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Abstract. In this study we examined forest disturbance, largely via forest harvest, over three decades in a coastal temperate

forest on Vancouver Island, British Columbia, Canada. We analysed how disturbance history relates to current canopy

structural conditions by interpreting the relationship between light detection and ranging (lidar) derived canopy structure

and forest disturbance trajectories derived from Landsat images to assess if a particular stand structural condition is to

result based on disturbance histories. The lidar data were obtained in 2004, and are used to relate forest structural

conditions at the end of the Landsat time series (1972�2004), essentially providing for a measure of resultant structure

emerging from the spectral trends captured. Correlation analysis was applied between lidar-derived canopy structure

(canopy cover and height) and Landsat spectral indices, such as the Tasseled Cap Angle (TCA), which showed a strong

correlation coefficient (r � 0.86) with canopy cover. TCA was then used to characterize change in forest disturbance

through the full temporal depth of the available Landsat image time series using a trajectory-based characterization

method. Approximately 71.5% of the study area was found to correspond to ‘‘stable and undisturbed forest’’. Four

disturbance classes (areas characterized by disturbance, disturbance followed by revegetation, ongoing revegetation, and

revegetation to stable state) accounted for approximately 10.2%, 5.3%, 2.2%, and 10.5% of the study area, respectively. We

evaluated the forest structural and spectral separability between the disturbance classes. In terms of structural variability

the mean airborne lidar-derived canopy cover showed clear differentiation between disturbance classes. Spectral mixture

analysis (SMA) was used to extract the spectral characteristics for each disturbance class. The SMA-derived fractions

were then used to analyse the class separability between the Landsat trajectory derived disturbance classes. The fraction

images provided clear distinction between disturbance classes in abundances between sunlit canopy, non-photosynthetic

vegetation, shade, and exposed soil. The extracted spectral indices and SMA fractions within the Landsat trajectory

derived disturbance classes were used to assess if terminal forest structural conditions can be related to a complex suite of

stand development trajectories and processes. The Landsat spectral indices and SMA fractions were separately modeled to

estimate lidar-derived mean canopy cover and height data within each disturbance class using multiple regression. The

results indicate canopy cover and height regression models developed using spectral indices provided a relatively better

estimation than those using SMA endmember fractions. Compared with the relatively regular structure of fully grown

undisturbed (stable) forests, the forest disturbance classes typically exhibited complex irregular structure, making it more

difficult to accurately estimate their canopy cover and height. As a result, all models developed for the stable forest class

performed better than those developed for other forest disturbance classes. Modeling canopy cover and height from

Landsat temporal spectral indices resulted in modeled agreement to lidar measures of R2 0.82 (RMSE 0.09) and R2 0.67

(RMSE 3.21), respectively. Our results also indicate moderately accurate predictions of lidar-derived canopy height can be

obtained using the Landsat-level disturbance class endmember fractions with R2 0.60 and RMSE 4.19. This study

demonstrates the potential of using the over four decade record of Landsat observations (since 1972) to estimate forest

canopy cover and height using prestratification of the data based on disturbance trajectories.

Résumé. Dans cette étude, nous examinons la perturbation des forêts, liée en grande partie à l’exploitation forestière,

pendant trois décennies dans une forêt tempérée côtière sur l’ile de Vancouver, Colombie-Britannique, Canada. Nous

avons analysé comment l’historique des perturbations est lié aux conditions structurelles du couvert forestier actuel par

l’interprétation de la relation entre la structure du couvert forestier dérivée du lidar («light detection and ranging») et les

trajectoires des perturbations forestières dérivées d’images Landsat pour évaluer si la condition structurelle d’un
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peuplement résulte de l’historique des perturbations. Les données lidar ont été obtenues en 2004, et sont utilisées pour

relier les conditions structurelles forestières à la fin de la série temporelle Landsat (1972�2004), fournissant essentiellement

une mesure de la structure résultante des tendances spectrales capturées. Une analyse de corrélation a été appliquée entre

la structure du couvert forestier dérivée du lidar (la couverture de la canopée et la hauteur) et des indices« spectraux

Landsat, tel le «Tasseled Cap Angle» (TCA), qui a montré un fort coefficient de corrélation (r � 0.86) avec la couverture

de la canopée. Le TCA a ensuite été utilisé pour caractériser des changements de la perturbation des forêts sur toute la

série temporelle d’images Landsat disponible en utilisant une méthode de caractérisation basée sur des trajectoires.

Environ 71,5% de la zone d’étude a été identifiée comme correspondant à de la « forêt stable et non perturbée ». Quatre

classes de perturbations (zones caractérisées par une perturbation, une perturbation suivie par le reverdissement, un

reverdissement en cours et un reverdissement arrivé l’état stable) représentaient respectivement environ 10,2%, 5,3%, 2,2%

et 10,5% de la zone d’étude. Nous avons évalué la séparabilité structurelle et spectrale de la forêt entre les classes de

perturbations. En termes de variabilité structurelle, la couverture moyenne de la canopée obtenue du lidar aéroporté a

montré une différenciation claire entre les classes de perturbations. L’analyse des mélanges spectraux (SMA) a été utilisée

pour extraire les caractéristiques spectrales pour chaque classe de perturbations. Les fractions obtenues par SMA ont

ensuite été utilisées pour analyser la séparabilité des classes entre les classes de perturbations dérivées des trajectoires

Landsat. Les images de fraction ont fourni une distinction claire entre les classes de perturbations dans les abondances

entre le couvert forestier ensoleillé, la végétation non photosynthétique, l’ombre et les sols non couverts. Les indices

spectraux extraits et les fractions SMA dans les classes de perturbations dérivées des trajectoires Landsat ont été utilisés

pour évaluer si les conditions structurelles finales de la forêt peuvent être liées à un ensemble complexe de trajectoires et

processus de développement des peuplements. Les indices spectraux Landsat et les fractions SMA ont été modélisés

séparément pour estimer les données de couverture moyenne de la canopée et la hauteur dérivée du lidar au sein de chaque

classe de perturbations en utilisant une régression multiple. Les résultats montrent que les modèles de régression de la

couverture de la canopée et de la hauteur développés en utilisant les indices spectraux fournissent une meilleure estimation

que ceux utilisant des fractions de composantes spectrales pures («endmember») du SMA. Comparées à la structure

relativement régulière des forêts à maturité non perturbées (stable), les classes de forêts avec perturbations ont

généralement une structure irrégulière et complexe, ce qui rend plus difficile l’évaluation précise de la couverture de la

canopée et de la hauteur. En conséquence, tous les modèles développés pour la classe de forêt stable montrent de meilleurs

résultats que ceux développés pour les classes perturbées. La modélisation de la couverture de la canopée et de la hauteur

en utilisant des indices spectraux temporels de Landsat a permis d’obtenir des R2 de 0,82 (RMSE 0,09) et 0,67 (RMSE

3,21) respectivement avec les mesures lidar. Nos résultats indiquent également que des prévisions modérément précises de

la hauteur de la canopée obtenue à partir du lidar peuvent être obtenues en utilisant les fractions de composantes

spectrales pures des classes de perturbations au niveau de Landsat avec R2 0,60 et RMSE 4,19. Cette étude démontre la

possibilité d’utiliser l’archive d’observations Landsat, comprenant plus de quatre décennies (depuis 1972) de données,

pour estimer la couverture et la hauteur de la canopée à l’aide de la préstratification des données basées sur des

trajectoires de perturbations.

[Traduit par la Rédaction]

Introduction

Forests play a significant role in global terrestrial

ecosystems including, but not limited to, providing a carbon

sink in the global carbon cycle (Dixon et al., 1994; Goodale

et al., 2002), preservation of biodiversity (Dobson et al.,

1997), and conservation of soil and water resources (Lal,

1997). Changes in forest structure strongly influence eco-
system processes (Pregitzer et al., 2004), and there is an

increasing need to generate accurate information regarding

the patterns, rates, and trends of forest dynamics and

structural change (Wulder and Franklin, 2007).

Field-based studies of forest ecosystems, while typically of

high accuracy, are costly and limited in spatial scales, often

providing quality information for a limited number of stands

at the landscape scale (Song et al., 2007). Consequently,

remote sensing techniques and statistical modeling have

been increasingly utilized to assist in forest surveys (McRo-
berts et al., 2010).

Remotely sensed data are an ideal data source for forest

structure change detection (Lu et al., 2004; Kennedy et al.

