Canada

 Lands, Parks and Forests Branch
 DOMINION FOREST SERVICE

AERIAL FOREST SURVEY RESEARCH NOTE No. I

DETERMINATION OF TREE HEIGHTS FROM SHADOWS IN AIR PHOTOGRAPHS

BY
H. E. SEELY

Aerial Forest Survey Research Note No.l

DOMINION FOREST SERVICE
 D. Roy Cameron
 Dominion Forester

J.D.B. Harrison
Chief, Forest Economics Division
H.E. Seely
in charge, Aerial Surveys Section

DETERMINATION OF
TREE HEIGHIS FROM SHADOWS
IN AIR PHOTOGRAPHS
H.E. Seely

Ottawa, Canada
1942

Introduction

There are several methods of obtaining the heights of trees from air photographs. The image of the tree may be scaled directly, both in vertical and oblique photographs, or it may be measured stereoscopically. Also the shadow method, as described in reference to Canadian conditions in this paper, may of ten be applied.

The determination of tree heights from air photographs is affected by varying conditions. For instance detail in dense stands is obscured by the foliage. Furthermore the tree height me thods apply with less accuracy to broad-crowned trees than to those with pointed tops, while standing dead timber and bare deciduous trees present special advantages and disadvantages due to increased detail of bole and limbs, offset by loss of distinctness. The shedding of the foliage of deciduous trees in the fall makes possible a greatly augmented view of both trees and shadows which lasts until the coming of the new leaves in the spring. Snow forms a smooth, bright surface upon which the shadows are sharply cast, and by which the detail in the depths of the stands is illuminated and accentuated. The slope of the ground and various other sources of error affecting in some cases both the tree and its shadow, are described below with particular reference to the shadow method. When on account of adverse conditions the shadow method becomes of secondary value, the angle of view takes on an increased importance, for if the view is too greatly oblique the tree is obscured by its neighbours and if too nearly vertical the tree's length and shape are not fully visible. Generally, an angle of view of 45° or thereabouts affords the best opportunity for the measurement and identification of the trees. This angle is most closely approached near the edges of a vertical photograph, or in the foreground of an ordinary oblique.

Failing a complete view of the tree or shadow, the portion visible may be measured and the unseen portion may be estimated. The inaccuracies which occur in individual measurements compensate each other to a large extent when the tree heights are averaged for the purposes of volumetric timber estimating. Very often an unobscured and accurately measurable tree may be used, particularly by the aid of the stereoscope, as an index to the height of an adjoininc group of trees. Difficulties in obtaining measurements for individual trees are most frequently encountered in dense, even-aged stands. On the other hand, as the average height is fairly constant within these stands, a comparatively small number of actual measurements, such as may sometimes be readily secured on the edges of clearings, burns, blowdowns or cuts, are sufficient.

The measurement of the trees and their shadows in the air photographs is facilitated by the use of magnifying lenses and finely-graduated scales.

The shadow method as employed for volumetric timber estimates was originated by the writer in the course of his duties in the Dominion Forest Service, and has been in use for a number of years. Assistance in developing the method was secured from officials of the Topographical Survey Division and of the Dominion Observatory, Department of Mines and Resources. Special photographs taken by the Royal Canadian Air Force were of material assistance.

Sun's Altitude

The calculation of the altitude of the sun is essential to the determination of the relation between the height of the tree and its shadow

Fig. 1. Astronomical Triangle ${ }^{l}$
In Fig. 1,
PZ is the co-latitude
PS is the co-declination
ZS is the comaltitude
ϕ is the latitude
d is the sun's declination
h is the sun's altitude
t is the hour angle

From spherical trigonometry,
Gos $a=\cos b \cos c+\sin b \sin c \cos A$
Correspondingly in Fig。 I_{\circ}
$\cos \left(90^{\circ}-\mathrm{h}\right)=\cos \left(90^{\circ}-\phi\right) \cos \left(90^{\circ}-\mathrm{d}\right)$ $+\sin \left(90^{\circ}-\phi\right) \sin \left(90^{\circ}-d\right) \cos t$
$\therefore \sin h=\sin \phi \sin d+\cos \phi \cos d \cos t$
$1_{\text {clark, David, 1931. Field Astronomy, p. 14, Constable }}$ and Company, Lta..a London.

