
Remote Sens. 2014, 6, 10750-10772; doi:10.3390/rs61110750 
 

remote sensing 
ISSN 2072-4292 

www.mdpi.com/journal/remotesensing 

Article 

Estimation of Airborne Lidar-Derived Tropical Forest Canopy 
Height Using Landsat Time Series in Cambodia 

Tetsuji Ota 1,†,*, Oumer S. Ahmed 2,†, Steven E. Franklin 3, Michael A. Wulder 4, 

Tsuyoshi Kajisa 5, Nobuya Mizoue 1, Shigejiro Yoshida 1, Gen Takao 6, Yasumasa Hirata 6, 

Naoyuki Furuya 7, Takio, Sano 8, Sokh Heng 9 and Ma Vuthy 9 

1 Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan;  

E-Mails: mizoue@agr.kyushu-u.ac.jp (N.M.); syoshida@agr.kyushu-u.ac.jp (S.Y.) 
2 Geomatics, Remote Sensing and Land Resources Laboratory, Department of Geography,  

Trent University, 1600 West Bank Drive Peterborough, Ontario K9J 7B8, Canada;  

E-Mail: osahmed@trentu.ca 
3 Department of Environmental and Resource Studies/Science, Department of Geography, 

and Office of the President, Trent University, 1600 West Bank Drive Peterborough, 

Ontario K9J 7B8, Canada; E-Mail: sfranklin@trentu.ca 
4 Canadian Forest Service (Pacific Forestry Centre), Natural Resources Canada, 506 West Burnside 

Road, Victoria, British Columbia V8Z 1M5, Canada; E-Mail: Mike.Wulder@NRCan-RNCan.gc.ca 
5 Faculty of Agriculture, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-8580, Japan;  

E-Mail: k2083442@agri.kagoshima-u.ac.jp 
6 Department of Forest Management, Forestry and Forest Products Research Institute, Matsunosato 1, 

Tsukuba 305-8687, Japan; E-Mails: takaogen@affrc.go.jp (G.T.); hirat09@affrc.go.jp (Y.H.) 
7 Hokkaido Research Center, Forestry and Forest Products Research Institute, Hitsujigaoka 7, 

Toyohiraku, Sapporo 062-8516, Japan; E-Mail: nfuruya@affrc.go.jp 
8 Asia Air Survey Co., LTD, Shinyuri 21 Building, 1-2-2 Manpukuji, Asao-ku,  

Kawasaki 215-0004, Japan; E-Mail: tk.sano@ajiko.co.jp 
9 Forest-Wildlife Research and Development Institute, Forestry Administration, Khan Sen Sok, 

Phnom Penh 12157, Cambodia; E-Mails: sokhhengpiny@yahoo.com (S.H.);  

vuthydalin@yahoo.com (M.V.) 

† These authors contributed equally to this work. 

* Author to whom correspondence should be addressed; E-Mail: chochoji1983@gmail.com;  

Tel.: +81-926-422-868; Fax: +81-926-422-867. 
  

OPEN ACCESS



Remote Sens. 2014, 6 10751 

 

 

External Editors: Nicolas Baghdadi; Prasad S. Thenkabail 

Received: 9 July 2014; in revised form: 3 October 2014 / Accepted: 8 October 2014 /  

Published: 6 November 2014 

 

Abstract: In this study, we test and demonstrate the utility of disturbance and recovery 

information derived from annual Landsat time series to predict current forest vertical 

structure (as compared to the more common approaches, that consider a sample of airborne 

Lidar and single-date Landsat derived variables). Mean Canopy Height (MCH) was 

estimated separately using single date, time series, and the combination of single date and 

time series variables in multiple regression and random forest (RF) models. The combination 

of single date and time series variables, which integrate disturbance history over the entire 

time series, overall provided better MCH prediction than using either of the two sets of 

variables separately. In general, the RF models resulted in improved performance in all 

estimates over those using multiple regression. The lowest validation error was obtained using 

Landsat time series variables in a RF model (R2 = 0.75 and RMSE = 2.81 m). Combining 

single date and time series data was more effective when the RF model was used (opposed 

to multiple regression). The RMSE for RF mean canopy height prediction was reduced by 

13.5% when combining the two sets of variables as compared to the 3.6% RMSE decline 

presented by multiple regression. This study demonstrates the value of airborne Lidar and 

long term Landsat observations to generate estimates of forest canopy height using the random 

forest algorithm. 
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1. Introduction 

Forests sequester and store more carbon than any other terrestrial ecosystem and are considered to be 

an important natural “brake” on climate change [1]. Tropical forests are especially important for carbon 

sequestration in the biosphere. For example, it is estimated that tropical forests store 229–247 Pg C [2,3]. 

However, tropical forests are subject to significant change, through agricultural expansion, forest 

management, and other natural and anthropogenic processes [4,5]. The policy and management 

decisions governing these forests require consistent and periodic information on forest structure; hence, 

there is an increasing need to generate accurate information regarding forest structural dynamics [6]. 

