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Abstract 

Mapping and monitoring land cover and land cover change remains a top priority for land 

managers. Uniquely, remote sensing offers the capacity to acquire information in a systematic 

(spatially, temporally, and categorically) and synoptic fashion that is appealing from monitoring 

and reporting perspectives. The opening of the Landsat archive and new processing and 

analysis opportunities enable the characterization of large areas and the generation of dynamic, 

transparent, systematic, repeatable, and spatially exhaustive information products. Best 

Available Pixel (BAP) approaches enable the production of periodic image composites free of 

haze, clouds, or shadows over large areas. In this paper we demonstrate an integrated protocol 

to produce spatially exhaustive annual BAP image composites that are seasonally constrained 

and free of atmospheric perturbations. These annual BAP composites for the years inclusive of 

1998 to 2010 provide for generation of a suite of change metrics for the period 2000 to 2010 

using Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) data. The 

study area is the > 375,000 km2 forested area of Saskatchewan, Canada. We evaluate the 

robustness of the protocol by comparing in-filled (or proxy) values with a true reference set for 

surface reflectance. An initial change detection pass is used to aid in the allocation of proxy 

values (for missing and anomalous values) and to allocate change events to the correct year, 

with a second pass to characterize key change points and related time series trends (e.g., 

change year, post-change slopes, among others). In so doing, a multi-temporal data cube (via a 

series of annual proxy composites) and a set of change metrics are generated. Approximately 

35% of the pixels in our study area required proxy values, either as a result of missing data or 

our noise detection approach. Overall, our results indicate strong agreement between the 

assigned proxy values and the reference data (R = 0.71– 0.91, RMSE = 0.008–0.025). Agreement 

was stronger for pixel series with no change events (R = 0.73–0.92, RMSE = 0.007–0.024), 

relative to pixel series with change events (R = 0.63–0.87, RMSE = 0.010–0.029). The generated 

change metrics, derived via temporal and spatial analysis of the annual BAP composites, were 

an important precursor to the generation of valid proxy values, and – importantly – provide 

valuable information for the further assessment and understanding of land cover and land 

cover change. Our results indicate that the demonstrated protocol provides a reliable approach 

to generate proxy image composites containing no data gaps, along with a suite of informative 

change metrics that provide a comprehensive characterization of land cover changes (including 

disturbance and recovery) allowing for an improved understanding of landscape dynamics. The 

protocol is efficient and may be applied over large areas to support regional and national 

mapping and monitoring activities. 

Keywords: best available pixel, change detection, proxy value, image compositing, Landsat, 

temporal analysis. 
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1. Introduction 

Up-to-date land cover and change information is required by resource managers and decision-
makers at regional, national, or global level to support the development and implementation of 
policies, and to meet mandatory reporting requirements resulting from those policies 
(Townshend et al., 2011). Within forest environments, information to support forest 
inventories has historically relied on the interpretation of aerial images and forest plot data, 
providing a mix of cost effectiveness and information content typically required to support 
forest management activities at the strategic level. The collection and interpretation of aerial 
images in support of forest inventories has traditionally been implemented on a cycle, often 
decadal or longer to inform managers at the regional and jurisdictional level as well as to 
support systematic reporting on a defined suite of attributes over time, including the 
occurrence and extent of both anthropogenic and non-anthropogenic change. At the 
operational level, forest managers are increasingly using Light Detection And Ranging (LiDAR) to 
derive forest structure information, often with targeted digital photography to meet immediate 
management and planning needs (Wulder, Bater, Coops, Hilker, & White, 2008). These 
intensive and information rich approaches are especially suitable for meeting detailed 
operational needs (e.g., road placement, individual tree harvesting, exclusion of sensitive 
environments, etc.); however, over large areas and to meet strategic inventory and 
jurisdictional reporting needs, other remote sensing approaches may be preferred. 

For larger forested nations, such as Canada, composed of both managed and unmanaged forest 
lands and having multiple jurisdictions involved in stewardship, the opportunity to collect 
information in a systematic (spatially, temporally, and categorically) and synoptic fashion is 
desirable from monitoring and reporting perspectives. The opening of the Landsat archive and 
the associated processing and analysis opportunities (Hansen & Loveland, 2012) enables the 
characterization of the entire area of interest systematically with the same information source, 
thereby allowing for the transparent, systematic, and repeatable production of spatially 
exhaustive information products. Additionally, utilization of Landsat data allows for 
capitalization upon the rich applications and processing base that has developed over the life of 
the satellite program (Cohen & Goward, 2004; Wulder, White, et al., 2008). Landsat has the 
longest continuous global-coverage image archive, acquired at temporal and spatial resolutions 
suitable for monitoring and mapping human activity and impacts (Wulder et al. 2008). 