Region Petawowg Torest Experiment Station
d is sun's declination
h is sun's altitude
t is hour angle
ϕ is latitude
d (with corrections, if desired, for longitude and time of day) (tor-)- $3^{\circ} .^{\prime \prime}$ Note. $--\cos (-\alpha)=+\cos d$, whereas $\sin (-d)=-$ sin d $\operatorname{Sin} h=\sin \phi \sin d+\cos \phi \cos d \cos t$

For noon, Apparent Solar Time

$\sin h=\sin 4.6^{\circ} 000^{\prime} \sin -2^{\circ} \cdot 13^{\prime}+\cos .46^{\circ} \cdot 00^{\prime} \cos -2^{\circ} \cdot 13^{\prime} \cos 0^{\circ}$. Shadow cast

$$
=7193 . x .0387 \pm 69 \% \% x, 9993 \times 1.00000 \quad \text { by tree } 100 \mathrm{ft} \text {. }
$$

$$
=\div 0278
$$

$$
=166.64 ;
$$

- high
$h=. .4 \ell^{\circ} 47^{\prime}$

Short method for noon, used for verification
$h=180^{\circ}-\phi-\left(90^{\circ}-\alpha\right)$
$h=180^{\circ}-46^{\circ} 00^{\circ}-\left(90^{\circ}+2^{\circ} 13^{\prime}\right)=41^{\circ} 47^{\prime}$
For $11 \mathrm{a} . \mathrm{m}$. and 1 p.m. Apparent Solar Time
$\sin \mathrm{h}=\sin 46^{\circ} .00^{\prime} \sin -2^{\circ} 13^{\prime}+\cos 46^{\circ} 00^{\prime} \cos .^{\circ} \cdot 3^{\prime} \cos 15^{\circ}$
$=-0278+\ldots 6942 \mathrm{t} .96593$
$100 \cot 40^{\circ} \because 0^{\prime}$
$=-0.78+\ldots 6705$.
$=$
$h=$
.$\therefore 6427$ -••••••
-

$=\ldots 40^{\circ}$

For 10 a.m. and 2 p.m. Apparent Solar Time
$\sin h=\sin .46_{0}^{\circ} 00^{\prime} \sin -2^{\circ} \cdot 13^{\prime} \cos \not 4_{0}^{0} .00^{\prime} \cos 0^{2^{\circ}} \cdot 3^{\prime} \cos 30^{\circ}$ $=\ldots-0278 \ldots .+. \ldots: 6942 \ldots . \cos 30.100 \cot 34^{\circ} .59^{\prime}$
$=\ldots .2788 \ldots+\ldots 6012 \ldots . .143$ ft.
$=\cdots \cdot 5734, \ldots$
$h=\ldots 34^{\circ} 59^{\circ}$.
For 9 a.m. and 3 p.m. Apparent Solar Time
$\sin h=\sin \ldots \sin \ldots \cos \ldots \ldots \cos 45^{\circ}$

To establish relation between Apparent Time and Standard Time
The Standard Time line is moved to the left of the Local Apparent Time line if (1) the region is east of the Standard Time Meridian and (2) the Equation of Time is negative (and vice versa). If Daylight Saving: Time has been used a correction of one hour must be made. Equation of Time (tor,-).+9. minutes.
Correction for 20 . 2.6 tart, West of Standard Time Meridian. (O..minutes. Standard Time line is .19 . minutes of time to Right, 耳eft of Local Apparent Time Line.

Calculations by
...... E. Rege. .

The latitude (ϕ) is obtained from the map. The sun's declination (d) is found from tables published by the Surveyor General, or from the Nautical Almanac or similar publications.