2007) and are currently the only feasible and cost-effective

option for surveying extensive areas (Lunetta et al., 2004).

Satellite remote sensing datasets such as those from the

Landsat sensors (Multispectral Scanner (MSS), Thematic

Mapper (TM), and Enhanced Thematic Mapper (ETM�))

offer the capacity to relate land cover dynamics and

structural characteristics in a systematic, repeatable, and cost

effective fashion over long time periods and a variety of

spatial scales (Cohen et al., 1998; Cohen and Goward, 2004).

The temporal depth and increasingly well-understood radio-

metric characteristics of such data provide an opportunity to

develop more accurate and reliable change detection and

analysis methods. The overall goal of such remote sensing

studies is to generate valuable information for management,

science, and policy objectives. However, the relationship

between single-date reflectance and forest structure weakens

under certain canopy conditions. The structure and compo-

sition of a forest stand at any point in time is linked to the

stand’s disturbance history. In this research we aim, through

use of light detection and ranging (lidar) derived terminal

structural conditions and Landsat-derived temporal trajec-

tories, to demonstrate and improve our ability to model key

attributes of forest structure. The Landsat-derived temporal

trajectories provide otherwise unavailable information
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regarding vegetation status and successional history. For

instance, Helmer et al. (2010) mapped foliage height profiles

with time series of Landsat and Advanced Land Imager

imagery in subtropical dry forest where forest height relates

strongly to recent and past spectral data; they demonstrated

that forest height estimation models that are based only on

one image time step result a weaker estimation. In another

recent example, Gomez et al. (2011) described the linkages

between forest structure and various processes influencing

stand condition, development, and disturbance legacy. They

showed that forest structural conditions can be related to

stand development trajectories and processes, such as

regeneration status and rates that are influenced by forest

management practices and natural disturbance regimes.

Pflugmacher et al. (2012) also demonstrated the utility of

disturbance and recovery metrics derived from spectral

profiles of annual Landsat time series to predict current

forest structure attributes in a mixed-conifer forest. Sup-

ported by the opening of the Landsat image archive, recent

studies have integrated Landsat-based disturbance history

with other remote sensing data such as the Geoscience Laser

Altimeter System data to assess forest growth rates (Dolan

et al., 2009) and to estimate young forest heights (Li et al.,

2011).

Lidar is an active remote sensing system well suited to

measure the vertical structure of forests (Hall et al., 2011).

Numerous studies have demonstrated that lidar data can be

used to accurately estimate forest height and aboveground

biomass (Drake et al., 2003), leaf area index (Zhao and

Popescu, 2009), canopy density (Donoghue et al., 2007),

vertical vegetation strata (Morsdorf et al., 2010), succession

stages (Falkowski et al., 2009), and canopy architecture

(Andersen et al., 2005). Lidar data work well in small areas

and applications that require highly detailed structural

information. The analysis of lidar data and Landsat imagery

together is promising when larger areas, historical datasets,

and a higher temporal resolution are considered (Goetz

et al., 2009). Such an approach may also be required to

adequately represent and model vegetative content and

horizontal structure of forests together with the vertical

elements of forest structure (Wulder and Seemann, 2003).

An asymptotic relationship is typically found when using

satellite multispectral imagery alone to make empirical

estimates of forest structure (Duncanson et al., 2010), with

the asymptote linked to canopy cover although some

progress has been reported using geometrical optical

models, for instance Zeng et al. (2007) and Chen et al.

(2012). The integration of such satellite multispectral remote

sensing data with information from airborne lidar provides

opportunities to capitalize upon the distinctive character-

istics of both. This integration could also serve to make lidar

more cost effective over larger areas (e.g., Hudak et al., 2002;

Chen et al., 2012). For example, recent studies on the

integration of lidar with optical remotely sensed data have

focused on using lidar as a replacement for field data to

extrapolate information on forest structure to landscape and

regional scales (e.g., Chen et al., 2012). Models have been

developed to spatially extend lidar measured attributes over

larger extents using parametric approaches, which typically

use multiple regression to define relationships between

image spectral metrics and lidar measured tree attributes

(e.g., Chen et al., 2010; Hilker et al., 2008; Hudak et al.,

2002; Hyde et al., 2005). In one early study, Wulder and

Seemann (2003) developed regression models to relate

Landsat TM data with quantile-based estimates of canopy

top height derived from SLICER (Scanning Lidar Imager of

Canopies by Echo Recovery) satellite data, producing stand

level mean height estimates. More recently, Pascual et al.

(2010) evaluated the relationship of several Landsat-derived

spectral indices with canopy height derived from airborne

lidar.
Spectral indices have been demonstrated as a means to

normalize and compare satellite imagery comprising a time

series (Pflugmacher et al., 2012; White et al., 2011). Landsat

Tasseled Cap Transformation (TCT) indices, for example,

have proven reliable and robust in a range of environments

(Healey et al., 2005) including the coniferous dominated

conditions of coastal western North America (Song et al.,

2007). To accommodate the lack of short-wave infrared

bands when assembling a time series of Landsat images

including both MSS and TM sensors, the Tasseled Cap

Angle (TCA) was developed (Powell et al., 2010). Generally,

the TCA is interpreted to be an estimate of the proportion of

vegetation to nonvegetation (Powell et al., 2010; Gomez

et al., 2011). Dense forest stands are expected to show higher

TCA values than more open stands or bare soil (White et al.,

2011).

The use of fraction images derived from spectral mixture

analysis (SMA) offers a complementary approach to apply-

ing the TCA (Goodwin et al., 2005). SMA divides each pixel

into its constituent materials or components using end-

members that represent the spectral characteristics of key

cover types (Adams et al., 1986; Garcia-Haro et al., 1999;

Smith et al., 1990, 1994). Endmembers are spectral features

recognizable in an image and that constitute abstractions of

real objects that can be regarded as having uniform spectral

properties (Strahler et al., 1986). For example, the propor-

tion of shadow or non-photosynthetic vegetation (NPV)

would be expected to be higher in trees affected by

disturbance compared to healthy (denser) tree crowns.

Souza et al. (2003) indicated fraction images derived from

SMA have advantages in differentiating types of disturbed

forests over reflectance data or vegetation indices. Spectral

mixture analysis has been used in a range of biophysical

studies, for example to map the fractional abundances of

photosynthetic vegetation (Elmore et al., 2000; Lobell et al.,

2002) and to classify biophysical structural information

(Peddle et al., 1999), and it has been used as well in

numerous soil and geological applications (Asner and

Heidebrecht, 2002).

In this study, our main objective was to integrate airborne

lidar-derived measures of forest structure with a time series

Canadian Journal of Remote Sensing / Journal canadien de télédétection
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of Landsat MSS, TM, and ETM� TCA in areas of forest

disturbance to assess if a particular stand structural and

spectral condition is to result based on disturbance histories.

To address the main objective, we first investigated the

relationship between airborne lidar-derived forest canopy

cover and Landsat-based spectral indices (with a focus on

TCA) to identify the suitability of variables for use in long-

term change characterization. Second, we characterized the

multitemporal spectral conditions of forests that are man-

ifested at various forest structural stages using a trajectory-

based automated forest disturbance characterization meth-

od through the full temporal depth of Landsat time series.

Third, we evaluated the class separability between the

Landsat trajectory based disturbance classes using forest

spectral and structural variability. SMA was used to assess

the spectral separability of the disturbance classes as

represented by spectral endmembers. Lidar-derived canopy

cover was used to evaluate the disturbance class separability

in terms of forest structural variability. Finally, we examined

the potential of Landsat spectral indices and SMA end-

members in estimating the terminal canopy structure con-

dition within the Landsat trajectory derived disturbance

classes.

Data and methods

Study area

The study area (49852?N, 125820?W) is located between

Courtenay and Campbell River on Vancouver Island,

British Columbia, Canada (Figure 1). A 5.1 km�5.1 km

(2601 ha) study area corresponding to the airborne lidar

data acquisition mission ranges in elevation from 120 m to

Figure 1. Study area located between Courtenay and Campbell River, Vancouver Island,

British Columbia, Canada.