The production of national level image composites provides unique opportunities for large area 
characterizations, yet challenges exist. Using Canada as an example, with an area of almost 10 
million km2, there are more than 1200 scenes (i.e., Worldwide Reference System-2 [WRS-2]) 
path/rows), multiplied by the temporal depth of the Landsat archive (White & Wulder, 2013). 
As a result, large numbers of images must be obtained, processed (e.g., to deal with cloud and 
shadow), and stored. Additionally, due to the requirements to derive products (e.g., land cover, 
land-cover change, forest structure) with phenological fidelity, a date range for acceptable 
imagery is defined (e.g., mid-summer, centered on peak photosynthetic activity). This level of 
specificity can result in data gaps, such as when there are no cloud-free pixels found during the 
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defined date range. The more restrictive the date requirements imposed to build the Best 
Available Pixel (BAP) composites, the more radiometrically consistent the vegetation 
phenological response is over multiple years. Increasing the temporal restrictions, however, will 
decrease the likelihood of obtaining suitable cloud-free images (White et al., 2014) 
Furthermore, the cloud masking and haze scoring routines applied are not perfect, which can 
result in spectral inconsistencies making it through to a given composite. 

A number of novel pixel-based compositing methodologies have been proposed to derive large 
area image composites from multiple Landsat scenes (Flood, 2013; Griffiths, Linden, 
Kuemmerle, & Hostert, 2013; Hansen et al., 2011; Potapov, Turubanova, & Hansen, 2011; Roy 
et al., 2010). These pixel-based selection approaches implement a set of rules to guide the 
compositing process, and facilitate the development of techniques for regional to global land 
cover and land cover change monitoring applications (Hansen & Loveland, 2012) while also 
mitigating the creation of boundary artefacts due to mosaicking independently processed 
scenes (Kennedy, Yang, & Cohen, 2010). The production of annual composites thus enables 
creation of wall-to-wall, multi-year image time series (White et al., 2014). 

Once seasonal or annual BAP composites have been developed, a time series of pixel values 
(hereafter referred to as a pixel series) can be derived for each pixel location through the entire 
time period considered. These pixel series can be used to identify, describe, and quantify 
changes in land cover and land-cover disturbances (Cohen et al., 2002; Griffiths et al., 2013; 
Huang et al., 2010; Jönsson & Eklundh, 2004; Kennedy, Cohen, & Schroeder, 2007). Ideally a 
pixel series would be completely populated and composed of values that meet all the 
requirements for inclusion in the composite, e.g., nearness to target DOY, no cloud, cloud 
shadow, or haze, and no missing data due to the Scan Line Corrector failure (SLC-off). In reality, 
however, a pixel series may be missing values in particular years, resulting in data gaps in the 
pixel series that might limit the applicability of many existing data analysis methods, which 
generally assume fairly complete data (Lou & Obradovic, 2011). A pixel series may be 
characterized as stable (e.g., mature forest) or could be irregular due to changes or transitions 
in cover types over time. Variations in pixel values through time can also occur as a result of 
undesired residual clouds and shadows, undetected haze, or changes in solar illumination 
(Kennedy et al., 2010; Vicente-Serrano, Perez-Cabello, & Lasanta, 2008), resulting in noise or 
anomalous values that may impact subsequent image analyses. Both data gaps and anomalous 
values in the pixel series need to be addressed before the pixel series can be used for 
applications such as characterizing land cover and land cover change. 

Our objective is to present and demonstrate a protocol to generate annual large-area BAP 
composites that contain no spatial or temporal data gaps (hereafter referred to as proxy value 
composites) and that are sufficiently spectrally consistent to enable the subsequent 
characterization of land cover, land cover change, and vertical forest structure. Using annual 
BAP image composites (described in detail in White et al., 2014) as a starting point, our 
approach to generating proxy value composites is novel in that we first detect spectral change, 
derive a series of metrics characterizing these spectral changes, and then use these change 
metrics to aid in proxy value assignment. As part of our protocol, we also identify any noisy or 
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anomalous pixel values and then replace these values with proxy values. We apply the protocol 
to a 15 year span of imagery (1998 to 2012) to inform on a decade of 2000–2010 of forest 
change occurring over the forested area of Saskatchewan, Canada. We describe each 
component of the protocol and assess the quality of the proxy composites using a true 
reference set for reflective bands. The change metrics produced are presented and discussed. 
We conclude with recommendations focused on the application of the protocol for regional 
land cover mapping applications. 

