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ABSTRACT	23	

Food	and	habitat	resources	are	critical	components	wildlife	management	and	24	

conservation	efforts.	Grizzly	bear	(Ursus	arctos)	have	diverse	diets	and	habitat	25	

requirements	particularly	for	understory	plant	species	which	are	impacted	by	human	26	

developments	and	forest	management	activities.	In	this	paper	use	Light	Detection	and	27	
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Ranging	(LiDAR)	data	to	predict	the	occurrence	of	14	understorey	plant	species	28	

relevant	to	bear	forage	and	compare	our	predictions	to	more	conventional	climate‐	and	29	

land	cover‐based	models.	We	use	boosted	regression	trees	to	model	each	of	the	14	30	

understory	species	across	4435	km2	using	occurrence	(presence‐absence)	data	from	31	

1,941	field	plots.	Three	sets	of	models	were	fitted:	climate‐only,	climate	and	basic	land	32	

and	forest	cover	from	Landsat	30m	imagery,	and	third	a	climate	and	LiDAR‐derived	33	

model	describing	both	the	terrain	and	forest	canopy.	Resulting	model	accuracies	varied	34	

widely	among	species.	Overall,	8	of	14	species	models	were	improved	by	including	the	35	

LiDAR‐derived	variables.	For	climate‐only	models,	mean	annual	precipitation	and	frost‐36	

free	period	were	most	important	variables.	With	inclusion	of	LiDAR‐derived	attributes,	37	

Depth	to	water	table,	terrain‐intercepted	annual	radiation,	and	elevation	were	most	38	

often	selected.	This	suggests	fine‐scale	terrain	conditions	affect	the	distribution	of	the	39	

studied	species	more	than	canopy	conditions.	40	

	41	

Keywords:	42	

LiDAR,	Species	distribution	modelling,	Grizzly	bear	(Ursus	arctos),	Understory	43	

vegetation.	44	
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1. Introduction	46	

Developing	a	comprehensive	understanding	of	food	and	habitat	resource	use	for	large	47	

mammals	is	a	critical	component	for	their	conservation	and	management,	as	well	as	for	48	

assessing	cumulative	effects	of	human	impacts	and	estimating	habitat‐based	carrying	49	

capacities	for	species	of	management	concern	(Gordon	et	al.,	2004).	This	is	particularly	50	

true	for	grizzly	bear	(Ursus	arctos)	populations	in	western	Alberta,	Canada	where	resource	51	

extraction	is	expanding	(e.g.,	forestry,	exploration	and	mining,	and	urban	expansion)	along	52	

with	human	use	of	the	landscape,	resulting	in	concern	for	the	long	term	survival	of	the	53	

species	in	this	region	(Clark	et	al.,	1996;	Nielsen	et	al.,	2006;	S.	Nielsen	et	al.,	2004;	Nielsen	54	

et	al.,	2008).	55	

	56	

Grizzly	bears	are	considered	habitat	generalists	(Schwartz	et	al.,	2003)	with	diverse,	57	

seasonal	diet	and	habitat	requirements.	Within	this	region,	optimal	habitat	is	a	mosaic	of	58	

forested	and	non‐forested	areas	(S.	E.	Nielsen	et	al.,	2004a).	Large	gaps	within	forest	59	

stands,	alpine	meadows,	and	areas	regenerating	after	fire	offer	bears	an	abundance	of	60	

understory	species,	including	seasonal	fruits,	ants,	ungulates,	green	herbaceous	vegetation,	61	

roots,	other	subterranean	foods,	and	grasses	which	can	form	a	major	part	of	the	species	62	

diet	for	at	least	some	part	of	the	year	(Martin,	1983;	Munro	et	al.,	2006;	Zager	et	al.,	1983).	63	

Forest	harvesting	can	provide	similar	habitat,	as	regenerating	stands	share	many	64	

understory	species.	As	a	result,	forest	cutblocks	provide	an	alternate	habitat	resource	to	65	

otherwise	open	areas	(Benn	and	Herrero,	2002;	S.	Nielsen	et	al.,	2004).	However,	ongoing	66	

forestry	and	resource	extraction	activity	is	also	a	threat	to	grizzly	bears;	management	67	

agencies	within	Alberta	are	actively	trying	to	balance	economic	development	needs	with	68	

the	conservation	needs	of	the	species	(Wilkinson	et	al.,	2008).	Key	to	this	conservation	69	

priority	is	a	comprehensive	understanding	of	how	food	resource	availability	and	70	

abundance	may	vary	in	response	to	forest	management,	where	the	ultimate	goal	is	to	71	

better	understand	the	observed	habitat	use	of	bears	in	western‐central	Alberta,	Canada	(S.	72	

E.	Nielsen	et	al.,	2004b).	73	

	74	

Grizzly	bears	have	three	distinct	foraging	seasons:	hypophagia,	early	hyperphagia,	and	late	75	

hyperphagia	(Nielsen	et	al.,	2006).	During	hypophagia,	grizzly	bears	in	our	study	area	feed	76	
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on	the	roots	of	Hedysarum	spp.	(sweetvetch)	and	other	early	herbaceous	material.	During	77	

early	hyperphagia,	their	diet	extends	to	green	herbaceous	material	such	as	Heracleum	78	

lanatum	(cow‐parsnip)	and	Equisetum	spp.	(horsetail),	while	in	the	later	season	berries	79	

such	as	Shepherdia	canadensis	(buffalo	berry)	and	Vaccinium	spp.	(huckleberry,	blueberry,	80	

and	lingonberry)	make	up	the	majority	of	their	diet.	As	fruit	availability	declines	in	the	fall,	81	

grizzly	bears	once	again	dig	for	sweetvetch	roots	(Munro	et	al.,	2006;	Nielsen	et	al.,	2010,	82	