Vol. 39, No. 6, December/décembre 2013
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460 m, and is within 15 km of the coast. The area is

characterized by mature conifer forest, regenerating conifer

and deciduous stands, and harvested areas. Conifer forest

types compose 65% of the study area, and are dominated by

approximately 80% Douglas-fir (Pseudotsuga menziesii

(Mirb.) Franco), with small proportions of Western Red

Cedar (Thuja plicata (Donn.)), and Western Hemlock (Tsuga

heterophylla (Raf.) Sarg.). Deciduous forest of Red Alder

(Alnus rubra Bong.) comprise approximately 16% of the

study area. The majority of the study area is managed by

private forest companies under license. Most stands are

between 20 and 60 years of age (Morgenstern et al., 2004).

For mature stands, a 1998 site survey found that the stand

density was approximately 1100 stems/ha.

Airborne lidar data

Discrete-return lidar data were acquired on 8 June 2004

by Terra Remote Sensing (Sidney, British Colombia, Canada)

from a Bell 206 Jet Ranger helicopter. The positioning

systems, a Litton LTN-92 inertial navigation system and an

Ashtech Z-surveyor Dual Frequency P-code differential

global positioning system, recorded the aircraft’s altitude

and position within 10 cm. A discrete-return lidar system

(Lightwave Model 110) was used with a pulse repetition

frequency of 10 kHz, a wavelength of 1047 nm, a scan angle

of 568, and a beam divergence of 3.5 mrad. Based on the

pulse frequency, lowest sustainable flight speed, and altitude,

hit densities of 0.7 hits/m2 were achieved with a footprint

(spot size) of 0.19 m (Table 1).
The raw lidar point cloud data contained both ground

and nonground returns. All nonground returns are consid-

ered to be from vegetation, as no buildings or notable

infrastructure are present in the study area. Classifying

point cloud data into ground and tree canopy returns was

implemented with Terrascan software (v4.006, Terrasolid,

Helsinki, Finland) which combines filtering and threshold-

ing methods (Chen et al., 2010).

In this study, lidar-derived canopy cover (CC), was

estimated using the ratio of the pulse returned from the
upper layer of tree crown (sum of all pulses �1.5 m) to total

returns (throughout the canopy to ground).

CC ¼
P

all returns > 1:5 m

total returns
(1)

This CC derivation method was used by several studies

including Hyde et al. (2005), Morsdorf et al. (2006), Solberg
et al. (2006), and Smith et al. (2009). In prior literature, the

selection of the threshold above which returns are consid-

ered to be from canopy has been arbitrary. Smith et al.

(2009) evaluated a selection of different height thresholds

in mixed-aged forests. Their analysis determined a negligible

variation in correlation (r difference of approx. 0.0005)

between the field-densitometer-derived and lidar-derived

canopy cover measures occurred when the threshold was
between 1.00 and 2.00 m; therefore, for their study they

selected an intermediate threshold of 1.50 m. The same

threshold value of 1.50 m was used in our study to determine

canopy returns. A lidar Canopy Height Model (CHM), as

described in Chen et al. (2010), was used to derive tree heights

for use in statistical modeling and in the spectral mixture

analysis. The CHM was derived by separately interpolating

the classified ground and tree canopy returns (Hutchinson,
1989) to form a digital elevation model (DEM) and a digital

surface model (DSM) with 1 m grid cell size. The final step

was to obtain the CHM by subtracting the DEM from the

DSM. To match the spatial resolution of the Landsat

imagery, the final lidar-derived estimates of canopy height

were resampled from 1 m to 30 m resolution using simple

averaging.

Landsat data

The Landsat imagery for the study area was obtained

from the United States Geological Survey (USGS) Landsat
archive. We used a combination of MSS, TM, and ETM�
imagery. All of the MSS, TM, and ETM� data were system-

corrected for terrain and were converted to ‘‘top-of-

atmosphere-radiance’’ (L1T data product). The study area

falls within WRS2 path�row 49�25, and a time sequence of

16 Landsat images from (1972�2004) was available for this

area (Table 2). All images were selected within the summer

and early fall seasons for consistency in forest phenological
condition (Wulder et al., 2004).

Landsat image preprocessing

Based on image quality and cloud-free status, the 1989

TM image was selected as the reference image (Table 1). We

coregistered all MSS and ETM� imagery to the reference TM

image using an automated registration and orthorectification

Table 1. Lidar parameters.

Parameter Performance

Sensor Mark II

Laser scan frequency 10 Hz

Laser impulse frequency 40 000 Hz

Laser power B4 W

Scan angle B568
Type of scanning mirror Oscillating

Laser beam divergence B0.5 mrad

Measurement decay 0.5�0.8 hits/m2

Datum NAD83

Projection UTM Zone 10

Platform Bell 206 Jet Ranger helicopter

Flight altitude above ground 900 m

Flight speed 25�30 m/s

Version of TerraScan used to

classify

Version 004.006
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package (Gao et al., 2009). To match the spatial resolution

of the TM and ETM� data, we resampled the MSS imagery

to 30 m. Coregistration was performed on the entire scene

overlap. Images with a final root mean square error (RMSE)

in the coregistration greater than 0.5 pixels were removed

from the analysis.
To minimize annual variations in atmospheric conditions,

we normalized each image in the Landsat time series to the

1989 TM reference image located in the middle of the series.

First, the cosine estimation of atmospheric transmittance

absolute radiometric correction model of Chavez (1996) was

applied to the reference image to convert digital counts

to surface reflectance. This model consists of a modification

of the dark-object subtraction method by including a simple

multiplicative correction for the effect of atmospheric

transmittance.

Following Schroeder et al. (2006), all other TM and

ETM� images in the time series were radiometrically

normalized to the reference image using the multivariate

alteration detection and calibration algorithm (MADCAL)

of Canty et al. (2004). This automatic process identifies

invariant pixels between image pairs and performs a relative

normalization using orthogonal regression of the target

image pixels on to the reference image pixels. The process of

normalization reduces artifacts due to illumination or

atmospheric variations, enabling more reliable detection of

true change (Song et al., 2001). Water, clouds, and cloud

shadows were masked using an object-based cloud and

cloud shadow detection algorithm for Landsat imagery (Zhu

et al., 2011). This approach uses various bands of Landsat

data converted to top-of-atmosphere reflectance and bright-

ness temperature and cloud physical properties to separate

cloud pixels and clear sky pixels, and then produces separate

masks for clouds, cloud shadows, and water.

Tasseled cap transformation (TCT)

To assemble time series relating conditions from 1972 to

2004 it was required to integrate data from multiple Landsat

sensors, including MSS, TM, and ETM� sensors. The image

normalization process, in the previous section, creates a

spectral space that is relatively consistent across sensors. A

single spectral transformation, the TCT (Crist, 1985; Huang
et al., 2002), was used for all Landsat images in the time

series. TCT is a well-known linear transformation widely

employed (Cohen and Goward, 2004) to characterize forest

structure (Cohen et al., 2002; Hansen et al., 2001), condition

(Healey et al., 2006; Wulder et al., 2006), and in change

detection (Jin and Sader, 2005).

The first TCT component corresponds to the overall

‘‘brightness’’ of the image and, by definition, is a positive
value. The second TCT component corresponds to ‘‘green-

ness’’ and is typically used as an indicator of the amount of

photosynthetically active vegetation. The values for green-

ness depend on the contrast between the visible and near-

infrared bands, with exposed soil having negative values

(Gillanders et al., 2008) and vegetated areas having positive

values. The third TCT component is often labeled ‘‘wetness’’

and is usually interpreted in vegetated areas as an index of
canopy structure, soil or surface moisture, or possibly an

estimate of the amount of dead or dried vegetation (Cohen

and Goward, 2004). Brightness and greenness define the

vegetation plane (Crist and Cicone, 1984) and provide a

practical bridge between the earlier MSS imagery and more

recent TM and ETM� imagery (Powell et al., 2008).

Structural differences in forest vegetation have been most

effectively described with indices that utilize the contrast
between short-wave and near-infrared reflectance, such as

wetness (Cohen and Goward, 2004). However, MSS sensors

lack short-wave infrared bands, and therefore wetness

cannot be computed for Landsat MSS imagery. Alterna-

tively, an index called TCA, defined by Powell et al (2010),

has been developed as the angle formed by brightness and

greenness in the vegetation plane (Equation (2)). TCA has

been interpreted as an indicator of the proportion of
vegetation to non-vegetation within a Landsat MSS,

ETM�, or TM pixel (Powell et al., 2010; Gomez et al.,

2011):

TCA ¼ arctan ðgreenness = brightnessÞ (2)

Higher values of greenness and lower values of brightness

are often found over forests, and therefore, higher values of

TCA are more likely in dense cover classes when compared

with open stands or clearcuts (Cohen et al., 1998; Price and

Jakubauskas, 1998; White et al., 2011). TCA was used to
describe change in the present study, although we also used

the original TCT values and other indices such as Normal-

ized Difference Vegetation Index (NDVI), for available

Landsat imagery in later statistical modeling. Another

TCT derivative called Tasseled Cap Distance (TCD), used

Table 2. Available Landsat time-series of imagery.