The hour angle (t) may be determined by the following steps:
(I) The time of day at which the photograph was taken is secured from the photographer's records.
(2) Standard Time is converted to Local Mean Time.
(3) The Equation of Time is subtracted.(algebraically)
(4) The resultant Local Apparent Time is expressed in terms of the hour angle, which is ordinarily measured from 0 to 24 hours, but which for convenience in these calculations is measured eastwards or westwards from the part of the observer's meridian on which the sun appears at noon.

When the proper values have been substituted for ϕ, d and t, the altitude (h) is found by solving the equation.

Corrections for refraction and parallax are seldom significant and may usually be ignored.

Fig. 2. Length of Shadow and Height of Tree
In Fig. 2,

$$
\begin{gathered}
\tan h=\frac{A B}{A C} \\
\therefore A B=A C \tan h
\end{gathered}
$$

The first step is to determine the scale of the photograph (see p. 5), after which the value of AC may be found by measuring the shadow in the photograph (see Fig. 3).

The sun's altitude (h) is obtained by the method shown above.

Then the proper values have been substituted for $A C$ and h, the height of the tree ($A B$) may be found by solving the equation.

Curve of Shadow Lengths
The foregoing calculations are used when the photographs are dealt with singly but in practice it is often convenient to construct a curve of shadow lengths for use with a whole set of photographs.

Fig. 4 shows a standardized form used to facilitate the compilation of the data required for the construction of the curve. As an example, values have been inserted to indicate the derivation of the curve shown in Fig. 5.

Fig. 5. Curve of Shadow Lengths
Fig. 5 is a curve of shadow lengths for photographs taken at the Petawawa Forest Experiment Station on March 15th, 1932. Local Apparent Time is indicated by a continuous line and Standará Time by dashes.

The hour angle, which is the abscissa of the curve, has been shown in its correct angular proportions, one hour equalling 15 degrees. It would, however, be sound practice to draw the x-axis as a straight line instead of as the arc of a circle.

In constructing the curve, calculations were made for the length of shadow of an imaginary tree of a height of 100 feet. Values mere plotted for each hour of Local Apparent Time from $10 \mathrm{a} . \mathrm{m}$. to 2 pom . The difference between

Standard Time and Local Apparent Time is derived in the manner indicated on p. 3. Additional hourly values might have been required if the diurnal period of photoSraphy had been longer.

Great economy in the matter of the calculations required is usually made possible by the use of a curve of shadow lengths.

Example. - Refor to the shadow measurement shom in Fig. j, which is a photograph selected from the set for which the curve shown by Fig. 5 has been prepared. This is a vertical photograph which had been taken at a low altitude for experimental purposes and is accord ingly particularly suited for purposes of exemplification.

By comparative measurements between points identified on both map and photograph the scale of the photograph has been found to be 150 feet to 1 inch.
1.00 inches (on photograph) $=150$ feet (on ground)
0.56 it $\left.\begin{array}{l}\text { see Fig. } 3\end{array}\right)=150 \times 0.56$ feet
0.56 (see Fis. 3) $=\frac{150 \times 0.56}{1.00}$ feet

That is, length of shadow $=84$ feet
By reference to the data recorded during the flight, it has been found that the photograph was taken at 12.30 p.m., Standard Time.

Interpolating on the curve shown by Fig. 5, it is found that a tree of 100 feet in height has a shadow of 112 feet.

And since tree heights vary in direct proportion to the lengths of their shadows,

Height of tree $=84 \times 100$ feet 112 $=75$ feet

It may be added that the scale of the photograph is sonetimes determined from the relation between the altitude of the aircraft and the focal length of the lens? The stereoscope may be used to estimate local scale variations in hilly country, which are important because the scale at the tree is desired rather than the mean scale of the photcgraph.

2
The Use of Air Photographs for Napping, Topographical Survey Bulletin No. 62, 1932, pp. 32 and 33, available from Legal Surveys and Map Service, Department of Mines and Resources, 105 George Sto, Ottawa, Canada.