2006,	2005).	While	animal	matter	and	insects	are	an	important	food	resource	for	grizzly	83	

bears	during	spring	and	early	summer,	the	variety	of	vegetable	matter	(including	roots,	84	

forbs,	and	fruit)	makes	up	the	majority	of	their	diet	between	late	June	and	early	October.		85	

A	comprehensive	understanding	of	the	horizontal	distribution	of	understory	flora	is	86	

required	to	accurately	predict	wildlife‐habitat	relationships	(Linderman	et	al.,	2005;	87	

Lindzey	and	Meslow,	1977;	MacArthur	and	MacArthur,	1961;	Roughgarden	et	al.,	1991).	88	

Neglecting	to	consider	the	influence	of	understory	vegetation	in	broad‐scale	habitat	studies	89	

has	limited	the	relevance	of	fine‐scale	monitoring	of	animals(e.g.,	radio	collar	movement	90	

data)	for	accurate	conservation	and	management	planning	(Linderman	et	al.,	2005).	91	

Remote	sensing	vegetation	studies	provide	the	opportunity	to	bridge	this	gap.	92	

The	distribution	of	these	plant	species	is	influenced	by	local	landscape	conditions	and	93	

canopy	structure	(S.	E.	Nielsen	et	al.,	2004a).	For	example,	many	berry	species	have	higher	94	

yields	in	open	canopies,	while	plant	species	(e.g.,	clover	and	dandelions)	thrive	in	recently	95	

opened	areas	such	as	forest	clearings	associated	with	anthropogenic	disturbance.	The	most	96	

common	approaches	to	species	abundance	and	occurrence	modelling	rely	on	empirical	97	

correlations	with	environmental	variables	to	develop	“niche”	or	“bioclimatic	envelope”	98	

models	(Austin,	1985;	Iverson	and	Prasad,	1998;	Mckenzie	et	al.,	2003;	Thuiller	et	al.,	99	

2008).	These	models	usually	empirically	relate	presence	/	absence	data	to	environmental	100	

variables,	most	often	with	climate	(but	sometimes	including	soil	and	physiographic	101	

features),	using	an	array	of	statistical	methods	including	multiple	regression	techniques,	102	

neural	networks,	and	regression	tree	analysis	(Iverson	and	Prasad,	2001).	Climate	surfaces	103	

are	effective	predictors	of	broad	scale	patterns	and	a	number	of	studies	have	linked	climate	104	

and	land	cover	information	derived	from	optical	remote	sensing	data	(Nielsen	et	al.,	2010,	105	

2003),	such	as	forest	cover	classes	derived	from	Landsat	Thematic	Mapper	imagery	106	
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(Mcdermid,	2005).	Land	cover	attributes	derived	from	optical	remote	sensing	have	been	107	

shown	to	increase	the	predictive	power	of	models,	but	they	are	still	unable	to	fully	108	

represent	the	fine	scale	processes	related	to	stand	and	canopy	conditions,	particularity	in	109	

areas	where	forest	management	regularly	changes	the	structure	of	the	forest.		110	

Light	detection	and	ranging	(LiDAR),	is	an	increasingly	well	understood	and	established	111	

remote	sensing	technology	which	is	able	to	detect	both	topographic	and	canopy	features	112	

within	forest	ecosystems	at	previously	unavailable	levels	of	accuracy	(Wulder	et	al.,	2008).	113	

Airborne	LiDAR	systems	function	by	emitting	and	receiving	laser	energy	that	measure	114	

distance	to	target	surfaces.	Laser	systems,	when	combined	with	Global	Positioning	Systems	115	

(GPS)	and	orientation	systems	(e.g.,	Inertial	Navigation	Systems),	allow	the	location	of	116	

surfaces	intercepted	by	the	beam	to	be	precisely	computed	(Gaveau	and	Hill,	2003)	with	117	

vertical	and	horizontal	accuracies	approximately	within	40	cm	(Davenport	et	al.,	2004).	118	

Especially	for	understory	applications,	a	key	advantage	of	LiDAR	over	conventional	optical	119	

remote	sensing	imagery	(such	as	Landsat,	or	high	spatial	resolution	imagery,	like	Quickbird	120	

and	Worldview)	is	the	ability	to	describe	the	canopy	structure	in	three	dimensions	121	

including	information	on	areas	otherwise	obscured	by	the	tree	canopy.		122	

LiDAR	data	has	shown	promise	in	estimating	understory	structural	attributes	despite	there	123	

being	a	limited	number	of	studies	of	which	most	are	associated	with	fire	fuel	prediction.	124	

