6 Mg ha-1, respectively. ME also 348 

was highest, averaging -37.4 Mg ha-1. Correlation between the observed and reference above-ground 349 

biomass was also lower (r = 0.52) (Table 3).  Regression kriging generally showed the lowest RMSE, 350 

MAE, and ME for all distances between the transects. As expected, biases in above-ground biomass 351 

predictions decreased as distance between the transects decreased. 352 

Histograms of above-ground biomass (Fig. 5) were used to visualize the accuracy of the predicted values.  353 

Deviations of the predicted above-ground biomass histogram from the reference histogram provided 354 

further insight into where the majority of the prediction bias occurred.  As indicated by ME values, all 355 

kriging methods and transect widths underestimated the biomass, with the majority of the deviations 356 

occurring at higher biomass levels. Mean predicted above-ground biomass for all methods ranged from 357 

255 to 278 Mg ha-1, a negative deviation of 49 Mg ha-1 to 26 Mg ha-1 from the mean above-ground 358 

biomass of the reference biomass data set.  The histograms also showed that the predicted biomass was 359 

overestimated for low biomass areas. 360 

Improvements can be seen with shorter transect intervals (e.g. larger samples) (Fig. 6). None of the 361 

geostatistical methods predicted above-ground biomass above approximately 1250 Mg ha-1, with the 362 

exception of co-kriging which had an outlier above 1400 Mg ha-1. 363 

Although the range in prediction errors was large for each case, the majority of the deviations between 364 

predicted and reference above-ground biomass were between -200 Mg ha-1 and 200 Mg ha-1 (Fig. 7). The 365 

variance in residuals decreased as sampling frequency increased.  There was not much change in variance 366 
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among the geostatistical methods within the same sampling frequency. Differences in mean prediction 367 

errors were not significant among the methods. Co-kriging showed no significant change in mean 368 

predicted errors between sampling distances.  While no differences were observed between the 500 and 369 

1000 m for regression kriging and regression co-kriging (n = 580; α = 0.05; p-value = 0.15 and 0.50 370 

respectively), significant differences were observed between the 1000 and 2000 m width (n = 580; α = 371 

0.05; p-value = 1.2 x 10-3 and 5.7 x 10-4 respectively), and the 500 and 2000 m width (n = 580; α = 0.05; 372 

p-value = 3.7 x 10-6 and 7.2 x 10-6 respectively). 373 

3.2 Biomass Mapping Models 374 

The maps produced captured the overall variation in above-ground biomass in the study area (Fig. 1 vs. 375 

Fig. 8). As expected, increased sampling frequency provided better definition of the variation. Artifacts 376 

were observed in the co-kriging maps and were more pronounced at the wider sampling distances.  The 377 

regression kriging and regression co-kriging maps were quite similar and the artifacts present in the co-378 

kriging maps were virtually indistinguishable. Figure 9 provides an indication of where the error in the 379 

prediction is greatest, computed as the difference between the predicted and the reference biomass 380 

dataset. As expected the co-krigging difference maps (top line) show, in general, an over prediction of 381 

biomass amounts compared to the reference. Some spatial structure is observable in the difference maps 382 

however with areas of high biomass under predicted and areas of low biomass over predicted. The 383 

regression krigging and co-krigging difference maps (middle and bottom row) show less overall error and 384 

less spatial structure, consistent with improved overall prediction. 385 

4. Discussion 386 

We found lower errors in predicted biomass with less distance between adjacent sampling transects. There 387 

were some differences among the kriging methods employed and sampling strategies. Systematic 388 

sampling at 1000 m intervals together with regression kriging was a good compromise between ease of 389 

use, increase in accuracy, and cost of obtaining LiDAR data for this study area. The accuracy of all 390 

predictions was affected by the low correlation between the LiDAR-derived above-ground biomass 391 

estimates and the radar data, which was reflected in the cross-semivariogram by the high nugget and 392 

partial sill value. Regardless of the sampling distance between transects, range values at which no spatial 393 

dependence was detected were consistently less than 400 m. As a result, the semi-variogram had little 394 

influence on the estimation process beyond this distance. This resulted in a smoothing effect, particularly 395 

evident when co-kriging was employed. This smoothing effect was less evident in regression kriging and 396 

regression co-kriging due to the deterministic portion of these models. 397 
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The tendency for kriging to underestimate large values and overestimate small values is supported by 398 

previous studies (Hudak et al., 2002 and Meng et al., 2009). This tendency may help account for the 399 

inflated RMSE values, given that large errors are given disproportional weight because of the squaring of 400 

the differences. It is possible to correct for backtransformation bias which has been shown to reduce 401 