Field measurement, while typically of high accuracy, is costly, labor intensive, and limited in spatial 

scales, providing quality information for a limited number of stands in a given area [7]. Remote sensing 

may play an increasingly important role to provide estimates of required information on forest structure 

in a consistent and systematic manner across a variety of scales. 

Airborne Lidar (Light Detection and Ranging) is an active remote sensing system well suited to 

measure specific forest information, including tree height [8], basal area [9], leaf area index [10], canopy 
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cover [11,12], vertical vegetation strata [13], successional stages [14], and canopy architecture [15].  

In the case of tropical forests, Asner et al. [16,17] assessed the capability of mean canopy height (MCH) 

derived from airborne Lidar to estimate the above-ground carbon in Madagascar and Colombia, 

demonstrating that Lidar-derived MCH could be used to accurately estimate above ground carbon. 

Airborne Lidar is currently the most accurate remote sensing system to obtain specific site-level data on 

forest structure. However, wall-to-wall acquisitions of Lidar data remain cost prohibitive for large forest 

areas or in areas without a competitive commercial Lidar data acquisition community. In an effort to 

overcome cost limitation of Lidar data, recent studies report on the integration of Lidar data with optical 

satellite remotely sensed data to estimate canopy structure from a relatively small area covered by Lidar 

sample over a larger area covered by the optical scene [18–21]. These studies mainly focused on 

managed temperate forests and to date there is a paucity of such studies in unmanaged tropical forests. 

Satellite remote sensing datasets, such as those from the Landsat sensors, Multispectral Scanner 

(MSS), Thematic Mapper (TM), and Enhanced Thematic Mapper Plus (ETM+), offer the capacity to 

map land cover, dynamics, and structural characteristics in a systematic, repeatable and cost effective 

fashion over long time periods and over a variety of spatial extents [22–24]. The free and open access of 

Landsat data since 2008 [25] has removed cost limitations to accessing large numbers of images while 

also reducing processing overhead through provision of a robust series of standard products [26]. 

Predicting forest structure variables with Landsat data has been a research topic of great interest  

(e.g., [27–30]. However, an asymptotic relationship is typically found when using Landsat data alone to 

make empirical predictions of forest structure [31], with the asymptote linked to canopy density, crown 

closure or canopy cover. The integration of such satellite multispectral remote sensing data with 

information from airborne Lidar provides opportunities to capitalize upon the distinctive characteristics 

of both data sources. 

Since the forest structure at a given time is often related to the forest’s disturbance history, one possible 

means of improving the prediction of forest structure using Landsat is by including information on forest 

disturbance trends prior to the date for which estimates are needed. For example, Gómez et al. [32] 

described the linkages between forest structure and various processes influencing stand condition, 

development, and disturbance legacy. Their results showed that forest structural conditions can be related 

to a complex suite of stand development trajectories and processes, such as regeneration status and rates 

that are influenced by forest management practices and natural disturbance regimes. The Landsat 

temporal depth and the increasingly well-understood radiometric characteristics of such data provide an 

opportunity to develop more accurate and reliable change detection and analysis methods. Recently, a 

trajectory-based automated method for characterizing forest disturbance was developed for reconstructing 

forest disturbance history and age structure using Landsat time series stacks [33]. This method provides 

estimates of discontinuous phenomena (disturbance date and intensity) as well as continuous phenomena 

(post-disturbance regeneration). This information enables the generation of a spectral trajectory that 

relates to the growth history of a given forest stand which may provide additional improvements to 

predict current forest structure [34]. For example, Pflugmacher et al. [35] demonstrated the inclusion of 

disturbance and recovery metrics derived from spectral profiles of annual Landsat time series provided 

an improved prediction of current forest structural attributes. Ahmed et al. [18] suggested that  

pre-stratification of the forest types based on the disturbance date and the addition of time since 

disturbance information improved forest canopy cover and height estimation in a managed temperate 
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forest. Li et al. [36] showed that inclusion of disturbance information characterized by vegetation change 

tracker algorithm yielded the lowest validation error for the estimation of young forest height calculated 

from space borne LiDAR. All these studies are mainly focused on managed temperate forests and to date 

there is a paucity of such studies in tropical forests where frequent small clear cutting and regrowth are 

expected to dominate. Helmer et al. [37] illustrated the relationship between field measured forest height 

and disturbance information derived from Landsat and ALI image mosaics using a regression tree model 

in tropical forest. However, in their study, a time series trajectory based approach was not implemented. 

Most studies that predict forest structure variables with remote sensing data commonly apply 

parametric approaches [12,20,21,38]. The most typical parametric approach used is multiple regression, 

which defines relationships between image data and forest structure variables. Although it is frequently 

used and simply interpreted, multiple regression often lacks the capacity to characterize forest 

complexity [19]. This type of parametric approach assumes a linear relationship between independent 

and dependent variables, and the model errors depend on a pre-defined normal distribution. This will 

often have a negative impact on the estimation accuracy if the statistical assumptions are not fulfilled. 

Alternatively, the use of non-parametric machine learning models has been reported for implicitly 

inferring unknown relationships underlying a given dataset [39]. As opposed to linear regression, most 

of these machine learning models are versatile enough to uncover complicated non-linear relationships. 

