

Modeling Water Flux for a Coastal British Columbia Fertilized & Unfertilized Douglas fir Mid-Chronosequence Plantation

Phillip E. Reynolds*, Gord Brand, Natural Resources Canada, Canadian Forest Service, 1219 Queen Street East, Sault Ste Marie, Ontario P6A 2E5

Andy Black, University of British Columbia, Vancouver, British Columbia V6T1E4

The British Columbia coastal Flux sites

 established to examine Carbon sequestration in a chronosequence of Douglas fir forest sites ranging from new forest clearcuts and young plantations to mature forest stands
 DF49, Mature stand established 1949; harvested January 2011
 HDF88, Mid-chronosequence stand established 1988
 HDF00, Youngest chronosequence stand established 2000

Forest Fertilization:

All three sites fertilized January/February 2007
 Stands divided into fertilized & non-fertilized areas

Fertilizer applied by hand around base of selected trees


Rate of application = 200 Kg N/ha

DF49

HDF88

HDF88

HDF00

 To quantify seasonal water flux (forest canopy transpiration/sapflow) for a chronsequence of coastal Douglas fir stands

 To determine if seasonal canopy water flux differences exist for fertilized (F) versus non-fertilized (NF) Douglas fir stands

To provide data to be compared with other methods such as eddy covariance measures

Methods:

 Measurements at HDF88 intermediate chronosequence site

TDP-30 probes installed in paired trees from both fertilized and non-fertilized stands
32 paired trees (16 F & 16 NF) selected ranging in diameter (dbh) from 7.0 to 24.4 cm dbh
Measured May through September, 88 days

HDF88

Setup in Non-Fertilized Area

Sample Tree

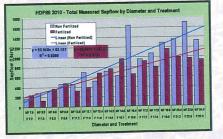
Results & Conclusions

Preliminary fertilization effects were examined by pairing non-fertilized (NF) and fertilized (F) trees of similar or same diameter
Linear regression lines were fitted to both sets of data, NF & F, and slopes of lines compared for any treatment difference
Fitted lines yielded significant r2 values of 0.810 (NF) & 0.814 (F) for total measured flow for all trees over the 88-day measurement period
The slopes of the two lines were not parallel and crossed at around 9.9 cm dbh

Below 9.9 cm, the F line was higher than that for NF trees, and with higher sapflow

Above 9.9 cm, the NF line was higher than that for F trees, and with higher sapflow

•Using a paired tree approach, the results were variable, some pairs showing a positive fertilizer response, others negative, and some flipping during the growing season


Most pairs responded positively to the 1-time fertilization up through 14 cm dbh

 Larger trees responded negatively to F, F trees having lower sapflow than their NF counterparts

 Results suggest that trees are most responsive to being fertilized when they are small in diameter prior to crown closure & the onset of intense intraspecific competition

 Smaller trees can profit from being fertilized, resulting in higher sapflow, and likely higher rates of Carbon assimilation

Once crowns close, F profitability may diminish

Further Work

 Data will be combined with daily diurnal meteorological data in order to estimate water and Carbon flux on a per hectare basis for differing age chronosequences
 Similar measurements for HDF00 in 2011

*Corresponding Authors preynold@nrcan.gc.ca andrew.black@ubc.ca

Sample Trees