Seielstad	and	Queen(2003)	investigated	the	potential	of	using	LiDAR	data	to	quantify	fuel	125	

for	a	widely	applied	fuel	model.	Riaño	et	al.	(2003)used	cluster	analysis,	based	on	the	126	

minimum	Euclidean	distance,	to	distinguish	understory	from	overstory	returns	in	a	mixed	127	

conifer	and	deciduous	two‐tiered	forest.	Maltamo	et	al.	(2005)	applied	regression	models	128	

to	estimate	the	number	and	mean	height	of	suppressed	understory	trees	in	a	boreal	forest	129	

using	LiDAR	data	with	r2	values	of	0.87	and	0.76,	respectively.	130	

This	study	aims	to	evaluate	the	integration	of	LiDAR	data	into	large	area	studies	on	species	131	

distribution.	To	do	so	we	assess	the	effectiveness	of	using	LiDAR	remote	sensing	data	to	132	

predict	species	occurrence	for	14	understory	plant	species	relevant	to	bear	habitat	and	133	

food.	We	compare	these	to	more	conventional	climate‐	and	land	cover‐based	models	of	134	

species	occurrence	to	evaluate	whether	LiDAR	data	improves	our	understanding	of	the	135	
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local	distribution	of	bear	foods.	We	compiled,	and	derived	a	number	of	topographic	and	136	

canopy	metrics	from	airborne	LiDAR	data,	and	combined	them	with	climate	and	land	cover	137	

data,	to	model	the	distribution	of	14	key	plant	species	in	the	Alberta	foothills	region.	Model	138	

performance	and	spatial	patterns	of	the	three	sets	of	models	were	compared.	In	addition	139	

we	assessed	variable	importance	within	the	models	to	increase	our	understanding	of	the	140	

main	environmental	drivers	on	plant	distribution	in	the	study	area	and	our	ability	to	141	

capture	those	drivers	in	different	data	sources.		142	

	143	

2.	Materials	and	Methods	144	

2.1	Study	area:	145	

The	study	area	is	situated	in	the	Rocky	Mountains	and	Foothills	area	in	western	Alberta	146	

stretching	from	the	North	Saskatchewan	River	(Highway	11)	in	the	south	to	Grande	Prairie	147	

in	the	north,	with	elevations	ranging	between	600m	and	3300m.	Variations	in	climate	and	148	

topography	generate	a	vegetation	species	gradient	from	the	south	west	to	the	north	east.	149	

Higher	elevation	and	rugged,	conifer‐dominated	forests	of	the	Subalpine	and	Upper	150	

Foothills	transitions	to	a	lower	elevation,	gently	rolling	terrain	that	is	characteristic	of	the	151	

Lower	Foothills	and	Central	Mixedwood	subregions.	Generally	the	overstory	structure	of	152	

the	stands	is	relatively	simple,	with	regeneration	after	large	wildfires	common.	As	a	result	153	

stand	structure	is	relatively	constant	with	respect	to	age	(Cieszewski	and	Bella,	1989;	154	

Kirby,	1975)	The	dynamics	of	forest	stand	height	and	cover	increase	quickly	when	the	155	

stand	is	younger,	slowing	considerably	when	the	stand	is	older.	156	

2.2	Plant	distribution	data	157	

Field	data	were	collected	between	the	years	2001	and	2008	as	part	of	the	Foothills	158	

Research	Institute	Grizzly	Bear	Project	(Figure	1).	In	total,	2,338	plots	were	sampled	as	159	

described	in	detail	by	Nielsen	et	al.	(2010;	2004),	within	a	study	area	of	4435	km2.	160	

Vegetation	was	sampled	at	5	places	(0,5m2)	on	20m	transect.	The	transect	center	was	161	

registered	by	GPS	with	an	accuracy	within	10m.	To	avoid	issues	with	the	temporal	162	

differences	between	collection	of	the	plot	and	remotely	sensed	data,	we	utilised	a	Landsat‐163	

derived	disturbance	layer	(Hilker	et	al.,	2009)	which	provided	information	on	recent	164	
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harvest	and	fire	events	within	the	region.	All	plots	which	occurred	in	recently	disturbed	165	

areas	and	areas	disturbed	between	the	plot	visit	and	remote	sensing	data	acquisition	were	166	

excluded	from	the	analysis,	as	were	plots	outside	of	the	LiDAR	coverage	(429	excluded,	167	

1,944	plots	used).	Fourteen	species	formed	the	basis	of	the	analysis	including	species	168	

important	for	root	digging,	herbivory,	and	fruiting	(Table	1).		169	

	170	

Figure	1:	Overview	of	the	study	area	and	plot	locations.	The	black	square	indicates	the	area	171	
displayed	in	species	specific	figures	(Figure	2).	172	

	173	

Table	1:	Focus	understory	plant	species		174	

Scientific	name	 Common	name	 Plots	Present	

Root	digging	

Hedysarum	alpinum	 alpine	sweetvetch	 7.6%	
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Lathyrus	ochroleucus	 creamy	peavine	 5.9%	

Herbivory	

Equisetum	arvense	 Horsetail	 21.3%	

Heracleum	lanatum	 cow‐parsnip	 6.2%	

Taraxacum	officinale	 dandelion	 18.2%	

Frugivory	

Arctostaphylos	uva‐ursi	 bearberry	 12.9%	

Fragaria	virginiana	 wild	strawberry	 38.3%	

Rosa	acicularis	 prickly	rose	 32.5%	

Rubus	idaeus	 wild	red	raspberry	 13.5%	

Rubus	pedatus	 five	leaf	bramble	 9.4%	

Shepherdia	Canadensis	 buffaloberry	 8.7%	

Vaccinium	caespitosum	 dwarf	blueberry	 24.4%	

Vaccinium	vitis‐idaea	 lingonberry	 38.8%	

Viburnum	edule	 highbush	cranberry	 8.8%	
	175	

2.3	Environmental	Covariates	176	

Climate:	Spatial	predictors	of	the	region	included	a	number	of	seasonal	and	annual	climate	177	

variables	which	were	derived	from	long	term	(1961‐1990)	climate	records,	using	the	178	