Machine learning algorithms, such as the random forest (RF), do not have any assumptions about the 

relationship between dependent and independent variables and are well suited for analyzing complex 

non-linear and possibly hierarchical interactions in large data sets [40]. Additionally, some machine 

learning algorithms are also useful in alleviating or even circumventing the difficulties caused by data 

dimensionality considerations [39,41], which is a common problem in fitting models with a large number 

of predictors. Powell et al. [30] compared three empirical modeling approaches: reduced major axis 

regression, gradient nearest neighbor, and RF, to predict live above ground biomass from Landsat data 

and demonstrated that the RF model yielded the best results in terms of RMSE. In addition, Hudak et al. [42] 

compared several nonparametric regression methods including RF for estimating basal area and tree 

density in managed mixed-conifer forests. Their study also concluded that the RF model was the most 

robust and flexible model among the considered models. 

In this study, our main objective is to test and demonstrate the utility of disturbance and recovery data 

from Landsat time series to predict Lidar-derived canopy height in a tropical forest using a machine 

learning model. The temporally inclusive results, based upon metrics generated from the image time 

series, are compared to the more common approach of utilizing single-date Landsat derived variables 

for estimation in a multiple regression model. To address the main objective, we first apply a  

trajectory-based disturbance characterization approach to extract disturbance information from the 

Landsat time series to be used in the canopy height modeling. Next, we develop multiple regression and 

RF models to estimate forest mean canopy height using single date Landsat variables and time series 

variables derived from the trajectory characterization method. Finally, we compare the model 

performance between single date, time series, and combined single date and time series derived models. 

We hypothesized that the use of disturbance history information generated from a time series of Landsat 

imagery will improve our predictive capacity in the machine learning approach. The improved predictive 

capacity is desired in support of large area mapping of forest structural attributes using Landsat imagery 

and samples of Lidar data. 
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2. Materials and Methods 

2.1. Study Area 

The study area is located in Kampong Thom Province in central Cambodia. This province, which is 

between 12°11′ and 13°26′N and 104°12′ and 105°44′E, has a total land area of 12,447 km2, about 7% 

of the country (Figure 1) [43]. Ecological and geographical conditions are relatively uniform throughout 

the province. Atmospheric humidity is high throughout the year, ranging between 72% and 87% with an 

annual mean of 80%. The climate is tropical with a bi-annual change in monsoonal wind systems. The 

rainy season extends from May to October and the dry season from November to April. Mean annual 

rainfall and temperature have been measured at 1700 mm and 28.0 °C, respectively. 

Figure 1. The study area located in Kampong Thom Province, Cambodia and the location 

of LiDAR data strips. 

 

Within this province, we selected a 1632 ha unmanaged forest area with available remote sensing 

imagery to support the analysis. The study area is mainly covered by evergreen, deciduous, and other 

forest, based on the definitions of the Forestry Administration of Cambodia. Typically, the evergreen 

forest is a dense forest with a dominant tree height of 30–40 m, whereas the sparse deciduous forest has 

a dominant tree height between 10 and 15 m. Other forest contains a variety of forests such as re-growth 

area after logging, inundated forests, and plantation forest. Even though the study area is located in 

tropical forest where shifting cultivation (repeated small clear cutting and regrowth) is expected to be 

common, this practice is rare in the study area. In Cambodia, shifting cultivation is mainly found in 
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upland (mountainous) forests (e.g., [44,45]), and is rare in lowland forests such as the forests in central 

Cambodia. Even in areas where such practice used to be dominant (e.g., Ratanakiri province) studies 

indicate that shifting cultivation is decreasing and replaced by rubber and palm oil plantation [46]. 

2.2. Landsat Data 

The Landsat imagery for this study were obtained from the United States Geological Survey (USGS) 

Landsat archive and consist of 17 dry-season (November–February) images acquired between 1983 and 

2011 (Table 1). We used a combination of Landsat Multispectral Scanner (MSS), Thematic Mapper (TM) 

and Enhanced Thematic Mapper Plus (ETM+) imagery. All of the MSS, TM and ETM+ data were terrain 

corrected and were converted to “top-of-atmosphere-radiance” (L1T data product). The study area falls 

within WRS2 path/row 126/51. Based on the quality and cloud-free status, the 2009 TM image was 

selected as the reference image for all image to image registrations and subsequent atmospheric correction 

and normalization procedures. Landsat ETM+ images following the Scan Line Corrector failure in May 

2003 [47] were clipped to exclude the scene edges that have missing data. 

Table 1. Landsat imagery used in this study. 