2. Background 

2.1. Pixel-based image compositing 

Pixel-based image compositing approaches constitute a new paradigm in image processing, 
emerging as result of the opening of the Landsat archive combined with the increasing data 
storage and processing capabilities (White et al., 2014). As a consequence, users now can 
gather long temporal series of images covering large-areas, instead of being restricted to single 
scenes (Loveland & Dwyer, 2012). Common to the pixel-based image compositing approaches is 
the selection of BAP from a set of images subject to multiple criteria. Higher scores are assigned 
to those pixels with more desirable conditions. Those pixels with the highest scores are 
included in subsequent composite development. The result is that users can apply the rules 
that are most appropriate to their particular information needs and produce BAP composites 
containing atmospheric-corrected reflectance values covering large areas. 

The main difference between pixel-based image compositing approaches is their treatment of 
pixels that are missing suitable observations in a specific target year. Three types are 
distinguished: single-year, multi-year, and proxy composites (White et al., 2014). Single-year 
composites only use images from the target year and pixels with no suitable observations are 
labelled as “no data” (Roy et al., 2010), resulting in composites without complete coverage. 
Multi-year composites use data from alternative years (generally previous or next) when no 
suitable observations are found in the target year (Griffiths et al., 2013). However, off-year 
imagery might negatively impact the study of vegetated areas (Brooks, Thomas, Wynne, & 
Coulston, 2012) by hindering the analysis of trends and detection of changes. Proxy composites 
are developed to overcome these limitations. This approach fills in data gaps by considering the 
full spectral information of the pixel-series and replacing these pixels with synthetic values that 
are the most spectrally similar in time and space. 

2.2. Noise Removal Techniques 

Noise detection methods using a temporal series of data often avail upon the situation that 
noise-related fluctuations in spectral response are punctual and ephemeral, with an 
expectation that the spectral response will return to a value close to the pre-fluctuation 
scenario in the post-fluctuation year (Kennedy et al., 2010). In the case of image compositing, 
noise can be related to undetected cloud or cloud shadow, as well as haze or smoke (Figure 1). 
Given a stable trajectory of pixel values through time for an undisturbed pixel of a given land-
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cover type, a range of expectation may be determined. Anomalous values or noise result in a 
surface reflectance value for the pixel in a given year which exceeds this expectation, but which 
clearly does not represent a change event. Replacement of these anomalous values is desired 
to enable production of seamless, spatially exhaustive, annual proxy value composites that are 
sufficiently spectrally consistent to support the production of land cover and forest structure 
information products. 

A number of approaches have been used to detect noise in time series of remotely sensed data 
comparing the deviation between actual observations and model predicted values, including 
iterative least squares fitting (Zhu, Woodcock, & Olofsson, 2012; Zhu & Woodcock, 2014), 
Fourier analysis (Geerken, Zaitchik, & Evans, 2005; Roerink, Menenti, & Verhoerf, 2001), 
harmonic analysis (Meisner, Bittner, & Dech, 1999); and pseudo-invariant feature regression 
(Vicente-Serrano et al., 2008). Some techniques are based upon the identification of outliers as 
observations with coefficients of variation exceeding a threshold and having the greatest 
absolute difference compared to the average value in an indicated time period (Ju, Roy, Shuai, 
& Schaaf, 2010). All of these approaches present some challenges that may limit their use 
(Jönsson & Eklundh, 2004) including the need for a priori determination of threshold values and 
analysis periods. In addition, fitting methods may be problematic when applied to irregular or 
asymmetric data, provoking spurious oscillations in time series (Chen, 2004). Pixels that are 
identified as having anomalous values or noise are assigned a “no data” value and are then 
filled with a proxy value. The proxy values are not measured directly, but rather are informed 
by other Landsat measures, such as those from preceding and/or following dates. 

2.3. Infill techniques for data gaps (proxy values assignment) 

The application of a rule-base for producing annual image composites may result in pixels with 
persistent “no data” values. These data gaps represent pixels for which there is no imagery that 
meets the specified compositing criteria; however, based on knowledge of the pixel's value 
through time, these pixels can be assigned a proxy value. Due to an expectation that spectral 
data for a given pixel are autocorrelated over time, the information of preceding and 
succeeding dates has been a common approach infill data gaps. Techniques are often based on 
fitting oscillating functions to characterize the seasonality of the observations, e.g. least squares 
(Jönsson & Eklundh, 2004) or Fourier analysis (Brooks et al., 2012; Roerink et al., 2001). These 
approaches typically require multiple observations per year and may perform poorly when 
using a single observation per year. Linear interpolation techniques can also be applied to infill 
missing data (Keogh, Chu, Hart, & Pazzani, 2001); however, this method may result in 
smoothing or removal of significant trends within the time series, with likely impacts on the 
quality of the final composites. The most successful approaches designed to overcome these 
challenges examine the overall temporal pattern within the pixel series and fitting partial trends 
which describe the low frequency behavior of inter-annual time series (Tomé & Miranda, 2004) 
and allow the identification of steps or breakpoints in the series that represent disturbances 
and land-cover condition changes (Huang et al., 2010; Kennedy et al., 2010; Verbesselt, 
Hyndman, Zeileis, Culvenor, & Newnham, 2010). These breakpoints provide the key time 
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intervals of change that delimit piecewise-based interpolations of the different trends 
composing a time series. 