CLIMATE‐WNA	(Wang	et	al.,	2012)	which	uses	a	PRISM	down‐sampling	(Daly	et	al.,	1993)	179	

approach	to	create	surfaces	at	a	500*500m	resolution.	These	included	mean	maximum	and	180	

minimum	temperature,	growing	degree	days	(base	0°C),	frost	free	period,	mean	annual	181	

precipitation	during	the	growing	season,	and	summer	moisture	index	(Table	2).		182	

	183	

Table	2.	Environmental	covariates	utilised	in	Boosted	Regression	Tree	Modelling	184	

Range	 	unit	

Climate	
max	mean	maximum	monthly	
temp.	 10.3 –	 22.6	 °C	
min	mean	minimum	monthly	
temp.	 ‐18.9 –	 ‐16.1	 °C	
degree	days	base	0°C	 1134.0 –	 2014.0	 days	*	°C	
frost	free	period	 46.4 –	 101.4	 days	
growing	season	precipitation	 377.5 –	 532.7	 mm	
mean	annual	precipitation	 516.9 –	 965.9	 mm	
summer	moisture	index	 0.2 –	 3.0	 –	

Forest	
landcover	class	(14	classes)	 0 –	 13	 categorical	
regenerating	forest	mask	 0 –	 1	 binary	
canopy	cover	 0.0 –	 95.0	 %	
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percent	conifers	 0.0 –	 99.0	 %	
Lidar	

Max	height	above	ground	 0.1 –	 35.1	 meter	
Mean	height	above	ground	 0.0 –	 17.7	 meter	
05th	percentile	 ‐0.6 –	 0.9	 meter	
50th	percentile	 0.0 –	 21.0	 meter	
95th	percentile	 0.0 –	 27.7	 meter	
fraction	points	above	2m	 0.0 –	 94.1	 %	
relative	height	ratio		 0.0 –	 0.7	 –	
Skewness	 ‐2.2 –	 21.4	 –	
standard	deviation	 0.0 –	 11.2	 meter	
Elevation	 858.9 –	 2266.6	 meter	
Slope	 0.1 –	 40.3	 degrees	
Aspect	 0.0 –	 360.0	 degrees	
terrain	solar	index	 0.9 –	 2.0	 –	
canopy	solar	index	 1935.0 –	 2618.0	 –	
canopy	and	terrain	solar	index	 2218.0 –	 3810.0	 –	
Wet	Area	Map	 0.0 –	 257.0	 meter	
	185	

Land	and	Forest	Cover:	Landsat‐derived	land	cover	information	was	available	for	the	study	186	

region	and	included	information	on	land	cover,	canopy	cover	(%),	and	percent	of	pixel	187	

dominated	by	conifer	overstory	species	(McDermid	et	al.,	2009)	The	products	were	based	188	

on	Landsat	images	acquired	between	2005	and	2009	and	have	a	30*30m	resolution,	189	

geolocation	accuracy	is	typical	within	one	pixel	(Lee	et	al.,	2004)	190	

	191	

LiDAR	Data:	LiDAR	data	were	provided	by	the	Alberta	Environment	and	Sustainable	192	

Resource	Department	(AESRD),	who	compiled	a	globally	unique	compilation	of	LiDAR	193	

datasets	acquired	from	2003	–	2008.	The	compiled	LiDAR	dataset	covers	the	majority	of	194	

the	forested	areas	of	the	Province	of	Alberta	extending	over	25	million	hectares.	The	LIDAR	195	

dataset	was	compiled	by	the	Government	of	Alberta	from	a	variety	of	sources	including	196	

forestry,	mining	and	exploration	companies.	The	extremely	large	area	covered	by	the	197	

compilation	allow	broad‐scale	environmental	issues	(such	as	species	habitat	relations)	to	198	

be	addressed.	Typical	characteristics	of	the	multiple	data	acquisitions	were	re	multiple	199	

return,	small	footprint,	acquisition	from	a	fixed	wing	platform	with	nominal	post	spacing	of	200	

approximately	0.75	points	per	square	meter,	vertical	and	horizontal	accuracies	are	201	

typically	within	40	cm	(Davenport	et	al.,	2004).To	minimise	the	impact	of	different	survey	202	

configurations	and	acquisition	dates	(e.g.,	hit	density,	or	leaf‐on/off),	the	data	were	thinned	203	

to	produce	a	consistent	1m	spacing	dataset,	which,	despite	being	lower	than	many	typical	204	
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LiDAR	datasets	(Wulder	et	al.,	2008),	ensured	consistent	density	and	coverage	over	the	205	

entire	4435	km2	study	area.	From	the	thinned	LiDAR	point	cloud,	a	bare	Earth	DEM	(Digital	206	