Year/Month/Day Satellite 

1983/12/1 Landsat 4 MSS 

1984/12/11 Landsat 5 MSS 

1986/12/1 Landsat 5 MSS 

1990/12/4 Landsat 4 TM 

1994/11/21 Landsat 5 TM 

1996/1/27 Landsat 5 TM 

1997/1/13 Landsat 5 TM 

2000/12/31 Landsat 7 ETM+ 

2003/2/7 Landsat 7 ETM+ 

2003/12/24 Landsat 7 ETM+ 

2004/11/8 Landsat 7 ETM+ 

2006/11/30 Landsat 7 ETM+ 

2008/1/20 Landsat 7 ETM+ 

2009/1/14 Landsat 5 TM 

2009/12/24 Landsat 7 ETM+ 

2010/12/27 Landsat 7 ETM+ 

2011/12/30 Landsat 7 ETM+ 

2.3. Airborne Lidar Data 

Airborne Lidar data were acquired from a helicopter platform using a discrete-return small-footprint 

Airborne Laser Terrain Mapper (Optech, Inc., ALTM 3100) in 18–20 January 2012 (Table 2). The Lidar 

data were acquired in eight separate strips within three consecutive days (Figure 1) using similar 

instrument parameters. Based on the pulse frequency, the Lidar data had a hit density of more than  

20 pulses/m2. The last return pulses were used to model the ground surface by filtering earlier returns. 
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Standard practices were followed [48] to produce a triangulated irregular network (TIN) that allowed 

for development of a digital terrain model (DTM). The DTM allowed for generation of terrain surface 

height values for each point above ground. The relative height of each point was computed as the 

difference between the height of the first return and the interpolated terrain surface height. Finally, the 

mean canopy height (MCH) for the study area was derived with 30-m grid cell size to approximate the 

available Landsat spatial resolution. 

Table 2. Airborne Lidar parameters. 

Parameter Optech ALTM 3100 

Flight altitude (above ground) 500 m 
Flying Speed  25 m/s 

Pulse repetition frequency 100 kHz 
Scan frequency 53 Hz 

Laser beam divergence 0.5 mrad 
Wave length 1064 nm 

2.4. Methods 

2.4.1. Landsat Image Processing 

In order to characterize the complex nature of long-term continuous (e.g., defoliation by insects, 

growth) and short-term abrupt (e.g., fire, harvest) forest disturbances that may exist in the study area, we 

used annual Landsat time series between 1983 and 2011. This required integrating Landsat data from 

MSS, TM and ETM+ sensors. 

Based on image quality and cloud-free status, the 2009 TM image was selected as the reference image, 

and all images were co-registered to the 2009 TM image with an RMSE of less than 15 m using an 

automated registration and orthorectification package (AROP) [49]. Clouds and cloud shadows were 

masked out using manual approaches and were excluded from subsequent processing and analysis. All the 

MSS imagery (Table 1) were resampled using nearest neighbor methods to 30 m to match the TM and 

ETM+ spatial resolution. 

To minimize annual variation in atmospheric conditions, we normalized each image in the Landsat 

time series to the 2009 TM reference image. First, the reference image was converted to surface reflectance 

using the cosine estimation of atmospheric transmittance (COST) absolute radiometric correction model 

developed by Chavez [50]. All other TM and ETM+ images in the time series were radiometrically 

normalized to the COST image by means of MADCAL (Multivariate Alteration Detection and Calibration 

algorithm [51] as recommended by Schroeder et al. [52]. To normalize MSS data with the TM and 

ETM+ time series we used Tasseled Cap Transformation (TCT) components with MADCAL rather than 

the individual spectral bands [53]. The coefficients used to create the TCT components were derived 

statistically from images and empirical observations and are specific to each imaging sensor. The first 

TCT component corresponds to the overall “brightness” of the image, and, by definition, is a positive 

value. The second TCT component corresponds to “greenness” and is typically used as an indicator of 

the amount of photosynthetically active vegetation. The values for greenness depend on the contrast 

between the visible and near-infrared bands, with exposed soil having negative values [54] and vegetated 
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areas having positive values. The third TCT component is often labeled “wetness” and is usually 

interpreted in vegetated areas as an index of canopy structure, soil or surface moisture, or possibly an 

estimate of the amount of dead or dried vegetation [23]. The brightness and greenness components 

derived from the 2009 Landsat TM image were used as the reference source for MADCAL. Brightness 

and greenness for the MSS imagery were generated using the modified coefficients developed by 

Pflugmacher et al. [35]. For the MSS data, the TCT wetness component cannot be generated due to the 

lack of the requisite short-wave infrared band. TCT brightness and greenness components for the 2009 

TM reference image were generated using the coefficients for reflectance [55]. 

The image normalization process, above, creates a spectral space that is relatively consistent across 

sensors. The TCT was then used for all Landsat images in the time series. TCT is a well-known linear 

transformation widely employed [23] to characterize forest structure [56,57]. (For all TM/ETM+ images 

TCT was applied using the coefficients for reflectance data [55] and we obtained brightness (TCB), 

greenness (TCG), and wetness (TCW). Brightness and greenness define the vegetation plane [58] and 

provide a practical bridge between the earlier MSS imagery and more recent TM and ETM+ imagery [53]. 