Year

Available Landsat

(yyyy-mm-dd) Path Row Sensor

1972 1972-08-19 53 25 MSS

1974 1974-08-09 53 25 MSS

1984 1984-09-26 49 25 TM5

1985 1985-09-06 49 25 TM5

1989 1989-08-07 49 25 TM5

1990 1990-08-10 49 25 TM5

1991 1991-08-13 49 25 TM5

1992 1992-08-15 49 25 TM5

1993 1993-09-03 49 25 TM5

1995 1995-06-05 49 25 TM5

1997 1997-08-13 49 25 TM5

1998 1998-06-13 49 25 TM5

1999 1999-09-12 49 25 ETM �
2000 2000-08-13 49 25 ETM �
2002 2002-08-27 49 25 TM5

2004 2004-08-16 49 25 TM5
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by Duane et al. (2010) to predict forest age, was also

included in the current analysis for comparison.

TCD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTCG2 þ TCB2Þ

q
(3)

The water, cloud, and cloud shadow pixels were masked

and excluded from this study. The remaining Landsat pixels

were transformed using the appropriate TCT coefficients for

reflectance data (e.g., Crist, 1985). For the Landsat MSS

TCT, we used the coefficients presented by Pflugmacher
et al. (2011). Recently, the USGS-Earth Resources Observa-

tion and Science (EROS) switched the processing of the

MSS archive to LPGS (Level 1 Product Generation System)

resulting in new post-calibration dynamic ranges and data

quantization that are significantly different from the ones

previously used. Because the MSS TCT is a digital number

(DN) based transformation, it is affected by the post-

calibration coefficients used to rescale the calibrated radi-
ance data to calibrated DN.

To normalize MSS data with the TM and ETM� time

series we used the available TCT components with

MADCAL rather than the individual spectral bands (Powell

et al., 2008). The brightness and greenness components

derived from the 1989 Landsat TM image were used as the

reference source for MADCAL. The MADCAL process has

been shown to be invariant to linear transformations (Canty

et al., 2004).

Fitting of spectral trajectories

An automated curve-fitting algorithm was used to

characterize change in TCA over the available 32-year

Landsat time series (1972�2004). After the final set of best

predictor models were identified and the results compared,

the Landsat time series was arranged for spectral trajectory

fitting. As our preliminary tests indicated high correlation

between TCA and lidar-derived canopy cover, TCA was

used as a proxy of canopy cover to characterize change

through the full temporal depth of the Landsat dataset.

The same curve-fitting algorithm was used by Kennedy

et al. (2007) and requires no specific threshold development.

In our study, the curve fitting parameters were altered from

Kennedy et al. (2007) in order to capture the distinctive

characteristics of TCA.
In addition to ‘‘stable and undisturbed forest’’, we

identified four classes of potential temporal trajectories of

change in TCA: Class 1, disturbance; Class 2, disturbance

followed by revegetation; Class 3, ongoing revegetation; and

Class 4, revegetation to a stable state (Figure 2). These four

Figure 2. Example of the four disturbance class spectral trajectories and parameters fit to each trajectory. Tasseled

Cap Angle (TCA) scaled by 100. (a) Disturbance, (b) disturbance followed by revegetation, (c) ongoing

revegetation, and (d) revegetation to a stable state.
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disturbance classes are used throughout this paper. Our

interpretation of the spectral characteristics of these classes

was similar to Gomez et al. (2011), who found that dense

forest stands had higher TCA values than more open stands
or bare soil, and that TCA values in recent clearcuts were

significantly lower than in any other stage of stand devel-

opment. Generally, TCA displays an increasing trend with

time since disturbance.

We extracted TCA for each pixel in the Landsat time

series (1972�2004). For each of the four classes (Figure 2) we

created initial estimates of spectral trajectory shape para-

meters and then used a fitting function to adjust these initial
parameters to find the best fit of the potential trajectory to

the observed trajectory. The fitting algorithm calculates the

standard f statistic, and the probability of that f statistic

p value occurring between the potential classes and the

observed TCA trajectories. The model with the lowest

p value was selected as a best model for each pixel in the

final output image. In this process, pixels without change

could result in high p values even for that best model
(Kennedy et al., 2007). Therefore, no-change pixels were

identified as those pixels where the best model had a p value

higher than 0.05. The parameters describing the best model

were input to a separate layer of the output image.

After identifying the four classes of spectral trajectories,

we developed appropriate functions to describe these

patterns. In our interpretation, the parameters describing

those functions capture the key characteristics of distur-
bance and regrowth. For example, disturbance through

partial and clearcut harvest typically results in a step

function in TCA (Figure 2a). When a forest stand is removed

through disturbance, TCA declines quickly from an initially

high value to a low value, and in the absence of subsequent

revegetation, remains low. The parameter values describing

this spectral trajectory shape are the end year of the

disturbance interval (parameter p0), the pre-disturbance
mean TCA (p1), and the post-disturbance mean (p2).

When disturbance is followed by revegetation, TCA

initially declines, but then increases over time (Figure 2b).

The trajectory from low to high TCA in this class is expected

to follow an exponential curve. Two parameters describing

this trajectory are identical to those in the first disturbance

class: the pre-disturbance mean TCA (p1) and the year after

disturbance (p0). Parameters p2, p3, and p4 describe the
exponential function that captures the return of TCA to

higher value. The exponential function is:

TCA ¼ ððp4 � p2Þ ð1� e�pt
3ÞÞ þ p4 (4)

where TCA is the observed TCA, p3 is an exponential

constant, p2 and p4 are lower and upper bounds, respectively,

on the exponential function, and t is the time since
disturbance (in years). The parameter p2 is analogous to the

mean TCA value immediately after disturbance in the

previous disturbance function, whereas the parameter p4

describes the asymptotic level of TCA if the exponential

function were to continue to infinity. The parameter p3

describes the rate of increase in TCA from the low value p2

to a value at p4. Higher value of p3 indicates faster recovery

of vegetation. Because TCA represents a proportion, the

exponential parameter was constrained to a range from

0 to 1.

The third potential trajectory (ongoing revegetation

followed by recovery from disturbance) is represented by

exponential recovery alone, without an observed distur-

bance event (Equation (4)). In this trajectory t represents the

time since the beginning of the record, and p2 represents the

TCA value for the first year of the record.

The fourth trajectory (represented by Class 4, revegeta-

tion to a steady state) uses the same equation as Class 3

(ongoing revegetation trajectory), but assumes that the TCA

value stabilizes to an unchanging constant at some point

before the time series ends. Consequently, one additional

parameter is added to the function that corresponds to the

year at which a stable TCA was reached.
After defining the parameters for the four disturbance

class trajectories, a least-squares curve of each potential

trajectory was fitted to the observed TCA trajectory in each

pixel. For this curve fitting we used MPFIT Markwardt

(2008), which is a Non-Linear Least Squares Fitting

algorithm adapted for IDL (Interactive Data Language,

ITT Visual Information Solutions, Inc.). This procedure

allows the user to develop functions of any arbitrary form

that define how a set of arbitrary parameters converts a set

of X values into a set of Y values (Kennedy et al., 2007).

Initial estimates of parameter values are sent to MPFIT, and

then the program returns the adjusted parameter set that

best fits the observed trajectory.

Initial estimates of the required parameters were set for

the four potential trajectories. For the first two disturbance

trajectory classes, the year of disturbance was fixed at the

point where the decline in TCA from one year to the next

was greatest. Estimates of pre- and post-disturbance TCA

values were taken as arithmetic means of TCA in the years

before and after the estimated year of disturbance. For the

other trajectory classes involving exponential increases,

the initial estimate of the constant was calculated as the

difference of the log of the TCA immediately after dis-

turbance (or at the beginning of the record for ongoing

revegetation and the revegetation to stability types) and the

log of the TCA in the following year. When this value was

less than or equal to zero, an initial estimate of zero was

used. Bounding constraints of the exponential functions

were TCA value at the year of disturbance (p2) and zero (p1).