RMSE in some cases (Hudak et al 2006). In our analysis of the individual plot data which resulted in the 402 

biomass map used in this study, by Tusi et al (2012), this backtransformation bias was less than 9 Mg h-1 403 

indicating it is not contributing significantly to the errors in these models.Ordinary kriging and co-kriging 404 

are the best approaches in cases where spatial interpolation is required, since kriging coefficients rely on 405 

the spatial variation between sample points (Hudak et al., 2002). However, regression kriging is better 406 

suited for spatial extrapolation, since the main kriging coefficients only depend on the correlation 407 

between the dependent variable and independent variables (Meng et al., 2009). The techniques and 408 

sampling framework presented in this study are relevant to large area above-ground biomass assessments. 409 

Due to the asymptotic relationships between biomass and radar backscatter, and the high variance 410 

between the two, integrating direct radar backscatter and LiDAR data using a spatial modeling approach 411 

is likely more suited for large area mapping of moderate forest biomass levels where correlation would be 412 

expectedly higher. Integrating radar backscatter and LiDAR to estimate areas with high biomass could 413 

possibly benefit from aspatial methods as shown by Tsui et al. (2012). However, such an approach is most 414 

suitable for smaller areas where both LiDAR and radar data are available at all locations. In the past five 415 

years a number of additional modeling frameworks have become more popular such as K-NN imputation 416 

methods and random forest techniques. These techniques may offer some additional predictive power to 417 

this type of analysis; however neither explicitly attempt to model the observed spatial correlation in the 418 

data as geo-statistical based approaches do. As stated by Hudak et al. (2002) most remote sensing analysis 419 

is afforded the luxury of sampling the entire population, reducing the need for spatial interpolation 420 

strategies such as discussed in this paper. The widespread use of LiDAR in a sampling framework 421 

however demonstrates there is a continual examination of these geo-statistical methods is needed to reveal 422 

insights and to maximise the value of these datasets. 423 

 424 

Given that tree heights are known to be highly correlated to biomass, the potential for integrating LiDAR 425 

with wall-to-wall canopy heights derived from Polarimetric InSAR (Pol-InSAR) or InSAR is high.  By 426 

virtue of the properties of radar, InSAR heights usually correspond to the location of the scattering phase 427 

center, which typically underestimates actual canopy heights (Balzter, Luckman, Skinner, Rowland, & 428 

Dawson, 2007). Therefore, integrating InSAR canopy height measurements with highly accurate LiDAR 429 

observations is one way to obtain higher accuracy. The planned suite of future satellites (NASA’s 430 
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Deformation, Ecosystem, Structure, and Dynamics of Ice – Radar (DESDynI-R) L-band mission, Japan’s 431 

ALOS-2 L-band Mission, and ESA’s BIOMASS P-band mission), in addition to advancements in SAR 432 

interferometric processing, such as multiple baseline InSAR (Neumann, Ferro-Famil, & Reigber, 2010), 433 

and SAR tomography (Reigber & Moreira, 2000), should allow for future operational integration of SAR 434 

and LiDAR data. Additionally, new means of optical image understanding and processing are providing 435 

novel opportunities for composting that may mitigate the negative impacts of cloud cover (Hansen & 436 

Loveland, 2012). 437 

Regardless of which secondary variable is selected, highly accurate assessments of forest biomass for 438 

large areas will likely require integration with LiDAR observations, whether airborne or spaceborne. 439 

Large area coverage of LiDAR requires a sampling framework to capture the variation and structural 440 

characteristics of the forested area (Wulder et al., 2012). The cost/benefit of such a sampling framework 441 

can be illustrated by performing a cost comparison for this study area using the approximate costs in 442 

Wulder  et al. (2008). For a total area of 25 km2, complete airborne LiDAR coverage to obtain a posting 443 

size of 30 cm would cost approximately $1000 CAD per km2 ($25,000 CAD total). Implementing a 444 

sampling framework incorporating continuous profiling transects with a swath size of 100 m at the same 445 

posting size for every 1000 meters would cost approximately $6,000 CAD, a quarter of the cost of full 446 

LiDAR coverage. However, direct one-to-one comparison of these data is problematic as the data differ in 447 

quality and information content. If accurate tree or stand-level height information is required, LiDAR data 448 

may not be considered expensive. However, if lower costs are needed, while achieving reasonably 449 

accurate depiction of stand height or biomass, a sampling framework and modeling approach may be 450 

preferred. 451 

Cost savings generated from a LiDAR sampling framework and a multi-sensor approach would 452 

conceivably benefit activities like assessing above-ground carbon stocks and carbon stock change, 453 

particularly for tropical areas where forest lands are regularly cloud covered and are inaccessible.  454 