MSS sensors lack short-wave infrared bands, and therefore wetness cannot be computed for  

Landsat MSS imagery. To compensate, Powell et al. [30] developed an index called the Tasseled Cap  

Angle (TCA) that is based on the angle formed by brightness and greenness in the vegetation plane 

(Equation (1)). TCA has been interpreted as an indicator of the proportion of vegetation to non-vegetation 

within a Landsat MSS, ETM+ or TM pixel [30,32]: 

TCA = arctan(TCG/TCB) (1)

Higher values of greenness and lower values of brightness are often found over forests, and therefore, 

higher values of TCA are more likely in dense cover classes when compared with open stands or 

clearcuts [59,60]. TCA was used to describe disturbance history in this study. We used the Tasseled Cap 

Transform components TCB, TCG, and TCW of the 2011 image in our statistical modeling to estimate 

mean canopy height. 

2.4.2. Disturbance History from Landsat Spectral Trajectories 

An automated curve-fitting algorithm was used to characterize change in TCA over the  

available 28-year Landsat time series (1983–2011) building upon the logic of Kennedy et al. [33] and 

Ahmed et al. [34]. In addition to “intact and undisturbed forest”, using the greatest disturbance in  

the time series, the trajectory-based change detection method identified four other disturbance classes of 

temporal trajectories of change in TCA: Class 1) disturbance, Class 2) disturbance followed by 

revegetation, Class 3) ongoing revegetation, and Class 4) revegetation to a stable state (Figure 2). The 

interpretation of spectral characteristics of these classes was similar to Gómez et al. [32], who found 

dense forest stands with higher TCA values than more open stands or bare soil, and TCA values in recent 

clearcuts significantly lower than in any other cover stage of the forest. Generally, TCA displays a clear 

increasing trend with time-since-disturbance. 
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Figure 2. Example of the four disturbance class spectral trajectories and parameters fit  

to each trajectory. (a) disturbance, (b) disturbance followed by revegetation, (c) ongoing 

revegetation, and (d) revegetation to a stable state (After Ahmed et al. [34]). 

 

First, we extracted TCA for each pixel in the Landsat time series (1983–2011). Most pixels have more 

than 14 years of data (Figure 3). The shortest data for a pixel was composed of 12 year time series. For 

each of the four classes (Figure 2), we created initial estimates of spectral trajectory shape parameters, 

and then used a curve fitting function to adjust these initial parameters to find the best fit of the potential 

trajectory to the observed trajectory. A detailed description of the curve fitting process and the 

procedures used for selecting the best model can be found in Ahmed et al. [34]. For the curve fitting 

processing, we used minpack.lm, which is add-on packages to implement Levenberg-Marquardt 

algorithm in R, a multiplatform, open-source language and software for statistical computing [61]. 

The temporal curve-fitting was applied to the time-series of Landsat-based TCA values listed in Table 1. 

This trajectory characterization method produces a suite of products, including disturbance maps and 

measures for characterizing the detected disturbances and for tracking post-disturbance processes [33]. 

To limit the scope of our research, this study, will not attempt to fully characterize the forest disturbance 

condition in the study area. However, we extract relevant forest disturbance data from the Landsat time 

series and test the utility of the extracted disturbance and recovery data in predicting Lidar-derived 

canopy height. From the fitted trajectories, we calculated disturbance variables that characterize the 

disturbance and recovery history of each pixel. First, we identified the greatest disturbance as the point 

with the greatest negative change in the trajectory. For each of the detected greatest disturbances, time 
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since disturbance (TSD) is calculated as the difference between model target year (2011) and the 

disturbance year. 

Figure 3. The proportion of time series data length (in years) for pixels. 

 

Disturbance intensity was also calculated using TCA value at the time of the greatest disturbance.  

In this study, in addition to the Landsat Tasseled Cap Transform derived variables mentioned in the 

previous section, TSD, disturbance intensity and class were also used as predictor variables to model 

canopy height in the study area. This helped to examine the added canopy height estimation advantage 

of time series derived predictor variables over single date derived spectral variables. 

2.4.3. Datasets for Mean Canopy Height Estimation 

Canopy height was modeled separately based on two different reference datasets using multiple 

regression and RF algorithm, and the results were compared. For the dependent and independent 

variables random data subsets were created for model fitting (reference dataset) and a second subset for 

validation (target dataset), which will be used to assess the performance of the prediction model. First, 

the LiDAR coverage was used to create datasets containing canopy height estimates from the LiDAR 

data and coincident spectral values from the Landsat image. These datasets were then randomly split in to 

calibration (2/3 of the data) and validation datasets (1/3 of the data). The estimation was performed 

within the extent of Lidar strips (Figure 1). Finally, the number of calibration points and that of validation 

points were 12,084 and 6042, respectively. To evaluate the contribution of the available disturbance 

history from Landsat trajectory to the canopy height prediction which will otherwise be based on single 

date spectral variables, in this study, the estimation of canopy height was mainly performed based on 

three different reference datasets i.e., for each model, three sets of independent variables were used: 

(1) Single date variables (TCB, TCG, TCW, and TCA of the 2011 image); and (2) Time series variables 

(Time since disturbance (TSD), disturbance intensity, disturbance class); (3) Combination single date 

and time series variables (1 and 2 above). When we used the combination of single date and time series 

variables, we constructed seven data sets using the single date variables and all possible combinations of 

3%

32%

37%

28%

≦14

15
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time series variables. Single date variables, TSD, and disturbance intensity were represented by a numeric 

data while disturbance class was represented by nominal data. The models were assessed using RMSE 

and the predictions were validated against the validation datasets. 