For the ‘‘revegetation to stability’’ class, initial estimates of

stability level and onset of stability were estimated as the

TCA value at the end of the record and the last year of the

record, respectively.

The four classes are considered competing models for the

observed conditions. Standard f statistic and the probability

of that f statistic (p value) were calculated between the

potential class and the observed trajectories in each pixel

and the model that had the lowest p value was selected to
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represent the trajectory in that specific pixel. The para-

meters of the best model fully describe the disturbance and

recovery dynamics for the pixel and are then written as a

separate layer in the output image. The model parameters
written to the output image describe important aspects of

the disturbance regime, including year of disturbance. The

temporal curve-fitting was applied to the time series of

Landsat-based TCA values listed in Table 2. The method is

extremely computer intensive, taking weeks to process a

single stack of the time series for the area of one Landsat

scene. For the purposes of this study, we constrained the

analysis only to the portion of the study area overlapping
with the airborne lidar data.

Validation of the trajectory characterization

Validation of change-detection maps derived using satel-

lite observations typically relies on independent reference

data collected through ground-based field work, visual

interpretation of high resolution images, or both (Congal-
ton, 1991; Stehman and Czaplewski, 1998). For the dis-

turbance information derived in this study, however, such a

validation approach is inapplicable as changes must be

validated for near-yearly periods spanning four decades. In

this study, because no suitable independent datasets were

available for every year of the record for the entire area, we

used a complementary approach to assess the performance

of the outputs from the trajectory-based method using
visual interpretation of the imagery itself (Cohen et al.,

1998; Kennedy et al., 2007; Masek et al., 2008; Huang et al.,

2009). Cohen et al. (1998) showed that direct human

interpretation of tasseled-cap transformed Landsat imagery

was as accurate for mapping forest clear-cuts as both

independent photo and field-based datasets, even though

the imagery used for interpretation was the same source

used to make the change-detection map. In this study, the
disturbance classes derived through trajectory-based meth-

od were not directly validated because the visual interpreta-

tion approach can not provide definitive validation

information on the temporal curve fitting derived distur-

bance classes. However, the change�no-change areas and

disturbance year, which comprise the key parameters for

the trajectory-based method to construct the disturbance

classes, can be reliably identified and validated by a
comparison between the pre- and post-disturbance Landsat

images. Because of the intensive effort required, we used this

approach to validate a relatively small number of validation

sites. Within the areas labeled as disturbed forest by the

algorithm (i.e., combining the classes: disturbance and

disturbance followed by revegetation), a total of 150

validation points were selected using a stratified random

sampling approach. Specifically, the disturbance year map
was used to define the strata where each class was a stratum.

The number of points selected from each stratum was

proportionate to its areal extent within the image with a

constraint that the validation points were no closer than

three pixels from the existing sample, to limit the effects of

spatial autocorrelation among samples. In addition, if a

validation sample was located on an edge of a disturbance

year polygon as determined through visual inspection, the
validation sample was relocated within three pixels from the

original location to avoid confusion caused by any mis-

registration. These 150 samples were used to evaluate the

performance of the trajectory-based method in capturing

the actual disturbance year, which constitutes one of the key

parameters (p0) describing the trajectory for the classes

disturbance and disturbance followed by revegetation

(Figures 2a and 2b). Each of the 150 disturbed sample
points were attributed with disturbance year. A similar pro-

cess was applied to the areas labeled as stable forest by the

algorithm, inferred to be ‘‘no-change’’ resulting in addi-

tional 150 randomly selected no-change samples obtained

without any stratification using the abovementioned sam-

pling constraints. Because it was impossible to know when

the disturbances occurred in the ongoing revegetation and

revegetation to a stable state classes that were identified by
the trajectory-based method, an additional 100 random

samples were selected from these two classes to evaluate the

performance of the trajectory-based method in capturing

pre-observation disturbance (pixels that were disturbed

before the first image acquisition). The pre-observation

disturbance constitutes one of the key parameters (p1) in

the ongoing revegetation and revegetation to stable state,

disturbance class trajectories (Figures 2c and 2d). The total
400 samples of no-change, disturbance year, and pre-

observation disturbance were then compared with visual

interpretation to determine the appropriate no-change, dis-

turbance year, and pre-observation disturbance label. The

Landsat images were inspected in sequence from the earliest

to most recent data in ArcMap to determine whether and

when disturbances occurred at each sample location. Year-

to-year difference images were used as an initial visual guide
for identifying potential disturbance, but the final inter-

pretation of the disturbed area was based on the original

TCA imagery. Finally, a sample was labeled ‘‘correct’’ if the

pixels in the visual interpretation were labeled the same in

the algorithm-derived image. Errors were tabulated for the

labels no-change, year of disturbance, and for pre-observation

disturbance. Standard error matrix and summary statistics

were then calculated (Congalton and Green, 1999).

Extraction of disturbance class spectral characteristics

After characterizing the multitemporal spectral condi-

tions of forests using the trajectory-based disturbance

characterization method it was found prudent to assess

the class separability between the identified disturbance

classes in terms of both forest spectral and structural
variability. In this study, SMA was selected to derive spectral

characteristics for the Landsat trajectory based disturbance

classes to assess the class separability as represented by

spectral endmembers. SMA was ideal for this study as it
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recognizes the spatially heterogeneous mixtures of vegeta-

tion, soil, shadow, and others in forest canopies rather than

a single cover type. In contrast to using other vegetation

indices, SMA endmembers describe a physical property of

the landscape and lend themselves to straightforward

interpretation based on the available disturbance informa-

tion. Souza et al. (2003) indicated fraction images derived

from SMA have more advantages in differentiating types of

disturbed forests than reflectance data and vegetation and

infrared indices. In this study, SMA was used to derive

spectral characteristics for the four disturbance classes in the

Landsat trajectory. Using the 2004 Landsat TM imagery we

generated sub-pixel fraction images for the Landsat-derived

forest disturbance classes (as identified in the previous

section). Lu et al. (2004) demonstrated that the removal of

highly correlated bands such as TM 1 and TM 2 in SMA

improves the quality of fraction images. Thus, in this study

to reduce correlation and data redundancy we used Landsat

TM band subset images (i.e., bands 3, 4, 5, and 7) in the

SMA.

An important prerequisite to successful SMA is the

selection of representative endmembers (Somers et al., 2011;

Tompkins et al., 1997). Here endmembers representing sunlit

canopy, NPV, exposed soil, and shade were derived from

the Landsat multispectral image using the n-dimensional

visualization tool (available in ENVI 4.8) and the lidar data.

The variation in understory reflectance that can be present

within a typical Landsat pixel can cause difficulties in SMA

endmember selection. This variation in understorey reflec-

tance is manifest within individual pixels and across a given

scene. In this study, to reduce the influence of understory

vegetation on SMA fractions, tree height information derived

from lidar was used to help guide the selection of end-

members. For example, tree height information derived from

lidar aided in the selection of NPV and exposed soil end-

members by identifying sites with low or no vegetation cover

using a canopy height threshold of 1.50 m. The pixels located

at the extremes of the data cloud of the Landsat spectral space

in the n-dimensional visualization tool were selected as

candidate endmembers. The final endmembers were selected

based on the spectral shape and image context (e.g., soil

spectra are mostly associated with unpaved roads and NPV

with understory grass having senesced vegetation).
We applied least-square linear mixture modeling (Adams

et al., 1993) to estimate the proportion of each endmember

within the Landsat pixels. The sums of the fractions add up

to 1. The n-dimensional visualisation tool was also used to

check the separability of the endmembers and refine the

selected regions of interest. The SMA model results were

evaluated (Adams et al., 1995) with the root�mean�square

image and fraction images interpreted in terms of image

context and spatial distribution.

Finally the fractions were summarized within each

trajectory-derived disturbance class to obtain mean values

for each class. This allowed the extraction of the spectral

characteristics for each disturbance class and quantified the

fractional abundances of the key image endmembers (sunlit

canopy, NPV, bare soil, and shade) within each class to

assess the class separability between disturbance classes as

represented by spectral endmembers. We used a Tukey test

(Ott, 1992), available in the R Language (http://www.r-

project.org/) to evaluate if the disturbance classes could be

separated from each other. This test was run at a 99%

confidence interval (p B 0.01). For the purpose of the class

separability, the Tukey test performs a multicomparison of

the population means of the disturbance classes; that is, it

tests the mean of a population against the mean of each

other population. Further, as the test requires normally

distributed samples, a data transformation was applied when

necessary.