Strategies for implementing a LiDAR sampling framework for such a scenario could involve several 455 

general steps: 456 

1.  Stratify the land primarily into forest land (FL) and non-forest land (NFL) using pre-existing land 457 

cover data if available (Frazer et al., 2011).  If such land cover data are not available, separation of 458 

broad land cover types can be obtained through the use of SAR as demonstrated by 459 

Hoekman et al. (2010) for the island of Borneo. 460 
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2. Acquire space-borne radar at the spatial resolution required to meet information need and use land 461 

cover data to mask-out (i.e., remove) areas identified as NFL .(similar to approaches described in 462 

Tsui et al., (2012) 463 

3. Establish a series of sample ground plots for all areas stratified as FL and ensure the complete range 464 

of biomass is captured to characterize the population.  Then, calculate above-ground biomass 465 

through the use of appropriate allometric equations (Hawbaker et al. 2009). The number of ground 466 

plots will depend on the size of the study area, but also must consider the spatial distribution of 467 

individual forest types and the with-in type variability (Wulder et al., 2012).  A complete discussion 468 

is not provided here, please refer to Brown (1999) and White et al., (2013) for details. 469 

4. Collect airborne LiDAR data to intersect each of the sample ground plots. Regress calculated above-470 

ground biomass data with the LiDAR measurements to obtain sample above-ground biomass 471 

transects. A concise discussion on the use of profiling LiDAR as a sampling tool is provided in 472 

Nelson et al. (2003). Because of the nature of how airborne LiDAR data are collected (i.e., always 473 

linear) Wulder et al. (2012) suggests possible sampling designs that can be used. 474 

5. Estimate and model semi-variograms; from the LiDAR transects and the SAR data and predict 475 

above-ground biomass for un-sampled locations using regression kriging. 476 

6. Complete quantitative validation to compare predicted values to actual values.  Reference data may 477 

consist of new ground plot data or an independent subset of LiDAR transects not used in the 478 

modeling (White et al., 2013). 479 

5. Conclusion 480 

In this research we focused on the predictive accuracy of three kriging techniques to estimate above-481 

ground biomass at a spatial resolution of 20 m. We demonstrated how samples of forest biomass, derived 482 

from airborne LiDAR and ground plot data, can be combined with wall-to-wall spaceborne radar 483 

observations to achieve spatially continuous estimates. In this integrative framework, spatial modeling 484 

methods provide an effective means to overcome challenges in acquiring large area biomass assessments. 485 

Although improvements can be made through additional research, LiDAR and space-borne radar data will 486 

likely prove useful where comprehensive national forest inventories do not exist or are too expensive to 487 

implement, and where frequent cloud cover make other methods of quantifying forest biomass difficult. 488 

The wall-to-wall mapping opportunity enabled through integrating with radar data provides additional 489 

value to existing data and practices. 490 
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It can be seen from the example provided in this study that accurate large-area biomass maps are possible, 491 

provided appropriate samples of LiDAR-based biomass area are available and these samples represent the 492 

population statistically and geographically. Next steps would be to compare this method to the more 493 

common “combine and assign” or “stratify and multiply” approaches (Goetz et al., 2009) and examine the 494 

errors associated with each of these approaches. 495 

Acknowledgements 496 

We thank Prof. Andy Black and staff for allowing us access to the FLUXNET-Canada site and 497 
Timberwest and Island Timberlands for providing access to their forest inventories and access to their 498 
private lands.  We also thank Colin Ferster, Jean-Simon Michaud, and Martin van Leeuwen (UBC) for 499 
field assistance.  Components of this study were funded by NSERC Engage and an NSERC Discovery 500 
grant to Coops. All RADARSAT-2 data were provided through the Canadian Space Agency’s 501 
RADARSAT-2 Science and Operational Applications Research Education Initiative (SOAR-E). We are 502 
grateful to the two reviewers for comments and advice on the manuscript. 503 

 504 

References 505 

Ahrends, A., Burgess, N. D., Milledge, S. A. H., Bulling, M. T., Fisher, B., Smart, J. C. R., Lewis, S. L. 506 
(2010). Predictable waves of sequential forest degradation and biodiversity loss spreading from an 507 
African city. Proceedings of the National Academy of Sciences, 107(33), 14556–14561. 508 

Alsamamra, H., Ruiz-Arias, J. A., Pozo-Vázquez, D., & Tovar-Pescador, J. (2009). A comparative study 509 
of ordinary and residual kriging techniques for mapping global solar radiation over southern Spain. 510 
Agricultural and Forest Meteorology, 149(8), 1343–1357. 511 