Elevation	Model)	and	a	canopy	height	model	were	provided	at	1m	raster	resolution.	From	207	

the	bare	Earth	DEM,	slope	aspect	and	elevation	were	extracted	for	each	plot	location.	A	208	

suite	of	forest	canopy	metrics	were	then	developed	for	each	25*25m	pixel,	including	a	209	

calculation	of	percentiles	from	5	to	the	95th	in	steps	of	5%,	where	a	given	height	percentile	210	

was	calculated	as	the	height	greater	than	a	given	percentage	of	LiDAR	first	returns	(Means	211	

et	al.,	2000)	mean	height,	maximum	height,	fraction	points	above	2m,	relative	height	212	

ratio(mean	height/	max	height),	skewness	of	the	percentile	height,	and	standard	deviation	213	

of	heights	were	also	computed	for	each	plot.	In	addition	to	the	canopy	and	topographic	214	

metrics,	information	on	the	annual	radiation	regime	for	the	bare	Earth	DEM,	canopy	height,	215	

and	terrain	and	canopy	elevation	for	each	plot	was	calculated	from	the	LiDAR	data	using	a	216	

hemispherical	viewshed	algorithm	(Fu	and	Rich,	2002;	Rich	et	al.,	1994),	which	217	

incorporates	extraterrestrial	solar	flux,	the	relative	optical	path	(determined	by	the	solar	218	

zenith	angle	and	elevation	above	sea	level),	the	duration	of	a	defined	time	interval,	and	the	219	

effect	of	the	surface	orientation	(Garnier	and	Ohmura,	1968).	Lastly,	a	Wet‐Areas	Mapping	220	

(WAM)	layer	was	available,	providing	an	estimate	of	depth	to	water	table	using	the	shape	221	

and	orientation	of	the	terrain	(White	et	al.,	2012),	the	WAM	was	based	on	the	same	LiDAR	222	

elevation	models,	created	a	1m	raster	resolution	and	resampled	to	25m.	Input	variables	223	

used	for	the	models	are	listed	in	Table	2.	For	the	LiDAR	derived	variables	we	made	a	224	

selection	capturing	different	aspects	of	terrain	and	vegetation	cover	while	limiting	the	225	

overall	number	of	variables	and	multi‐collinearity,	based	on	other	studies	including	(Coops	226	

et	al.,	2010;	Ferster	et	al.,	2009)	Previous	LiDAR	approaches	involving	the	direct	detection	227	

of	understory	structure	(Martinuzzi	et	al.,	2009;	Wing	et	al.,	2012)	was	not	possible	due	to	228	

insufficient	point	density	and	limitation	in	separating	low	vegetation	and	ground	returns	in	229	

the	compiled	dataset.	As	a	result,	overstorey	and	terrain	characteristics	were	used	as	230	

surrogate	predictors	of	understory	structure.	231	

		232	

2.4	Modelling:	Boosted	Regression	Trees	233	
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Distribution	models	were	built	for	the	14	plant	species	using	Boosted	Regression	Trees	234	

from	the	‘gbm’	package	in		R	statistical	software	(R	Development	Core	Team,	2013),	it	235	

follows	the	methods	described	in	Friedman	(Friedman,	2001,	2002).	Boosted	Regression	236	

Tree	modelling	is	a	relatively	new	technique	which	is	gaining	popularity	in	the	distribution	237	

modelling	community	(Elith	et	al.,	2008).	Benefits	include	flexibility	in	combining	different	238	

types	of	variables	(e.g.,	continuous,	categorical,	nominal),	flexibility	in	statistical	239	

distributions,	and	demonstrate	high	predictive	power	(Elith	et	al.,	2008).	Up	to	1500	240	

individual	trees	were	fit	with	a	5	level	tree	depth	and	a	learning	rate	of	0.005	to	avoid	over	241	

fitting	of	collinear	variables.	The	optimum	number	of	trees	was	selected	using	a	10	fold	242	

cross	validation	within	the	training	data.	To	verify	the	selected	model,	we	made	a	random	243	

80‐20	split	of	all	plot	data	before	the	model	building	and	calculated	model	fit	using	the	244	

separated	20%	of	the	plots.	Model	performance	was	assessed	using	the	“Area	under	the	245	

Receiver‐Operator	Characteristic	Curve"	(AUC)	(Jiménez‐Valverde,	2011)	with	values	246	

ranging	from	0.5	to	0.7	generally	viewed	as	‘low’	model	accuracy,	values	between	0.7	and	247	

0.9	considered	‘good’,	and	values	greater	than	0.9	considered	‘high’	model	accuracy	(Manel	248	

et	al.,	2001;	Swets,	1988).	The	kappa	coefficient	also	was	calculated,	although	disputed	by	249	

some	(Pontius	and	Millones,	2011)	it	is	a	widely	used	,metric	useful	particularly	in	250	

ecological	research	(see	review	by	Monserud	and	Leemans(1992)).	This	statistic	calculates	251	

the	proportion	of	specific	agreement	across	presence	and	absent	classes.		252	

	253	

3.	Results	254	

Overviews	of	the	three	sets	of	models	developed	for	the	individual	species	in	Table	3	show	255	

a	wide	variety	of	model	accuracy.	Model	AUC	values	ranged	from	0.70	–	0.85,	while	K	256	

statistic	values	ranged	between	0.09	and	0.48	(i.e.,	poor	to	moderate,	based	on	Landis	and	257	

Koch’s	(1977)	thresholds	for	the	K	statistic).	Apart	from	the	three	model	sets	shown,	we	258	

also	tested	models	using	LiDAR	or	Landsat	based	information	only,	but	these	had	poor	259	

performance	with	average	validation	AUC	around	0.65	as	they	fail	to	capture	the	larger	260	

scale	patterns	in	the	study	area.	The	most	accurately	predicted	species	was	Hedysarum	261	

alpinum	(sweet	vetch)	while	the	poorest	was	Equisetum	arvense	(horsetail).	Hedysarum	262	

alpinum	is	a	critical	spring	root‐digging	resource	for	bears,	whereas	horsetail	produces	a	263	
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high‐protein,	succulent	and	herbaceous	food	resource	at	green‐up	(Table	3).		264	