Relationships between disturbance class spectral

characteristics and lidar forest structural measurements

In the final step of the analysis, we explored how

Landsat spectral trajectories related to the terminal forest

structural conditions that were found in the lidar data and

as a function of disturbance history. The terminal canopy

structure attributes (related by canopy cover and height)

were extracted from the lidar data within each disturbance

class to determine the structural variability between

disturbance classes. The uniqueness of the structural

conditions by disturbance class was tested using analysis

of variance.

To compare the potential of Landsat spectral indices and

SMA fraction images in estimating canopy structure within

disturbance classes and to test their estimation advantage,

multiple regression analysis was conducted to assess the

relative importance of each independent variable in explain-

ing the lidar-derived canopy cover and height. The input

variables were extracted using stratified random sampling

based on disturbance classes. For the dependent and

independent variables random data subsets were created

for modeling and a second subset for validation, which was

used to assess the prediction accuracy. The samples were

selected proportional to the areal coverage of each distur-

bance class, as it was expected that they would sufficiently

represent the distribution of crown cover and height of each

class. To better describe forest structure within disturbance

classes, separate regression models were developed for each

disturbance class. First a check of the multicollinearity

between predictor variables in the regression analysis was

carried out among the independent variables. Landsat

spectral indices and SMA fractions with high correlation

among each other were excluded in this regression analysis.

For all the combinations, each independent variable was

evaluated and retained if its correlation value with any other

independent variable was lower than 0.7. A stepwise variable

selection method, used by Wulder et al. (2004), was adopted
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in this study to determine the most significant input

variables for modeling.

Statistical treatment was performed with the Statistica

program version 10. Before proceeding with the analysis, the

necessary transformations (i.e., logarithm and inversion of

variables) were made to adjust the distributions of variables

to the prerequisites required for the regression analysis.

Normality was checked using the Shapiro�Wilks test.

Finally, an independent validation served as a basis for

comparing the performance of Landsat spectral indices and

SMA endmembers in estimating disturbance class canopy

structure. The models were assessed using RMSE and the

predictions were evaluated against the validation dataset, R2

and the RMSE are reported. The flowchart in Figure 3

summarizes the overall approach of this study described in

the preceding subsections.

Results

Airborne lidar-derived canopy cover estimates and Landsat-

derived spectral transformations and indices for the study

are depicted graphically (Figure 4), with the uniqueness of

the indices being visually apparent. A strong and significant

correlation coefficient was obtained for TCA (r � 0.86),

with lower though still significant correlations between

lidar-derived canopy cover with NDVI (r � 0.62) and

greenness (r � 0.37) (Table 3). The weakest correlation
coefficient was obtained using the brightness component.

Trajectory-based characterization of forest disturbance

Because our tests, which are outlined above, indicated high

correlation between TCA and lidar-derived canopy cover,

Figure 3. A flowchart of the overall approach for estimating disturbance class canopy cover

and height using Landsat time series observations and lidar data.
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TCA was used as a proxy to canopy cover to characterize

change, this supported the development of forest disturbance

products through the full temporal depth of the Landsat time

series in the study area. The curve fitting process resulted in

an output image with the attributes corresponding to the

fitting parameters for each pixel whose trajectory matched

one of the four potential trajectories in the disturbance

classes at the p value 5 0.05. The fitted potential trajectories

for the study area are shown in Figure 5. The results indicated

that from 1972�2004, approximately 71.5% of the study area

showed ‘‘stable and undisturbed forest’’ structure. The areas

characterized by disturbance account for 10.19%, distur-

bance and revegetation 5.25%, ongoing revegetation 2.19%,

and revegetation to stable state account 10.15% of the study

area.

Accuracy assessment

The trajectory-based algorithm derived stable (no-change)

areas, disturbance year, and pre-observation disturbance for

the randomly selected 400 points were validated using the

approach described in ‘‘Validation of the trajectory char-

acterization’’. The overall user’s and producer’s accuracies

were calculated according to Congalton and Green (1999).

At per-pixel level the overall accuracy was 82.8% (Table 4).

All the points had relatively high user’s accuracy values.

Whereas the lowest user’s accuracies were just over 63%, the

majority of the disturbance years had user’s accuracies of

over 70%. The average user’s and producer’s accuracies were

75.2% and 68.8%, respectively.

The confusion matrix reveals distinctive patterns of errors

by the trajectory-based algorithm. The algorithm missed a

Figure 4. Study area. (a) Lidar derived canopy cover; (b) Tasseled Cap Angle; (c) Tasseled Cap Distance;

(d) Tasseled Cap components brightness in red channel, greenness in green channel, and wetness in blue channel;

and (e) Normalized Difference Vegetation Index.

Table 3. Correlation coefficients between Landsat spectral indices and lidar canopy cover.

TCA TCD TCW B5R TCG TCB NDVI Canopy cover

TCA 1.0 0.04 0.22 �0.05 0.66 0.06 0.58 0.86

TCD 0.04 1.0 �0.90 0.93 0.71 0.93 0.13 0.08

TCW 0.22 �0.90 1.0 �0.97 �0.55 �0.95 0.12 0.16

B5R �0.05 0.93 �0.97 1.0 0.69 0.98 �0.02 �0.04

TCG 0.66 0.71 �0.55 0.69 1.0 0.77 0.37 0.37

TCB 0.06 0.93 �0.95 0.98 0.77 1.0 0.02 �0.002

NDVI 0.58 0.13 0.12 �0.02 0.37 0.02 1.0 0.62

Canopy cover 0.86 0.08 0.16 �0.04 0.37 �0.002 0.62 1.0

Note: TCA, Tasseled Cap Angle; TCD, Tasseled Cap Distance; TCW, Tasseled Cap Wetness; B5R, band 5 spectral response data; TCG, Tasseled Cap

Greenness; TCB, Tasseled Cap Brightness; NDVI, Normalized Difference Vegetation Index.
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significant amount of changes and labeled them as no-

change (stable) forest instead. In total 24 such samples were

mislabeled. The majority of those changes (19 of 24), however,

were identified as minor changes by the interpreter. Because

of the lack of ground information or high resolution data

collected immediately after the occurrence of each disturbance,

here the distinction between major and minor disturbances

was determined by visually checking the post-disturbance

Landsat images. After a minor disturbance, the post-

disturbance pixels are brighter and less green than the pre-

disturbance pixels; but they still looked similar to forest

pixels. For a major disturbance caused by clear cut or other

stand replacing events, however, the post-disturbance pixels

looked completely different from forest pixels.

Most of the errors located below the diagonal of the

confusion matrix (Table 4), indicate that many early-year

disturbances in the visual interpretation were mapped as

disturbances in later years by the trajectory-based algo-

rithm. Examination of the 20 points that had this problem

indicated that 13 of the points had a minor disturbance in

an early year followed by a major disturbance in a later

year, which was detected correctly by the algorithm. This

indicates, in spite of the errors below the diagonal in

Table 4, the majority of the changes mapped by the

algorithm were disturbances that had actually occurred.

Disturbance class separability

The fraction images derived from the SMA provided

useful information on the disturbance classes spectral

characteristics (i.e., disturbance, disturbance followed by

revegetation, ongoing revegetation, and revegetation to a

stable state; Figures 6 and 7 in the study area). The images

show clear differentiation in abundances between sunlit

canopy, NPV, shade, and exposed soil. NPV and shade

fractions were higher in the disturbance and disturbance

followed by revegetation classes, with lower vegetation

content (Figure 7).

The class disturbance, followed by revegetation, showed

the highest NPV fraction values (mean � 13%), whereas

ongoing revegetation and revegetation to stable state classes

had similar NPV mean values (mean � 3.9% and 3.2%,

respectively (Figure 7)). The main difference between the

ongoing revegetation class and disturbance followed by

revegetation class is in the sunlit canopy fraction. The

ongoing revegetation class showed a lower shade fraction

(mean � 38.3%) content than the disturbance followed by

revegetation classes (mean � 56.6%).
The ongoing revegetation class resulted in a lower

shade fraction (mean � 38.3%) and higher sunlit canopy

(mean � 56.4%) when compared with stable forest. This

ongoing revegetation class generally includes the earliest

disturbed forest areas undergoing regeneration. The shade

fraction values are typically high across all successional

stages (Figure 7).