Ardö, J. (1992). Volume quantification of coniferous forest compartments using spectral radiance 512 
recorded by Landsat Thematic Mapper. International Journal of Remote Sensing, 13(9), 1779–1786 513 

Balzter, H., Luckman, A., Skinner, L., Rowland, C., & Dawson, T. (2007). Observations of forest stand 514 
top height and mean height from interferometric SAR and LiDAR over a conifer plantation at 515 
Thetford Forest, UK. International Journal of Remote Sensing, 28(6), 1173–1197. 516 

Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W., & Courchamp, F. (2012). Impacts of climate 517 
change on the future of biodiversity. Ecology Letters, 15(4), 365–377. 518 

Bivand, R. S., Pebesma, E. J., & Gómez-Rubio, V. (2008). Applied spatial data analysis with R. New 519 
York: Springer. 520 

Brown, S. (1999). Guidelines for inventorying and monitoring carbon offsets in forest-based projects. 521 
Arlington, VA: Winrock International. Retrieved from 522 
http://www.winrock.org/ecosystems/files/Guidelines_for_Inventorying_and_Monitoring.pdf 523 
(Accessed 20 December, 2012) 524 



 

18 

Chapin, F. S., McGuire, A. D., Ruess, R. W., Hollingsworth, T. N., Mack, M. C., Johnstone, J. F., Taylor, 525 
D. L. (2010). Resilience of Alaska’s boreal forest to climatic change. Canadian Journal of Forest 526 
Research, 40(7), 1360–1370. 527 

Coops, N. C., & Waring, R. H. (2011). Estimating the vulnerability of fifteen tree species under changing 528 
climate in Northwest North America. Ecological Modelling, 222(13), 2119–2129. 529 

Corbera, E., Soberanis, C. G., & Brown, K. (2009). Institutional dimensions of Payments for Ecosystem 530 
Services: An analysis of Mexico’s carbon forestry programme. Ecological Economics, 68(3), 743–531 
761. 532 

Curran, P. J. (1988). The semivariogram in remote sensing: An introduction. Remote Sensing of 533 
Environment, 24(3), 493–507. 534 

Curran, P. J., & Atkinson, P. M. (1998). Geostatistics and remote sensing. Progress in Physical 535 
Geography, 22(1), 61 –78. 536 

Dobson, M. C., Ulaby, F. T., LeToan, T., Beaudoin, A., Kasischke, E. S., & Christensen, N. (1992). 537 
Dependence of radar backscatter on coniferous forest biomass. IEEE Transactions on Geoscience and 538 
Remote Sensing, 30(2), 412–415. 539 

Duncanson, L., Niemann, K., & Wulder, M. (2010). Integration of GLAS and Landsat TM data for 540 
aboveground biomass estimation. Canadian Journal of Remote Sensing, 36(2), 129–141. 541 

Eswaran, H., Van Den Berg, E., & Reich, P. (1993). Organic carbon in soils of the world. Soil Science 542 
Society of America Journal, 57(1), 192–194. 543 

Franklin, S. E., Lavigne, M. B., Wulder, M. A., & Stenhouse, G. B. (2002). Change detection and 544 
landscape structure mapping using remote sensing. The Forestry Chronicle, 78(5), 618–625. 545 

Frazer, G.W., Magnussen, S., Wulder, M.A., Niemann, K.O. (2011). Simulated impact of sample plot size 546 
and co-registration error on the accuracy and uncertainty of LiDAR-derived estimates of forest stand 547 
biomass. Remote Sensing of Environment, 115: 636–649. 548 

Goetz, S. J., Baccini, A., Laporte, N. T., Johns, T., Walker, W., Kellndorfer, J., Sun, M. (2009). Mapping 549 
and monitoring carbon stocks with satellite observations: a comparison of methods. Carbon Balance 550 
and Management, 4, 2. 551 

Goodwin, G. (1937). Regeneration study on the logged-off lands of the Comox Logging and Railway 552 
Company Oyster River forest survey. Vol. R 72, Surv. File 0124780. B. C. Forest Service, Canada. 553 

Goovaerts, P. (1997). Geostatistics for natural resources evaluation. New York: Oxford University Press. 554 

Hansen, M. C., & Loveland, T. R. (2012). A review of large area monitoring of land cover change using 555 
Landsat data. Remote Sensing of Environment, 122, 66–74. 556 

Hawbaker, T.J., Keuler, N.S., Lesak, A.A., Gobakken, T., Contrucci, K., Radeloff, V.C. (2009). Improved 557 
estimates of forest vegetation structure and biomass with Lidar-optimized sampling design. Journal of 558 
Geophysical Research, 114: doi:10.1029/2008JG000870. 559 