Overall,	8	of	the	14	most	accurate	species	models	were	developed	using	a	combination	of	265	

climate	and	LiDAR‐derived	variables,	with	an	average	increase	in	AUC	of	5%	and	the	266	

greatest	model	improvement	of	up	to	12%	for	Arctostaphylos	uva‐ursi	(bearberry).	For	267	

three	species,	the	most	accurate	model	derived	was	from	climate	and	broader	scale	land	268	

and	forest	cover	information,	and	three	were	equally	supported.	269	

Examining	the	spatial	predictions	of	the	species	models,	the	differences	in	the	spatial	270	

resolution	of	the	input	parameters	was	apparent.	Figure	2	shows	the	probability	of	271	

occurrence	for	a	number	of	species	for	subset	of	the	study	area	(E.arvense	(horsetail),	272	

H.alpinum	(sweet	vetch),	T.officinale	(dandelion),	and	V.vitis‐idea	(loganberry)	based	on	the	273	

3	different	sets	of	variables.	Overall,	the	coarser	nature	of	the	climate	data	(500m)	results	274	

in	a	coarse	model	output	which	is	unable	to	reflect	changes	in	forest	patterns	associated	275	

with	management	or	fine	scale	topographic	features	across	the	landscape.	In	contrast,	276	

models	developed	using	either	the	30m	Landsat‐derived	land	cover	or	the	LiDAR‐derived	277	

canopy	and	terrain	information	were	much	finer,	allowing	management	and	topographic	278	

variation	to	be	represented	in	greater	spatial	detail.		279	

	280	

Examining	variable	importance	(Figure	3)	for	the	climate‐only	models,	mean	annual	281	

precipitation	and	frost	free	period	were	selected	as	the	most	critical	variables	predicting	282	

species	occurrence	for	most	species,	followed	by	degree	days,	growing	season	283	

precipitation,	and	summer	moisture	index.	No	other	climate	variables	were	selected	as	284	

important	in	the	climate‐only	model	predictions.	When	forest	and	land	cover	variables	285	

were	added	into	the	models,	their	overall	effect	was	minor;	only	percent	conifers	were	286	

additionally	selected	as	an	important	variable	for	a	single	species	model.		287	

	288	

Table	3:	Model	results	289	

  

Training 
AUC 

Validation 
AUC 

Validation 
Kappa 

        

   Variable Importance 

    1 st  2nd  3rd  

Arctostaphylos uva‐ursi 
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Climate   0.87  0.67  0.15  Growing season Precip.  Mean annual Precip.  Frost free period 

Climate + Forest   0.89  0.69  0.26  Growing season Precip.  Frost free period  Degree days base 0 

Climate + LiDAR  0.95  0.79  0.34  Terrain Solar  Growing season Precip.  Mean annual Precip. 

Equisetum arvense 

Climate   0.80  0.69  0.20  Growing season Precip.  Mean annual Precip.  Frost free period 

Climate + Forest   0.78  0.67  0.15  Mean annual Precip.  Growing season Precip.  Frost free period 

Climate + LiDAR  0.81  0.69  0.19  Wet Area  Elevation  Mean annual Precip. 

Fragaria virginiana 

Climate   0.77  0.67  0.24  Mean annual Precip.  Degree days base 0  Growing season Precip. 

Climate + Forest   0.81  0.67  0.21  Mean annual Precip.  Degree days base 0  Frost free period 

Climate + LiDAR  0.84  0.74  0.30  Mean annual Precip.  Degree days base 0  Wet Area 

Hedysarum alpinum 

Climate   0.94  0.88  0.47  Degree days base 0  Frost free period  Mean annual Precip. 

Climate + Forest   0.94  0.89  0.46  Degree days base 0  Frost free period  Mean annual Precip. 

Climate + LiDAR  0.96  0.91  0.48  Degree days base 0  Frost free period  Mean annual Precip. 

Heracleum lanatum 

Climate   0.87  0.71  0.10  Mean annual Precip.  Frost free period  Growing season Precip. 

Climate + Forest   0.88  0.70  0.09  Mean annual Precip.  Growing season Precip.  Frost free period 

Climate + LiDAR  0.92  0.80  0.15  Wet Area  Mean annual Precip.  Slope 

Lathyrus ochroleucus 

Climate   0.82  0.73  0.10  Mean annual Precip.  Frost free period  Summer moisture index 

Climate + Forest   0.84  0.76  0.11  Mean annual Precip.  Frost free period  Degree days base 0 

Climate + LiDAR  0.94  0.76  0.21  Mean annual Precip.  Terrain Solar  top of canopy Solar 

Rosa acicularis 

Climate   0.77  0.69  0.26  Mean annual Precip.  Degree days base 0  Summer moisture index 

Climate + Forest   0.79  0.71  0.23  Mean annual Precip.  Frost free period  Degree days base 0 

Climate + LiDAR  0.84  0.75  0.32  Terrain Solar  Mean annual Precip.  Elevation 

Rubus idaeus 

Climate   0.85  0.74  0.16  Frost free period  Mean annual Precip.  Degree days base 0 

Climate + Forest   0.88  0.79  0.26  Frost free period  Mean annual Precip.  Degree days base 0 

Climate + LiDAR  0.91  0.81  0.30  Wet Area  Frost free period  Maximum Height 

Rubus pedatus 

Climate   0.84  0.79  0.20  Mean annual Precip.  Growing season Precip.  Degree days base 0 

Climate + Forest   0.87  0.84  0.27  Growing season Precip.  Mean annual Precip.  Degree days base 0 

Climate + LiDAR  0.91  0.87  0.29  Terrain Solar  Growing season Precip.  Mean annual Precip. 