Table 5 shows the fraction statistics for disturbance,

disturbance followed by revegetation, ongoing revegetation,

and revegetation to a stable state, as represented by the

stable forest class. Means with the same superscript letters

showed no significant statistical differences (Tukey test, p B

0.01), whereas different superscript letters indicate difference

Figure 5. Fitted trajectories representing the disturbance classes based on Landsat spectral trajectories (left) and

disturbance year map (right). In the legend each year number represents a disturbance year in the study area.
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Figure 6. SMA estimates of image fractions for four endmembers in the study area (a) sunlit canopy, (b) non-

photosynthetic vegetation (NPV), (c) shade, and (d) exposed soil.

Figure 7. Mean values of fraction images summarized within disturbance classes.
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# 2014 Government of Canada 535

C
an

ad
ia

n 
Jo

ur
na

l o
f 

R
em

ot
e 

Se
ns

in
g 

D
ow

nl
oa

de
d 

fr
om

 p
ub

s.
ca

si
.c

a 
by

 N
at

ur
al

 R
es

ou
rc

es
 C

an
ad

a 
on

 0
3/

20
/1

4
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 



between class means. These statistical results show that

sunlit canopy, NPV, shade, and exposed soil fractions are

each sensitive to forest disturbance.

Further, to determine canopy cover variability between

disturbance classes and assess if a particular stand canopy

cover condition will result based on disturbance history, we

compared canopy cover estimates between disturbance

classes. In this instance, the mean airborne lidar-derived

canopy cover showed clear differentiation between distur-

bance classes (Figure 8). The analysis of variance indicated

significant differences among the disturbance class canopy

cover estimates with F(4245) � 9.608, p B 0.01. Denser

canopy cover was observed in ongoing revegetation and

revegetation to stable state classes, whereas canopy cover

decreased substantially in disturbance and disturbance

followed by revegetation classes (Figure 8).

Performance of Landsat spectral indices and SMA

endmember fractions for estimating disturbance class canopy
structure

Landsat spectral indices (i.e., brightness, greenness, wet-

ness, TCA, TCD, NDVI, and band 5 spectral response data

(B5R)) and the SMA endmember fractions (i.e., sunlit

canopy, NPV, exposed soil, and shade) were separately

modeled to estimate lidar-derived mean canopy cover and

height data within each disturbance class using multiple

regression. Different errors for estimating lidar-measured
canopy cover and height using Landsat spectral character-

istics in each forest disturbance class are shown in (Table 6

and 7). The canopy cover regression models developed using

spectral indices provided better R2 than those using SMA

endmember fractions (Table 6). In this study, the best

canopy cover estimate of R2 0.82 and RMSE 0.09 was

obtained for the stable forest class using spectral indices.

The next best canopy cover estimate of R2 0.77 and RMSE
0.16 was obtained for the revegetation to a stable state class

again using spectral indices. Similarly, independent variables

derived from spectral indices resulted a relatively better

canopy height estimation than SMA endmembers with the

best mean canopy height estimation of R2 0.67 and RMSE

3.21 obtained for the stable forest class. However, the second

best canopy height estimation was obtained using SMA

endmembers with R2 0.60 and RMSE 4.19.
All regression models developed for the stable forest class

performed better than those developed for other forest

disturbance classes. Overall, improved estimation accuracy

was obtained for canopy cover compared with canopy

height. In addition, a strong and significant correlation

coefficient was obtained for canopy cover (r � 0.60), with

lower though still significant correlations between lidar-

derived canopy height with the Landsat trajectory derived
disturbance classes (r � 0.53). This suggests a moderately

strong relationship between disturbance classes and the

predicted variables (canopy cover and height), as expected.

Discussion

Airborne lidar-derived forest canopy structure and time-

series of Landsat data were used to relate disturbance class

spectral characteristics and terminal canopy structural

conditions that characterize forest dynamics in several
coastal British Columbia stands. Relatively dense forest

stands showed higher Landsat-based TCA values than more

open stands or bare soil (see also Gomez et al., 2011; White

et al., 2011). Our study has confirmed that, as all Landsat

Table 5. Means and standard deviations for forest disturbance classes.

Disturbance

Disturbance followed

by revegetation Ongoing revegetation

Revegetation to a

stable state Stable forest

Class Mean

Standard

deviation Mean

Standard

deviation Mean

Standard

deviation Mean

Standard

deviation Mean

Standard

deviation

Sunlit canopy 19a 5 24a 4 56b 7 54c 5 51c 3

Non-photosynthetic

vegetation

11a 3 13a 3 4b 1 3bc 2 2c 1

Shade 60a 4 56a 3 38b 5 41bc 3 45d 4

Exposed soil 10a 3 7a 2 2b 1 2cd 1 1.7d 1

Note: Different superscript letters represent significant statistical difference among classes using the Tukey test at p B 0.01. For example, disturbance and

disturbance followed by revegetation showed the same letter (a) meaning that their means are not significantly different using sunlit canopy, whereas ongoing

revegetation (b) and revegetation to a stable state (c) showed different letters meaning that there are significant statistical differences among them.

0 5 10 15 20 25 30 35 40

Stable forest Disturbance
Disturbance followed by revegetation Ongoing revegetation
Revegetation to a stable state

Mean Canopy Cover

Figure 8. Mean canopy cover summarized in each disturbance

class.
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sensors have the requisite bands to generate the greenness

and brightness components, TCA is particularly well suited

to long-term change detection studies that include MSS data

(e.g., Powell et al., 2010).
We used an automated curve-fitting algorithm to detect

and label forest disturbance classes using change in Landsat

TCA from 1972�2004. The classes included disturbance,

disturbance followed by revegetation, ongoing revegetation,

and revegetation to a stable state (Figure 2). The parameters

of the model fully describe the disturbance and recovery

dynamics for each pixel, and were used to create a forest

disturbance map (Figure 5). The implemented validation

approach using visual interpretation helped to determine

whether the most important parameters (change and no

change, disturbance year, and pre-observation disturbance)

that are used in the detection of the disturbance classes were

accurately identified by the algorithm. All the sampled

validation points had relatively high user’s and producer’s

accuracy values. The validation results (Table 4) show that

the trajectory-based algorithm might miss some minor

changes. However, the fact that the majority of the omission

errors were attributed to pixels that experienced minor

changes after the occurrence of a major change suggests

that omission errors for major changes should be low, and

therefore biases should be small for those major changes.

The disturbance classes, derived through the trajectory-

based disturbance characterization method, can provide a

framework for describing the recovery processes of overstory

and understory vegetation following stand level disturbance

in the study area. The disturbance classes, derived through

the trajectory-based disturbance characterization method,

can provide a framework for describing the recovery

processes of overstory and understory vegetation following

stand level disturbance in the study area. For instance, the

disturbance classes can be interpreted in terms of post-

disturbance development. In the disturbance and distur-

bance followed by revegetation classes, stand initiation starts

leading to the invasion of new stems on released sites; the

ongoing revegetation class, will mostly display vertical

stratification and competition among existing and new

stems, and understory reinitiation and development of

favourable conditions for understory species; the revegeta-

tion to stable state class, will mainly include old-growth

development and increase in canopy variability and unders-

tory development.

The results from the trajectory characterization approach

have a variety of potential uses. Because it characterizes

disturbance on an annual basis within the available Landsat

time series, disturbance events can be more explicitly linked

with year-to-year changes for forest management purposes.

In addition, by detecting disturbance and recovery stages,

the approach provides a better understanding of the

evolving landscape for employing various land management

techniques. Compared with other currently available dis-

turbance characterization methods the approach used in this

study provides easily interpretable parameters. The exam-

ination of these parameters and their relationship with forest

structure can indicate how disturbance history relates to

terminal structure conditions.

However, some concern might arise on the validity of the

assumption of this trajectory characterization approach to

use an implicit null-hypothesis to identify no-change areas.

In addition to the discussed validation results obtained in

this study, in response to such concerns previous studies

Table 6. Summary of canopy cover regression models.

Landsat spectral indices and

transformations SMA endmembers

Disturbance type R2 RMSE R2 RMSE

Intact 0.82 0.09 0.71 0.24

Disturbance 0.54 0.36 0.44 0.41

Disturbance followed by revegetation 0.6 0.21 0.49 0.36

Ongoing revegetation 0.74 0.18 0.66 0.31

Revegetation to a stable state 0.77 0.16 0.69 0.31

Table 7. Summary of canopy height regression models.