 

19 

Hoekman, D. H., Vissers, M. A. M., & Wielaard, N. (2010). PALSAR wide-area mapping of Borneo: 560 
Methodology and map validation. IEEE Journal of Selected Topics in Applied Earth Observations and 561 
Remote Sensing, 3(4), 605–617. 562 

Hudak, A. T., Lefsky, M. A., Cohen, W. B., & Berterretche, M. (2002). Integration of lidar and Landsat 563 
ETM+ data for estimating and mapping forest canopy height. Remote Sensing of Environment, 82(2-564 
3), 397–416. 565 

Hyde, P., Dubayah, R., Walker, W., Blair, J. B., Hofton, M., & Hunsaker, C. (2006). Mapping forest 566 
structure for wildlife habitat analysis using multi-sensor (LiDAR, SAR/InSAR, ETM+, Quickbird) 567 
synergy. Remote Sensing of Environment, 102(1-2), 63–73. 568 

Hyyppä, J., Yu, X., Hyyppä, H., Vastaranta, M., Holopainen, M., Kukko, A., Alho, P. (2012). Advances in 569 
forest inventory using airborne laser scanning. Remote Sensing, 4(5), 1190–1207. 570 

Imhoff, M. L. (1995). Radar backscatter and biomass saturation: ramifications for global biomass 571 
inventory. IEEE Transactions on Geoscience and Remote Sensing, 33(2), 511–518. 572 

IPCC. (2007). Climate change 2007: synthesis report (AR7) (p. 104). Geneva: Intergovernmental Panel 573 
on Climate Change. 574 

Journel, A. G., & Huijbregts, C. J. (1978). Mining geostatistics. London: Academic Press. 575 

Kangas, A., Grove, J. H., & Scott, C. T. (2006). Forest inventory: methodology and applications. In A. 576 
Kangas & M. Maltamo (Eds.). Netherlands: Spinger. 577 

Kasischke, E. S., Tanase, M. A., Bourgeau-Chavez, L. L., & Borr, M. (2011). Soil moisture limitations on 578 
monitoring boreal forest regrowth using spaceborne L-band SAR data. Remote Sensing of 579 
Environment, 115, 227–232. 580 

Kimberly, C. M., & Curran, L. M. (2009). REDD pilot project scenarios: are costs and benefits altered by 581 
spatial scale? Environmental Research Letters, 4(3), 031003. 582 

Krige, D. G. (1966). Two-dimensional weighted moving average trend surfaces for ore-evaluation. 583 
Journal of the South African Institute of Mining and Metallurgy, 66, 13–38. 584 

Le Toan, T., Beaudoin, A., Riom, J., & Guyon, D. (1992). Relating forest biomass to SAR data. IEEE 585 
Transactions on Geoscience and Remote Sensing, 30(2), 403–411. 586 

Lewis, S. L., Lopez-Gonzalez, G., Sonké, B., Affum-Baffoe, K., Baker, T. R., Ojo, L. O., Wöll, H. (2009). 587 
Increasing carbon storage in intact African tropical forests. Nature, 457(7232), 1003–1006. 588 

Li, Y., Andersen, H.-E., & McGaughey, R. (2008). A comparison of statistical methods for estimating 589 
forest biomass from light detection and ranging data. Western Journal of Applied Forestry, 23, 223–590 
231. 591 

Lutz, D. A., Washington-Allen, R. A., & Shugart, H. H. (2008). Remote sensing of boreal forest 592 
biophysical and inventory parameters: a review. Canadian Journal of Remote Sensing, 34(S2), 286–593 
313. 594 



 

20 

Meidinger, D. V., & Pojar, J. (1991). Ecosystems of British Columbia. Victoria: Research Branch, 595 
Ministry of Forests. 596 

Meng, Q., Cieszewski, C., & Madden, M. (2009). Large area forest inventory using Landsat ETM+: A 597 
geostatistical approach. ISPRS Journal of Photogrammetry and Remote Sensing, 64(1), 27–36. 598 

Metsaranta, J. M., Dymond, C. C., Kurz, W. A., & Spittlehouse, D. L. (2011). Uncertainty of 21st century 599 
growing stocks and GHG balance of forests in British Columbia, Canada resulting from potential 600 
climate change impacts on ecosystem processes. Forest Ecology and Management, 262(5), 827–837. 601 

Miles, L., & Kapos, V. (2008). Reducing Greenhouse Gas Emissions from Deforestation and Forest 602 
Degradation: Global Land-Use Implications. Science, 320(5882), 1454–1455. 603 