2.4.4. Mean Canopy Height Estimation Using Multiple Regression and Random Forest 

Before performing the multiple regression prediction, a check for the presence of multicollinearity 

between predictor variables in the regression analysis was carried out among the independent variables. 

Chen et al. [62] indicated that models formulated using a combination of exponential and quadratic form 

performed better than a simple linear model for estimating Lidar-measured canopy height using 

multispectral imagery. Therefore, the same type of nonlinear multiple regression model was employed 

in this study to relate Landsat-derived independent variables with the Lidar-derived mean canopy height: 

MCH = exp(෍ܽ௜ ௜ܺ௡
௜ୀଵ + ܿ) (2)

where MCH is mean canopy height from Lidar data; Xi is the ith independent variable; ai, is coefficients 

for the ith variable; c is constant value; and n is the number of independent variables. 

The other estimation method used in this study is the RF algorithm which is an ensemble method 

comprised of many decision trees. This method fits several decision trees to a data set and then combines 

the predictions from all the trees, where each decision tree is constructed from a different bootstrap 

sample of the original dataset. The random selection of independent variables is performed at each level 

of the tree. A comprehensive explanation of the algorithm can be found in Breiman [63,64] and its 

application for forest parameter estimation can be found in Hudak et al. [42], McInerney and 

Nieuwenhuis [65], Powell et al. [30], Gleason and Im [66] and Ahmed et al. [18]. The RF modeling was 

performed using the “random forest” package [67] in R statistical language [61]. The “caret” package [68] 

was also used for tuning RF associated parameters. The k-fold cross validation was selected to create 

and optimize the regression model. In this study, a 10-fold cross validation technique was applied 

following Duro et al. [69]. 

It should be indicated that RF used the same time series and single date spectra derived input variables 

as those used in multiple regression. This allows the two types of models (multiple regression and RF) 

to be compared in a straightforward way. 

2.4.5. Comparison of Model Performance for Estimating Lidar-Measured Mean Canopy Height 

Multiple regression and RF models were developed using separate training samples from single date 

variables and Landsat trajectory derived time series variables. Additional models were also developed by 

combining samples from both single date and time series variables. The variables extracted from Landsat 

were imported into both models to estimate Lidar-measured canopy height. Finally, the best models were 

assessed using RMSE and the predictions were validated against the entire validation (target) dataset 

which was not used in the model training process, R2 and the RMSE are reported. Specifically, the 

comparison of model performance was made for three types of reference dataset (i.e., single date, time 

series and the two combined). 
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3. Results 

3.1. Trajectory-Based Characterization of Forest Disturbance 

Figure 4 shows examples of MCH, TCA, and trajectory-based disturbance characterization. The 

trajectory curve fitting process resulted in a summary image with the attributes corresponding to the 

fitting parameters for each pixel whose trajectory matched one of the four potential trajectories in the 

disturbance classes at the p-value < 0.05. The disturbance class (Figure 4c) shows where disturbance has 

occurred. For each detected greatest disturbance, a disturbance year value, that is, the year when that 

disturbance occurred, is recorded (Figure 4d), and, disturbance intensity is calculated based on the TCA 

change at disturbance year (Figure 4e). The results from this trajectory characterization approach 

indicate over the period of 1983–2011, approximately 67.8% of the study area showed intact and 

undisturbed forest structure. The areas characterized by disturbance account for 23.6%, disturbance and 

revegetation 7.2%, ongoing revegetation 1.3% and revegetation to stable state account 0.1% of the study 

area, respectively. For forest stands regenerated immediately following stand clearing disturbances, this 

measure should be close to their actual age. The disturbance intensity was also estimated using the 

change in TCA value at disturbance. 

Figure 4. Examples of MCH, TCA, and out puts from trajectory-based disturbance 

characterization: (a) MCH derived from Airborne LiDAR, (b) TCA in 2011, (c) Disturbance 

class based on the greatest disturbance, (d) Greatest disturbance year and (e) Greatest 

disturbance intensity.  
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3.2. Performance of Canopy Height Models 

Table 3 shows the correlation between MCH and independent variables. The correlations were 

performed for the entire dataset. There was strong positive correlation between Lidar-derived MCH and 

TCT based variables, with lower though still significant correlations between MCH and trajectory 

derived variables. Figure 5 represents random forest variable importance, which is an indicator of a 

variables contribution to predictive accuracy. This indicates the average increase in mean square error 

(%IncMSE) when the variable in the model is replaced (permuted) with a random one. In this study, 

disturbance intensity was found to be the most important variable followed by Tasseled Cap Wetness 

and Time Since Disturbance. 

Table 3. Correlations between independent variables and MCH. 

Variables Correlation 

TCB −0.70 ** 
TCG 0.64 ** 
TCW −0.73 ** 
TCA 0.69 ** 

Disturbance Intensity 0.64 ** 
TSD 0.38 ** 

** Significant at α < 0.01. 

Figure 5. Variable importance of random forest. 