Landsat spectral indices and

transformations SMA endmembers

Disturbance type R2 RMSE R2 RMSE

Intact 0.67 3.21 0.60 4.19

Disturbance 0.34 1.66 0.27 2.70

Disturbance followed by revegetation 0.42 2.32 0.21 1.54

Ongoing revegetation 0.42 3.25 0.34 2.99

Revegetation to a stable state 0.59 3.59 0.49 2.59
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examined the strength of this assumption by assessing the

overall change�no-change agreement between results ob-

tained using this approach and a human interpreter in a

mixed forest and they found 90% agreement between the

two methods.

In this study SMA was used to extract the spectral

characteristics for each disturbance class then the fractions

were used to analyse the class separability between the

Landsat trajectory derived disturbance classes. First, we

compared the endmember abundances among disturbance

classes. The fraction images derived from the SMA

provided useful information on the disturbance classes

spectral characteristics offering a clear distinction between

disturbance classes in abundances between sunlit canopy,

NPV, shade, and exposed soil. At the scale of disturbance

class, the stable and undisturbed forest was characterized

by a mixture of sunlit canopy (mean � 51.4%), shade

(mean � 44.6%), NPV (mean � 2.3%), and exposed soil

(mean � 1.7) (Figure 7). The highest green vegetation

fraction value was found in the ongoing revegetation class

(mean � 56.4%), followed by the revegetation to stable

state class (mean � 54.3%). This pattern was interpreted to

occur in this area because of the forest gaps caused by

disturbance processes. The shade fraction values are

typically high across all successional stages. The shade

values are a proportional value in the mixture present for

each class and can be explained by a number of scenarios,

each of which has a spatial and temporal consideration.

Following immediately after harvest shade values can be

expected to be low. Once succession begins with shrubs and

other emergent vegetation, the relationships begin to

become more complex. Management activities such as

partial harvesting and natural gap development processes

will both serve to alter the shade conditions for more

mature managed and unmanaged stands. The SMA shows

that the sunlit canopy fraction tended to decrease as a

function of disturbance recovery (Figure 7). Similarly at the

lidar scale, this change in sunlit canopy is explained by a

decrease in the amount of canopy cover. The mean lidar-

derived canopy cover estimates suggest that canopy cover

decreased from approximately 34.2% in the ongoing forest

regeneration areas to 13.5% in the disturbed areas (Figure

8). Although there was a notable decline, canopy cover

exhibited little variation between disturbance and distur-

bance followed by revegetation classes, indicating the slower

rate of regeneration within the two classes after distur-

bance. Similar small amount variations are also shown

between the ongoing revegetation and revegetation to stable

state classes, signifying the presence of post-disturbance

dense canopy cover in these classes. Canopy cover did not

reach stable forest equivalence until stands were in the

ongoing revegetation and revegetation to stable state

classes. The stable forest class shows lower mean canopy

cover compared with ongoing revegetation and revegetation

to stable state classes, this can be attributed to the more

established structure of the stable forest class which

remained intact for the last 40 years or more with the

understory areas near gaps having somewhat lower regen-

eration densities than the ongoing revegetation and reve-

getation to stable state classes. These disturbed forests tend

to have trees closer spaced than intact forests and contain

more undergrowth, which might have contributed to the

obtained higher mean canopy cover for these two dis-

turbance classes. Overall, denser canopy cover was observed

in ongoing revegetation and revegetation to stable state

classes, whereas canopy cover decreased substantially in

disturbance and disturbance followed by revegetation

classes. The analysis of variance conducted in this study

indicated significant differences among the disturbance

class canopy cover estimates with F(4245) � 9.608, p B

0.01. Similar to the SMA endmembers, the mean airborne

lidar-derived canopy cover showed clear differentiation

between the Landsat trajectory derived disturbance classes

(Figure 8).

Next, to further evaluate if the Landsat trajectory derived

disturbance classes could be separated from each other we

performed multicomparison of means between the distur-

bance classes. The result from the pair-wise comparisons of

disturbance classes using the Tukey test (Table 5) indicates

sunlit canopy fraction was not significantly different be-

tween stable forest and revegetation to a stable state class.

These two classes, however, were significantly different from

ongoing revegetation, disturbance followed by revegetation,

and disturbance classes. The ongoing revegetation class

could also be separated from revegetation to a stable state

and stable forest classes with the sunlit canopy fraction. The

NPV, shade, and exposed soil fractions showed results

similar to the sunlit canopy fraction, except that NPV and

shade fractions showed the classes ongoing revegetation and

revegetation to stable state were not significantly different

from each other. The shade fraction comparisons showed

that stable forest class could be separated from revegetation

to stable state class. Overall the these statistical results show

that sunlit canopy, NPV, shade, and exposed soil fractions

are each sensitive to forest disturbance.

In this study, after we used Landsat spectral indices and

SMA endmembers to characterize disturbance and to assess

the disjunction between the trajectory-based disturbance

classes, we found it prudent to evaluate the potential of

Landsat spectral indices and SMA fraction images in

estimating the terminal canopy structural conditions within

each disturbance class and to test their estimation advan-

tage. Both the variables were separately modeled to estimate

lidar-derived mean canopy cover and height data in each

disturbance class using multiple regression. The results from

the regression analysis indicate canopy cover and height

regression models developed using spectral indices provided

a relatively better estimation than those using SMA end-

member fractions (Tables 6 and 7). The best canopy cover

estimate of R2 0.82 and RMSE 0.09 was obtained for the

stable forest class using spectral indices as independent

variables. Compared with the relatively regular structure of
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fully grown undisturbed (stable) forests, the other forest

disturbance classes typically exhibit complex irregular

structure, making it more difficult to accurately estimate

their canopy cover and height. As a result, all models

developed for the stable forest class, performed better than

those developed for other forest disturbance classes. In this

study, improved estimation accuracy was obtained for

canopy cover compared with canopy height since canopy

cover is more closely associated with the two-dimensional

satellite data. The best mean canopy height estimation of R2

0.67 and RMSE 3.21 was obtained for the stable forest class

using Landsat spectral indices. Similarly, our results also

indicated moderately accurate predictions of lidar-derived

canopy height can be obtained using the Landsat-level

disturbance class endmember fractions with R2 0.60 and

RMSE 4.19.

The multiple regression analysis indicates accurate pre-

dictions of lidar-derived canopy cover can be obtained from

the disturbance class Landsat spectral indices and end-

member fractions. This indicates an interesting potential for

lidar and Landsat integration, with the identification of

disturbance classes, to estimate other biophysical properties

of disturbed forests. Future work will integrate airborne

lidar and Landsat time series data to map forest structure

over larger areas and will consider disturbance and recovery

trajectories over a broader range of environmental condi-

tions and disturbance types.

Conclusion

In this study, we investigated the use of an automated

trajectory-based disturbance characterization method to

characterize forest disturbance through the full temporal

depth of the Landsat archive. To obtain insights on the

linkage between disturbance history and forest structure, we

investigated Landsat-derived spectral trajectories as predic-

tive of structural conditions as captured with lidar data.

SMA fractions were used to analyse the class separability

between the Landsat trajectory derived disturbance classes

and the fraction images provided useful information on the

disturbance classes spectral characteristics showing clear

differentiation in abundances of endmembers between dis-

turbance classes. We also assessed how disturbance history

relates to terminal canopy structural conditions by inter-

preting the relationship between lidar-derived canopy struc-

ture and forest disturbance trajectories derived from

Landsat time series. Spectral indices and SMA fractions

were extracted within Landsat trajectory derived distur-

bance classes to estimate the terminal canopy structural

condition (cover and height) for each disturbance class using

multiple regression. This study showed forest structural

conditions can be related to a complex suite of stand

development trajectories and processes. Our results indi-

cated improved estimates of forest canopy cover and height,

particularly for the undisturbed or stable forest stands, can

be obtained using spectral indices. Compared with the

relatively regular structure of fully grown undisturbed

(stable) forests, the other disturbance classes are found to

be more difficult to model due to their complex irregular

structure. Based on a comparison with SMA fraction-

derived models, the use of spectral indices yielded relatively

lower RMSE than SMA fraction-derived models for both

canopy cover and height estimates. This study demonstrated

the potential of using the 40-year record of Landsat

observations to estimate forest canopy cover and height,

especially when using pre-stratification of the study area

based on disturbance classes.
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