Mitchard, E. T. A., Saatchi, S. S., White, L. J. T., Abernethy, K. A., Jeffery, K. J., Lewis, S. L. Meir, P. 604 
(2012). Mapping tropical forest biomass with radar and spaceborne LiDAR in Lopé National Park, 605 
Gabon: overcoming problems of high biomass and persistent cloud. Biogeosciences, 9(1), 179–191. 606 

Morgenstern, K., Black, A. T., Humphreys, E. R., Griffis, T. J., Drewitt, G. B., Cai, T., Livingston, N. J. 607 
(2004). Sensitivity and uncertainty of the carbon balance of a Pacific Northwest Douglas-fir forest 608 
during an El Niño/La Niña cycle. Agricultural and Forest Meteorology, 123(3-4), 201–219. 609 

Murphy, A. H., & Katz, R. W. (1985). Probability, statistics, and decision making in the atmospheric 610 
sciences. Boulder, Colorado: Westview Press. 611 

Nelson, R., Valenti, M. A., Short, A., & Keller, C. (2003). A multiple resource inventory of Delaware 612 
using airborne laser data. BioScience, 53(10), 981–992. 613 

Neumann, M., Ferro-Famil, L., & Reigber, A. (2010). Estimation of forest structure, ground, and canopy 614 
layer characteristics from multibaseline polarimetric interferometric SAR data. IEEE Transactions on 615 
Geoscience and Remote Sensing, 48(3), 1086 –1104. 616 

Olea, R. A. (1977). Measuring spatial dependence with semivariograms. Lawrence, Kansas: Kansas 617 
Geological Survey. 618 

Parmesan, C., & Yohe, G. (2003). A globally coherent fingerprint of climate change impacts across 619 
natural systems. Nature, 421(6918), 37–42. 620 

Pebesma, E. J. (2004). Multivariable geostatistics in S: the gstat package. Computers & Geosciences, 621 
30(7), 683–691. 622 

Ranson, K. J., & Sun, G. (1997). An evaluation of AIRSAR and SIR-C/X-SAR images for mapping 623 
northern forest attributes in Maine, USA. Remote Sensing of Environment, 59(2), 203–222. 624 

Reigber, A., & Moreira, A. (2000). First demonstration of airborne SAR tomography using multibaseline 625 
L-band data. IEEE Transactions on Geoscience and Remote Sensing, 38(5), 2142 –2152. 626 

Rignot, E., Way, J., Williams, C., & Viereck, L. (1994). Radar estimates of aboveground biomass in 627 
boreal forests of interior Alaska. IEEE Transactions on Geoscience and Remote Sensing, 32(5), 1117–628 
1124. 629 



 

21 

Rosen, P. A., Hensley, S., Joughin, I. R., Li, F. K., Madsen, S. N., Rodriguez, E., & Goldstein, R. M. 630 
(2000). Synthetic aperture radar interferometry. Proceedings of the IEEE, 88(3), 333–382. 631 

Roy, D. P., Ju, J., Mbow, C., Frost, P., & Loveland, T. (2010). Accessing free Landsat data via the Internet: 632 
Africa’s challenge. Remote Sensing Letters, 1(2), 111–117. 633 

Santoro, M., Beer, C., Cartus, O., Schmullius, C., Shvidenko, A., McCallum, I., Wiesmann, A. (2011). 634 
Retrieval of growing stock volume in boreal forest using hyper-temporal series of Envisat ASAR 635 
ScanSAR backscatter measurements. Remote Sensing of Environment, 115(2), 490–507. 636 

Sexton, J. O., Bax, T., Siqueira, P., Swenson, J. J., & Hensley, S. (2009). A comparison of lidar, radar, and 637 
field measurements of canopy height in pine and hardwood forests of southeastern North America. 638 
Forest Ecology and Management, 257(3), 1136–1147. 639 

Simard, M., Zhang, K., Rivera-Monroy, V. H., Ross, M. S., Ruiz, P. L., Castañeda-Moya, E., Rodriguez, 640 
E. (2006). Mapping height and biomass of mangrove forests in Everglades National Park with SRTM 641 
elevation data. Photogrammetric Engineering Remote Sensing, 72(3), 299–311. 642 

Solberg, S., Astrup, R., Gobakken, T., Nęsset, E., & Weydahl, D. J. (2010). Estimating spruce and pine 643 
biomass with interferometric X-band SAR. Remote Sensing of Environment, 114, 2353 – 2360. 644 

Stephens, B. B., Gurney, K. R., Tans, P. P., Sweeney, C., Peters, W., Bruhwiler, L., Denning, A. S. (2007). 645 
Weak northern and strong tropical Land carbon uptake from vertical profiles of atmospheric CO2. 646 
Science, 316(5832), 1732–1735. 647 