Sources of Error

There are a number of factors affecting the accuracy of the shadow method but for the most part the errors are compensating. Thus, while the result for a single tree is often inaccurate, the average for a number of trees may be almost free from error. Furthermore it is of ten possible to counteract the individual errors. Though many of the sources of error have no practical effect, nevertheless, they are all of considerable interest and are therefore here considered:
(1) Slope of ground. This is of great importonce in hilly country, since the error increases with the degree of slope. Though slope errors are compensating to a relatively great extent, nevertheless an uncompensated error occurs because shadows are lengthened on a downward slope more than they are shortened on a similar upward slope. This uncompensated error increases with the degree of slope and decreases as the altitude of the sun increases. It has a slightly exaggerating effect on the value obtained for the average height of the trees.

The stereoscope may be used for correcting the slope errors or for avoiding the difficulty by the presferried practice of utilizing only those shadows that lie along level or nearly level surfaces.

Fig. 6. Effect of Slope on Shadow Length
In Fig. 6 the tree $A B$ casts a shadow $A C$ on a level surface on an upward slope the shadow is shortened by an amount equal to $C D$ and on the equivalent downward slope it is lengthened. by an amount equal to CE . CF has been made equal to $C D$ and consequently $F E$ is the uncompensated error.

Fig. 6 also shows that the error in the tree's height, $A F$ or $A G$, is equal to $D H$ Or EI, the vertical distance to the tip of the shadow from a horizontal plane passing through the base of the tree.
(2) Interference by other trees. Nearby trees often interfere with the shadow and prevent an accurate apolication of the method. The amount of intenference depends on forest conditions (see p. 1). This source of error is aggravated when the sun ${ }^{\text {i }}$ altitude is less than 35 degrees, producing unduly long shadows. Accordingly, cood results are not usually secured in the months of Decomber and January.
(3) Obscuring of base of tree by tree 's own foliage. This prevents the definite locating of the base of the tree image, the point from which the shadow measurement should be made. It may be of some help to visualize a line drawn through the centre of the tree image in the direction of the displacement ${ }^{3}$ since its junction with the central line of the shadow would mark the base of the tree image。
(4) Jepth of snow or low vegetation. An error occurs when the shadow is formed on a layer of snow, grass or underbrush, instead of on the surface of the ground. The errar is equal to the depth of the layer and, unless allowance is made, it has the effect of lowering the value of the height of the tree.
(5) Breadth of crown. An exaggerated value is obtained when the crown of the tree is so broad that the shadow is cast from some point other than the tip of the tree. The error increases with the sun's altitude and varies with the slope of the crown but is usually of little importance unless the sun's altitude exceeds 45 degrees. Portunately the softwood species, especially the spruces, seldom have high, wide crowns.
(6) Leaning trees. Errors from this source are partially compensating and are generally negligible.
(7) Penumbra. The sun's rays do not originate at a single point but on the contrary come from all points of the sun's diameter. The result is that a penumbra appears in all solar shadows. This area of partial shadow increases with the distance from top of tree to tip of shadow, which distance in turn increases with the height of the tree and decreases as the altitude of the sun increases. However, any error that might arise from the consequent lack of a clcarly-defined shadow would usually be only a matter of inches.
(8) Miscellaneous. Among other factors may be mentioned the indistinctness caused by slender tree-tops or by shadows cast on dark, uneven surfaces.

Time from Shadows

The time at which the photographs are taken is usually recorded during the flight. If, homever, the time records are oither lacking or inadequate, it is often practicable to resort to a sun-dial method, based on the shadows of the
trees as registered in the photograph. Of course it must be kept in mind that the gnomon of the ordinury sun-dial points to the celestial north pole, whereas the tree points to the zenith and must, therefore, be looked upon as a vertical gnomon. Consequently the former can be constantly used to mark the hour angle while the latter is directly related to the sun's azimuth.

The following formula provides the link between the hour angle and the sun's azimuth and enables the shadow of the tree to be employed to the same effect as the shadow on un ordinary sun dial.