 

In this study, the RF models yielded higher R2 and lower RMSE than multiple regression models both 

for single date and time series variables (Table 4). The combination of single date and time series 

variables, that integrated disturbance history over the entire time series, generally provided better MCH 

prediction than using either of the two sets of variables separately. The lowest error was obtained using 

Landsat time series variables in a RF model (R2 = 0.75 and RMSE = 2.81 m) (Table 4, Figure 6). In the 

multiple regression models, single date variables provided better estimation compared to time series 
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variables, where as in the RF models both the variables provided nearly the same estimation. Combining 

single date and time series data was more effective when the RF model was used compared to multiple 

regression. The inclusion of time series variables showed slight improvement on the regression models. 

When the two variables are combined, the RMSE for RF was reduced by 13.5% as compared to the 

observed 3.6% decline in RMSE for multiple regression (Table 4). Among the time series variables 

disturbance intensity is found to be the most important variable with the highest contribution to the model 

estimation accuracy in both regression and RF models (Table 4). 

Table 4. Summary of MCH prediction using combination of variables with multiple 

regression and random forest. 

Model Variables R2 RMSE

Random forest 

Single date  0.66  3.25  
Time series  0.66  3.24  
Single date Disturbance Intensity   0.72  2.97  
Single date  TSD  0.68  3.14  
Single date   Class 0.70  3.05  
Single date Disturbance Intensity TSD  0.73  2.88  
Single date Disturbance Intensity  Class 0.74  2.87  
Single date  TSD Class 0.71  3.00  
Single date Disturbance Intensity TSD Class 0.75  2.81  

Multiple 
regression 

Single date  0.65  3.38  
Time series  0.55  3.91  
Single date Disturbance Intensity   0.67  3.28  
Single date  TSD  0.66  3.35  
Single date   Class 0.66  3.35  
Single date Disturbance Intensity TSD  0.67  3.28  
Single date Disturbance Intensity  Class 0.67  3.26  
Single date  TSD Class 0.66  3.25  
Single date Disturbance Intensity TSD Class 0.67  3.26  

4. Discussion 

Several studies have demonstrated the value of using Lidar data to predict a range of forest 

characteristics with improved accuracies to conventional field inventory methods [70]. However,  

the cost associated with acquisition of airborne Lidar is high. Therefore, methods that integrate optical 

satellite imagery and airborne Lidar are required as a means to spatially extend Lidar measured attributes 

over larger areas. In this study, we evaluated the potential of combining samples of airborne Lidar data 

with Landsat time series to estimate forest canopy height in unmanaged tropical forest. We implemented 

Landsat-Lidar integration approach for modeling mean canopy height from historical Landsat 

observations in tropical forest located in Cambodia and compared the results with the more common 

approach of implementing single date Landsat image derived models. 
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Figure 6. Validation result observed vs. predicted for MCH estimation using single date 

(a,b), time series (c,d) and combining both single date, and time series (e,f) with multiple 

regression (a,c,e) and random forest (b,d,f). The solid line shows the 1:1 line.  

 

Canopy height derived from airborne Lidar was correlated with both TCT variables and disturbance 

information obtained from a trajectory-based disturbance characterization method (Table 3), and a strong 

positive correlation is found between Lidar-derived MCH and the TCA. Our study has confirmed that 

TCA is particularly a well suited index to long-term change detection studies that include MSS data 

(e.g., [18,30]). Several other spectral variables or indices can also be used for disturbance 

characterization especially when MSS data are not included in the time series. Kennedy et al. [33] used 

short-wave infrared band reflectance for trajectory based disturbance characterization. Frazier et al. [71] 

used TCW to characterize disturbance with Landsat time series and they demonstrated the utility of the 

disturbance variables to estimate aboveground biomass. However, long-term disturbance characterization 

using the full temporal depth of the Landsat imagery e.g., [18] requires the inclusion of MSS imagery 
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and this limits the available variables to only few variables which can normalize the imagery across the 

Landsat sensors such as: Tasseled Cap transformation components (Brightness and Greenness) or the 

derivative spectral index (TCA), to be used in the long-term disturbance characterization. Here, it is 

important to note that, in our study, some explanatory power might be lost by restricting the data used 

to trends in TCA only and not including Tasseled Cap Wetness from the TM and ETM+ data. 

The results from the trajectory characterization approach have a variety of potential uses. By detecting 

disturbance and recovery stages, the approach provides a better understanding of the evolving landscape 

for employing various land management techniques. Compared to other currently available disturbance 

characterization methods, trajectory based approach captured more parameters such as disturbance 

intensity. The examination of parameters captured by the trajectory based method and their relationship 

with forest vertical structure may indicate how disturbance history relates to current forest vertical 

structure conditions. 