Tacconi, L., Mahanty, S., & Suich, H. (2010). Payments for environmental services, forest conservation 648 
and climate change: Livelihoods in the REDD? Cheltenham, UK: Edward Elgar Publishing. 649 

Thiel, C. J., Thiel, C., & Schmullius, C. C. (2009). Operational large-area forest monitoring in Siberia 650 
using ALOS PALSAR summer intensities and winter coherence. IEEE Transactions on Geoscience 651 
and Remote Sensing, 47(12), 3993–4000. 652 

Tsui, O. W., Coops, N. C., Wulder, M. A., Marshall, P. L., & McCardle, A. (2012). Using multi-frequency 653 
radar and discrete-return LiDAR measurements to estimate above-ground biomass and biomass 654 
components in a coastal temperate forest. ISPRS Journal of Photogrammetry and Remote Sensing, 655 
69(0), 121–133. 656 

Van de Sand, I. (2012). Payments for ecosystem services in the context of adaptation to climate change. 657 
Ecology and Society, 17(1), 11. 658 

Wackernagel, H. (2003). Multivariate geostatistics. New York: Springer. 659 

Webster, R. (1985). Quantitative Spatial Analysis of Soil in the Field. Springer-Verlag, 3, 1–70. 660 

White, J.C., M.A. Wulder, A. Varhola, M. Vastaranta, N.C. Coops, B.D. Cook. (2013). A best practices 661 
guide for generating forest inventory attributes from LiDAR. Version 1. Internal Report. Pacific 662 
Forestry Centre, Canadian Forest Service, Natural Resources Canada. Victoria, BC. Canada. 67p.  663 

Woods, M., Pitt, D., Penner, M., Lim, K., Nesbitt, D., Etheridge, D., & Treitz, P. (2011). Operational 664 
implementation of a LiDAR inventory in Boreal Ontario. The Forestry Chronicle, 87(4), 512–528. 665 



 

22 

Wulder, M A, Bater, C. W., Coops, N. C., Hilker, T., & White, J. C. (2008). The role of LiDAR in 666 
sustainable forest management. The Forestry Chronicle, 84(6), 807–826. 667 

Wulder, M A, & Seemann, D. (2003). Forest inventory height update through the integration of lidar data 668 
with segmented Landsat imagery. Canadian Journal of Remote Sensing, 29(5), 536–543. 669 

Wulder, M A., White, J. C., Nelson, R. F., Næsset, E., Ørka, H. O., Coops, N. C., Gobakken, T. (2012). 670 
Lidar sampling for large-area forest characterization: A review. Remote Sensing of Environment, 671 
121(0), 196–209. 672 

Xie, Y., Sha, Z., & Yu, M. (2008). Remote sensing imagery in vegetation mapping: a review. Journal of 673 
Plant Ecology, 1(1), 9–23. 674 

Zhu, K., Woodall, C. W., & Clark, J. S. (2012). Failure to migrate: lack of tree range expansion in 675 
response to climate change. Global Change Biology, 18(3), 1042–1052.  676 



 

23 

Tables and Figures 677 

Fig. 1. Location of study site and above-ground biomass values estimated by discrete-return 678 
LiDAR. 679 

Fig. 2. Sampling strategies tested and data volumes for each sample forest biomass data 680 
set: (a) 2000 m, (b) 1000 m, (c) 500m, and (d) validation points.  Shaded grey area 681 
represents the extent of the reference LiDAR derived above-ground biomass data set. 682 

Fig. 3. Image lattices showing characteristics of the experimental design for multivariate 683 
kriging.  Above-ground biomass transects simulate airborne profiling LiDAR flight lines 684 
at 1000 m intervals. 685 

Fig. 4. Experimental (black points) and model (black line) semivariograms for (a). above-686 
ground biomass; (b) PALSAR HV polarization, (c) cross-semivariogram, and (d) OLS 687 
residuals for the 1000m sampling interval. 688 

Fig. 5. Histograms of estimated above-ground biomass values (shaded in black) for all 689 
sampling strategies tested: (1) co-kriging (a,b,c); (2) regression kriging (a,b,c); and (3) 690 
regression co-kriging (a,b,c).  Histogram of reference biomass values provided as 691 
reference (shaded in grey, N= 80,025). 692 

Fig. 6. Scatterplots of estimated vs. observed above-ground biomass values for all sampling 693 
strategies tested: (1) co-kriging (a,b,c); (2) regression kriging (a,b,c); and (3) 694 
regression co-kriging (a,b,c).  Pearson’s correlation coefficient provided for each 695 
sampling strategy.  Scatterplots represent accuracy of estimated values based on 696 
validation points (N = 580). 697 