Shepherdia canadensis 

Climate   0.92  0.76  0.19  Degree days base 0  Mean annual Precip.  Summer moisture index 

Climate + Forest   0.92  0.78  0.26  Degree days base 0  Frost free period  Growing season Precip. 

Climate + LiDAR  0.94  0.76  0.25  Degree days base 0  Terrain Solar  Mean annual Precip. 

Taraxacum officinale 

Climate   0.79  0.64  0.10  Mean annual Precip.  Frost free period  Growing season Precip. 

Climate + Forest   0.85  0.73  0.24  Frost free period  Mean annual Precip.  Growing season Precip. 

Climate + LiDAR  0.88  0.72  0.17  Frost free period  Mean Height  Wet Area 

Vaccinium caespitosum 

Climate   0.80  0.67  0.16  Frost free period  Mean annual Precip.  Degree days base 0 

Climate + Forest   0.83  0.72  0.24  Frost free period  Mean annual Precip.  Degree days base 0 

Climate + LiDAR  0.87  0.73  0.32  Wet Area  5th percentile  Frost free period 

Vaccinium vitis‐idaea 

Climate   0.83  0.75  0.35  Frost free period  Degree days base 0  Summer moisture index 

Climate + Forest   0.86  0.77  0.37  Frost free period  percent conifers  Degree days base 0 

Climate + LiDAR  0.89  0.77  0.38  Frost free period  Minimum monthly temp.  Elevation 

Viburnum edule 
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Climate   0.92  0.80  0.21  Frost free period  Mean annual Precip.  Degree days base 0 

Climate + Forest   0.93  0.85  0.31  Frost free period  Mean annual Precip.  Degree days base 0 

Climate + LiDAR  0.93  0.82  0.19  standard deviation  canopy Solar  Mean annual Precip. 

	290	

	291	
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Figure	2:	Probability	of	occurrence	maps	based	on	Climate	(left),	Climate	+	forest	cover	292	
(middle),	and	Climate	+	Lidar	(right)	data	for	E.arvense,	H.alpinum,	T.officinale,	and	V.vitis‐293	

idea	294	

This	result	implies	that	the	addition	of	Landsat‐scale	variables	on	land	cover	and	forest	295	

cover	do	not	add	significant	power	to	the	understory	models	in	this	area.	When	LiDAR‐296	

derived	canopy	and	terrain	attributes	were	added	to	the	models,	variable	selection	changes	297	

markedly.	A	large	number	of	LiDAR‐derived	variables	were	selected	as	important	in	model	298	

prediction.	Wet	area	information,	derived	from	the	LiDAR	DEM,	was	the	most	common	299	

variable	added	into	the	models,	selected	in	6	of	the	14	species	models.	This	was	followed	by	300	

the	annual	terrain‐intercepted	radiation	(which	is	indicative	of	radiation	regimes	imposed	301	

by	terrain)	and	then	elevation.	The	addition	of	these	three	variables	indicates	the	302	

importance	of	higher	spatial	resolution	in	terrain	patterns	as	it	affected	species	distribution	303	

models.	In	response	to	these	additions	related	to	terrain	attributes,	there	was	a	reduction	304	

in	the	importance	of	climate	variables	including	frost	free	period	and	degree	days	while	305	

annual	precipitation	remained	critical	to	model	predictions.	Of	the	LiDAR‐derived	canopy	306	

attributes,	height	and	the	solar	regime	of	the	canopy	(i.e.,	shading	of	sites	based	on	canopy	307	

cover	and	canopy	gaps)	were	selected	most	often.	308	

	309	
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Figure	3:	Frequency	of	variables	selected	in	the	top‐three	predictors	for	each	species	for	the	310	
three	model	suites.	311	

The	individual	response	graphs	of	the	most	important	variables	of	the	combined	models	312	

for	4	species	are	shown	in	Figure	4	and	indicate	the	relationship	between	species	313	

occurrence	and	environmental	drivers.	For	E.	arvense,	it	is	apparent	that	species	314	

occurrence	is	driven	by	presence	of	wet	areas	within	the	landscape	at	lower	elevations.	The	315	

H.	alpinum	model	did	not	incorporate	any	LiDAR‐derived	terrain	or	canopy	information	316	

and	had	a	bi‐modal	response	for	degree	days,	reflecting	its	occurrence	in	cold,	high	317	

elevation	meadows,	and	warmer	low	elevation	sites	in	stream	valleys.	T.	officinale	is	318	

predicted	to	occur	in	sites	with	longer	frost	free	periods	and	lower	mean	canopy	height,	319	

predominantly	in	sites	having	vegetation	cover	less	than	5m	in	height.	Lastly,	V.	vitis‐idea	320	

occurs	in	sites	with	intermediate	frost	free	period	lengths	and	in	cooler,	lower	elevation	321	

sites.		322	
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	323	

Figure	4:	Response	graphs	of	the	first	three	most	important	variables	for	the	Climate	+	Lidar	324	
model	for	E.arvense,	H.alpinum,	T.officinale	and	V.vitis‐idea.	325	

	326	

4.	Discussion	327	

In	this	study	we	investigated	the	added	benefit	of	incorporating	LiDAR‐derived	terrain	and	328	

forest	canopy	information	into	understory	species	models	relevant	for	grizzly	bear	species	329	

habitat	modelling.	Our	use	of	boosted	regression	trees	for	model	development	enabled	the	330	

combination	of	multiple	data	types	as	well	as	the	inclusion	of	complex	relationships	which	331	
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are	often	not	possible	to	represent	within	standard	linear	models.	Boosted	regression	trees	332	

allow	representation	of	the	main	variables	used	in	the	developed	models,	as	well	as	333	

response	graphs	between	individual	plant	occurrence	and	the	most	important	variables.	334	