Referring to Fig. I,

$$
\begin{aligned}
& \tan \frac{t}{2}=\frac{\cos \frac{\phi-d}{2}}{\sin \frac{\phi+d}{2}} \cot \frac{A+q}{2}=\frac{\sin \frac{\phi-\alpha}{2}}{\cos \frac{\phi+d}{2}} \cot \frac{A-q}{2} \\
& \text { where } q \text { is sin }-1\left(\frac{\cos \phi \sin A}{\cos \alpha}\right)
\end{aligned}
$$

Either of the two forms quoted may be used as convenience dictates.

A line is drawn on the map in the direction of the astronomic north and is transferred to the photograph. A second line is drawn parallel to the direction of the tree shadows. As the position of the sun governs the direu.. tion of the shadow, the sun's azimuth (A) may be found from the ungles formed by the intersection of the two lines. The formula may then be solved for the hour angle (t) which is reckoned as delined on p. 3. Thus it is possible to find the time from the shadows, which provides an alternative when the pilot's time records ure missing. If so desired the hour angle (t) may be used to deduce standard Ilime (see p. 3)

Of importance from a mapping standpoint is the fact that it is possible to reverse the whole procedure and determine the orientation of the photograph from the time records.

It may be mentioned that although the direction of the image of the shadow of a vertical object falling ${ }^{3}$ on sloping ground may be affected somewhat by displacement, ${ }^{3}$ nevertheless the average direction of a number of shadows usually will be sufficiently accurate. In the case of oblique photographs, a transformation of the perspective is necessary, and this may be effected by ordinary plotting methods.

When the time is not demanded for purposes other than the calculation of tree heights or when it is not required for use in a curve of shadow lengths, the calcuiation of tree heights may be made without reference to the hour angle (t), by employing the following formula:

The Use of Air photographs for Mapping, Topographical Survey Bulletin \#62, 1932, p. 3\%, available from Legal Surveys and Map Service, Department of Mines and Resources, 105 George Street, Ottawa, Canada.

$$
\tan \frac{Z}{2}=\frac{\sin \frac{A+q}{2}}{\sin \frac{A-q}{2}} \tan \frac{\phi-d}{2}=\frac{\cos \frac{A+q}{2}}{\cos \frac{A-q}{2}} \cot \frac{\phi+d}{2}
$$

In this case, the sun's zenith distance (z), which is, of course, the complement of i.ts altitude (h), is obtained instead of the latter.

The above section on time from shadows is based on information secured from the Dominion Astronomer, Surveys and Engineering Branch, Department of Mines and Resources, Ottawa, Canada.

Conclusion

It will be apparent to the reader that the shadows of trees and other vertical objects are of considerable importance in the interpretation of air photographs, not only in determining heights, but also on occasions to indicate either the orientation of the photograph or the time at which it was taken.

While the employment of the shadow method to obtain tree heights for use in wolumetric estimating is greatly affected by the character of the forest, seasonal changes, and direction of view, nevertheless the method has proved its value and has been instrumental in securing some surprisingly accurate estimates of timber. The technique of employing the shadow method involves the use of accurately-measurable index trees which may be compared, under the stereoscope, with the adjoining stands.

The shadow method is applied to vertical air photographs almost exclusitely because in obliques relatively good opportunities occur for the direct measurement of the tree images, also the shadows generally are obscured by intervening trees.

In certain circumstances the shadow method is the most accurate means of obtaining tree heights from vertical air photographs. The prerequisites are level ground and sharply-defined shadows, such as may be secured in winter when slender-tipped evergreens are found scattered amone deciduous trees. Under these conditions the shadow image is usually preferable to the tree image because of its closer approximation to a full side-view of the tree and occasionally because it is affected to a smaller extent by aberration of camera tilt. However, in hilly country or when the view is obstructed by the foliage of dense stands, the measurement of the tree's image is generally more suitable than the shadow method.

To date the main utility of the shadow method has been in relation to trees. However, it may be applied not only to trees but also to ships, buildings, and other vertical objects. When the shadow is cast on a level body of water or on streets, roads, or fields, where sufficient knowledge already exists of the variations in the contour, the slope error, (see page 6) does not occur. In these circumstances the height of an object may be obtained more accurately by the shadow method than by measuring the image of the object, either directly or stereoscopically, except when the shadows are unduly short.