Fig. 7. Violin plot showing the interquartile range (mid-spread) of residuals in predicted 698 
biomass for all sampling strategies tested. Mean error indicated by red cross. OCK - 699 
Ordinary Co-kriging; RK – Regression kriging; and RCK – Regression co-kriging. 700 

Fig. 8. Estimated above-ground biomass maps for all sampling strategies tested using: (1) 701 
co-kriging (a,b,c); (2) regression kriging (a,b,c); and (3) regression co-kriging (a,b,c). 702 

Fig. 9. Difference maps of reference minus predicted above-ground biomass maps for all 703 
sampling strategies tested using: (1) co-kriging (a,b,c); (2) regression kriging (a,b,c); 704 
and (3) regression co-kriging (a,b,c). 705 

 706 
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Table 1. Radar data sets in terms of products, acquisition dates and image configurations. 707 
Complex pairs used to calculate InSAR coherence are denoted by * and †. 708 

Table 2 Calculated model semivariograms and cross-semivariogram used in spatial 709 
predictions for each variable for the 1000m sampling interval. 710 

Table 3 Evaluation of global accuracy for co-kriging, regression kriging, and regression co-711 
kriging based on the validation dataset.  Root Mean Squared Error (RMSE), Mean 712 
Absolute Error (MAE), Mean Error or Bias (ME), Pearson’s Correlation Coefficient and 713 
Coefficient of Determination are used to measure the differences between predicted 714 
and observed values. 715 

  716 



 

25 

Table 1. Radar data sets in terms of products, acquisition dates and image configurations. Complex 717 
pairs used to calculate InSAR coherence are denoted by * and †. 718 

ID SAR Sensor Product 
Acquisition 

date 
Incidence 

angle (deg) 
Flight 

Direction 
Polarisations 

Ground 
Resolution 

(m) 

1 PALSAR FBD 30-Aug-2008 34.3 Ascending HH+HV ~20 

2*  FBD 02-Sep-2009 34.3 Ascending HH+HV ~20 

3*  FBD 18-Jul-2009 34.3 Ascending HH+HV ~20 

4† RADARSAT-2 Fine-Quad 07-Aug-2010 39.2 Ascending HH+HV+VH+VV ~8 

5†  Fine-Quad 31-Aug-2010 39.2 Ascending HH+HV+VH+VV ~8 

 719 
Table 2. Calculated model semivariograms and cross-semivariogram used in spatial predictions for 720 

each variable for the 1000m sampling interval. 721 

Semi-Variogram Model (1000 m) Model Nugget Partial Sill Range (m) 

Above-ground Biomass Whittle-Matern 0.116 0.877 387.493 

Radar co-variable Whittle-Matern 0.156 0.807 519.417 

Cross-variogram (biomass and radar) Whittle-Matern 0.397 0.441 328.268 

OLS residuals Whittle-Matern 0.013 0.801 313.421 

 722 
Table 3. Evaluation of global accuracy for co-kriging, regression kriging, and regression co-kriging 723 

based on the validation dataset.  Root Mean Squared Error (RMSE), Mean Absolute Error 724 
(MAE), Mean Relative Error (MRE), Mean Error or Bias (ME), Pearson’s Correlation 725 
Coefficient and Coefficient of Determination are used to measure the differences between 726 
predicted and observed values. 727 

Estimated Above-ground Biomass 

Prediction Method and 
Sampling Strategy 

RMSE - (Mg ha-1) MAE - (Mg ha-1) MRE – (%) ME - (Mg ha-1) 
Multiple 

R-Squared 

Pearson’s 
Correlation 

(r) 

Ordinary Co-kriging       

2000 m transect 234.750 162.370 28.0 -22.730 0.285 0.533 

1000 m transect 219.413 142.802 24.6 -34.164 0.383 0.619 

500 m transect 205.00 126.758 21.6 -24.362 0.458 0.676 

Regression kriging       

2000 m transect 237.759 161.951 28.7 -35.347 0.255 0.505 

1000 m transect 218.729 147.638 25.5 -19.523 0.380 0.616 

500 m transect 203.900 131.643 22.7 -14.007 0.460 0.678 

Regression Co-kriging       

2000 m transect 238.228 164.621 28.4 -37.349 0.276 0.525 

1000 m transect 221.940 152.050 26.3 -18.110 0.364 0.604 

500 m transect 205.613 134.259 23.2 -15.690 0.449 0.670 
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Figure 1 731 
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Figure 2 734 
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Figure 3 738 
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Figure 9 752 