The	past	five	years	has	seen	these	models	increasingly	selected	in	ecological	research	335	

because	of	a	number	of	features,	including	an	ability	to	deal	with	collinear	datasets,	to	336	

exclude	insignificant	variables,	and	to	allow	for	asymmetrical	distribution	of	samples	337	

(De’Ath,	2002;	Melendez	et	al.,	2006;	Schwalm	et	al.,	2006).	We	recognize	that	a	limitation	338	

of	boosted	regression	approaches	is	that	many	observations	are	required	for	reliable	model	339	

building,	making	model	development	of	rare	and	more	localised	understory	species	more	340	

problematic,	and	should	be	undertaken	with	caution	(Coops	et	al.,	2011).	341	

In	addition,	we	are	cognisant	of	potential	issues	surrounding	the	quality	of	both	remote	342	

sensing	and	plot	observation	data	given	that	the	datasets	were	acquired	across	multiple	343	

years.	Most	of	the	LIDAR	acquisitions	occurred	within	a	5	year	difference	window,	however	344	

in	a	small	number	of	cases	temporal	gaps	of	up	to	7	years	may	exist.	As	indicated	in	the	345	

study	area	description	the	relationship	between	stand	dominant	height	and	age	for	346	

common	pine	species	in	the	area	(Cieszewski	and	Bella,	1989;	Kirby,	1975)	indicates	that	347	

the	relative	height	difference	between	stands	older	than	50	years	is	markedly	lower	than	a	348	

height	difference	between	younger	stands.	Similar	effects	can	be	observed	for	stand	349	

volume	per	hectare	(Tait	et	al.,	1988).	For	example,	theoretical	dominant	height	difference	350	

between	two	pine	dominated	stands	in	the	area,	between	ages	of	80	and	100,	and	site	index	351	

of	25,	is	6.7%.	Similar	difference	calculated	for	stands	with	ages	20	and	40	is	36.8%	352	

(Cieszewski,	1991).	As	a	result	over	the	5	year	time	frame	between	plot	data	measurement	353	

and	LIDAR	data	acquisition	we	anticipate	in	areas	of	no	disturbance	overall	structural	354	

conditions	to	have	remained	relatively	constant.		355	

In	areas	of	recent	harvest	or	fire,	there	may	be	marked	discrepancies	between	the	plot	356	

conditions	prior	to	the	disturbance	and	the	LIDAR	data	acquired	post	disturbance.	Using	357	

disturbance	data	on	fire,	harvesting,	and	resource	extraction	from	the	temporal	Landsat	358	

time	series	we	were	able	to	detect	stands	which	have	had	marked	disturbance	over	the	8	359	

year	study	period,	and	removed	these	sites	from	the	analysis	(Hilker	et	al.,	2009).	However,	360	

some	issues	may	remain	with	LiDAR	and	field	observations	not	directly	coinciding.		361	
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The	focus	of	this	study	is	on	application	of	LiDAR	data	in	a	large	area	ecological	modelling	362	

study.	To	accommodate	the	size	of	the	study	area,	and	the	level	of	pre‐processing	of	the	363	

LIDAR	data	prior	to	analysis,	detailled	analysis	of	forest	structure	using	dense	LiDAR	point	364	

clouds	below	2m	was	not	possible.	We	believe	what	is	lost	in	our	ability	to	derive	365	

understorey	structure	directory,	is	gained	by	the	large	extent	of	the	dataset	and	to	366	

demonstrate	how	it	can	be	applied	to	large	area	projects.	367	

	368	

5.	Conclusions	369	

In	this	paper	we	demonstrate	that	plant	distribution	models	developed	with	a	combination	370	

of	both	broad‐scale	climate	data,	as	well	as	with	LiDAR‐derived	terrain	and	canopy	371	

information,	provided	the	best	overall	performance,	capturing	more	fine	scale	spatial	372	

variation	than	models	using	climate	data	alone.	The	inclusion	of	the	LiDAR	attributes	373	

suggest	that	these	variables	provide	a	more	detailed	explanation	of	the	fine	scale	site	374	

conditions,	such	as	access	to	water,	solar	radiation	regime	at	the	site	caused	by	terrain	375	

shading,	in	addition	to	overall	site	elevation	and	slope	(White	et	al.,	2012).	Information	on	376	

canopy	height,	gaps,	shading,	and	height	variations	also	appear	to	affect	distributions	for	377	

some	species	but	to	a	lesser	degree	than	the	finer	site	condition	measured	by	LiDAR	378	

(Figure	5).	The	inclusion	of	site	level	measures	from	LiDAR	resulted	in	a	reduction	of	379	

importance	of	growing	degree	days	and	frost	free	periods.	This	shift	implies	that	the	380	

inclusion	of	LiDAR	data	allows	a	more	comprehensive	description	of	the	thermal	and	381	

radiation	regimes	of	individual	sites,	replacing	the	need	for	broader	scale	descriptions	of	382	

the	thermal	load	of	each	site.	383	

	384	
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	385	

Figure	5:	Change	in	Variables	selected	by	models	when	incorporating	fine	scale	site	and	386	
canopy	LiDAR	derived	information	387	

	388	

	389	
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