In this study, the correlation and variable importance results between the trajectory derived variables 

from the Landsat time series and Lidar MCH (Table 3, Figure 5) shows an interesting distinction between 

our study and previous studies that are conducted in a temperate forest setting. Unlike the studies in 

temperate managed forest that obtained higher correlation between MCH and TSD e.g., [18], in our 

study, TSD showed the lowest correlation with MCH. In managed temperate forest, mostly following stand 

clearing disturbances, there will be immediate regeneration of forest stands (e.g., through plantation), and 

the canopy closure can be achieved in a relatively shorter time as compared to the natural regeneration 

process that is expected in unmanaged tropical forest. Mostly, forest regeneration in tropical forest 

depends on the type and frequency of the disturbance and the ability of forest species to compete for 

nutrients and other resources. However, the trajectory derived variable “disturbance intensity” showed 

higher correlation with MCH (Table 3) and was the most important variable (Figure 5). These results 

indicate, in tropical forest the severity of disturbance is related more to the current canopy vertical 

structure than the time spent on regeneration (TSD) which depends on a number of factors in this region. 

The RF models yielded higher R2 and lower RMSE compared to multiple regression models in  

all estimations (Table 4). Previous studies showed the most robustness and flexibility of the RF model 

(e.g., [30,42]). The present study also demonstrated the utility of the RF model. Interestingly, the 

disturbance information from Landsat time series data was more effective when the RF model was used 

compared to multiple regression (Table 4). This result implies that the disturbance information from 

Landsat time series data might violate the assumptions required for applying multiple regression. 

Consequently, the RF models maximized the potential of disturbance information that is derived from 

Landsat time series data and provided the best estimation. Both the RF models with time series data 

showed a clear cut-off line around 15 m for the predicted canopy height and also the predicted canopy 

heights were overestimated when the heights are less than 5 m (Figure 6). One possible cause might be 

that since the RF model estimates values by averaging the estimation of many decision trees, it might 

tend to underestimate when the predicted value is close to the maximum value of training data. Similarly, 

when the estimated value is close to the minimum value of training data it might tend to overestimate. 

Further investigation is required on the functioning of the algorithm to reveal the actual causes. 

We extracted disturbance information from the Landsat time series following the methodology 

developed by Kennedy et al. [33] and Ahmed et al. [18], and demonstrated that the resulting disturbance 

information improved the MCH prediction in a tropical forest. On the other hand, our MCH estimation 
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error is somewhat higher compared to Ahmed et al. [18], they estimated canopy height using sample of 

Lidar data and Landsat time series variables in a temperate managed forest with R2 of 0.88 and RMSE 

of 2.39 m. In our study, the best model resulted in an R2 of 0.75 with corresponding RMSE of 2.81 m 

using time series variables in a RF model (Table 4). The disturbance characterization method we used is 

mainly developed based on temperate managed forest and it considers only the single highest disturbance 

during the analysis period and it is not capable of detecting multiple disturbances. Forest disturbance 

from small scale illegal selective logging is anticipated in tropical forest which can result in multiple 

disturbances within a short observation period [72]. Complete characterization of forest disturbance in 

the study area being beyond the scope of our study, such continuous disturbances may not be readily 

detected by the disturbance characterization method, although focused investigations on subtle change 

have been successful using similar data to this study [73]. Following the methods presented in this 

research, we identify a multi-year temporal segment of change. The approach currently disregards other 

minor disturbances that occurred in the analysis period. Further study is required to develop algorithms 

which detect such multiple disturbances that are typical in tropical forest. Consequently, this will 

improve the time series information that can be extracted from Landsat which in turn might improve 

canopy height estimations. 

The present study demonstrated the potential to predict airborne Lidar MCH from Landsat time series 

data. We showed Landsat time series data improved LiDAR derived canopy height estimation in 

unmanaged tropical forest (Table 4, Figure 6). The results are comparable to previous studies which 

have been conducted in temperate managed forests. The distinctive methodology implemented here can 

be used to spatially extend MCH beyond the Lidar extent which can in turn be used for large area, above 

ground carbon estimation. 

5. Conclusions 

In this study, we implemented Landsat-Lidar integration approach for modeling mean canopy height 

from single date and historical Landsat observations in a tropical forest in Cambodia. Mean Canopy 

Height (MCH) was estimated separately using single date, time series, and the combination of single date 

and time series variables in multiple regression and random forest (RF) models. The lowest estimation 

error was obtained using Landsat time series variables in a RF model (R2 = 0.75 and RMSE = 2.81 m). 

The RMSE for RF mean canopy height prediction was reduced by 13.5% when including disturbance 

information derived from Landsat time series data as compared to the 3.6% RMSE decline presented by 

multiple regression. This study demonstrates the utility of disturbance and recovery data from Landsat 

time series to predict Lidar-derived canopy height in a tropical forest using a RF model, as compared to 

the more common approaches, that consider a sample of airborne Lidar and single-date Landsat  

derived variables. 

Beneficial future research directions include implementing biophysical structure estimation over  

a large tropical forest area using Landsat time series data. The estimation of above ground biomass 

should be evaluated given the objectives of REDD+ (reducing emissions from deforestation and forest 

degradation) providing an additional characterization opportunity for enhancement of forest carbon stock 

estimation in developing countries. Further study is also required to detect multiple disturbances that are 
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typical in tropical forests to obtain a more accurate forest disturbance characterization, to possibly inform 

on degradation, and to consequently improve the canopy structure estimation in such environments. 
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