3. Study area and data 

Development and testing of our protocol for generating seamless multi-temporal pixel-based 
image composites was undertaken over the forested region of the Canadian province of 
Saskatchewan, which has an area of 378,818 km2, representing 58% of the total area of the 
province (Figure 2). This forested region is divided into three ecozones: Boreal Plains, Boreal 
Shield, and Taiga Shield (Rowe, 1996). More northern areas are composed primarily of black 
spruce (Picea Mariana) and jack pine (Pinus banksiana) and are dominated by large wildfires. 
These areas are considered unmanaged, meaning that there is no fire suppression or tenure 
arrangements for harvesting in these areas, and that there is little in the way of forest inventory 
information available. In contrast, more southerly latitudes of the forested area are dominated 
by aspen (Populus tremuloides), white spruce (Picea glauca), and tamarack (Larix laricina) and 
are subject to forest management practices (including fire suppression) with ongoing tenure 
arrangements allowing for harvest, with forest inventory information available for some of this 
area. Additionally, although fire suppression is more common in the managed forest, wildfires 
are still an annual occurrence. 

The temporal window for protocol development was 2000 to 2010; however two additional 
years were added at the beginning and end of the time series to enable proxy value assignment 
and avoid missing data in the outermost dates of the period of interest, and to allow trends to 
be based upon pre- and post-period evidence as the case may be. All available images with less 
than 70% cloud cover from the United States Geological Survey archive of Level-1-Terrain-
Corrected (L1T) Landsat Thematic Mapper (TM) and Landsat Enhanced Thematic Mapper Plus 
(ETM+) covering the study area that were acquired from August 1st ± 30 days from 1998 to 2012 
were considered candidates for creating the image composites. The forested area of 
Saskatchewan is represented by 50 scenes (path / rows) of the Landsat Worldwide Referencing 
System. August 1st is DOY 213 and was selected as a central date with a to general 
correspondence with the growing season for the majority of Canada’s forested ecosystems 
(McKenney, Pedlar, Papadopol, & Hutchinson, 2006). As the focus of this monitoring work and 
current methods development is on forested ecosystems, agricultural lands were identified and 
excluded from our analyses using a mask provided by Agriculture and Agri-Foods Canada (2011 
data; ftp://ftp.agr.gc.ca/pub/outgoing/aesb-eos-gg/Crop_Inventory/). 

4. Methodology 

We use annual BAP image composites as the initial inputs to our protocol (see workflow in 
Figure 3). The methods used to generate these annual BAP composites (including equations for 
scoring pixel observations) are described in detail in White et al. 2014 and therefore we provide 
only a brief description of them here. The protocol applied herein begins by identifying pixel 
locations in the annual BAP composites with observations from images acquired outside ± 30 
days of the target DOY and assigning them to a “no data” value. Likewise, noisy or anomalous 
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pixel values (i.e., pixel values that exceed a range of expectation as defined by the values in the 
pixel series; Figure 1) are identified and assigned a “no data” value. This process is repeated for 
each year, resulting in a temporal stack of annual BAP image composites ready for subsequent 
processing. We then applied breakpoint analysis to each pixel series to identify spectral changes 
in the trajectory of surface reflectance values through time. These spectral changes are often 
indicative of change events such as forest disturbance or recovery, and knowledge of these 
events is a necessary precursor to assigning an appropriate proxy value to pixels with “no data”. 
In order to characterize change events, breakpoints in the pixel series are detected and 
analyzed in both the temporal and spatial domains. These breakpoints are used to establish the 
temporal interpolation limits in the time series within which to determine the applicable trend 
for proxy value assignment. Each of these processing steps is explained in more detail below. 

4.1. Generation of annual BAP image composites 

As described in detail in White et al., (2014), annual BAP image composites are generated using 
a series of pre-processing functions. Atmospheric correction was applied to all images using the 
Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) algorithm (Masek et al., 
2006; Schmidt, Jenkerson, Masek, Vermote, & Gao, 2013) to transform digital numbers into 
surface reflectance values for the six Landsat optical bands. Clouds and their shadows were 
detected and masked using the Function of mask (Fmask) algorithm (Zhu & Woodcock, 2012). 
The Fmask was also used to generate a water mask, excluding these features from additional 
processing (Lunetta, Johnson, Lyon, & Crotwell, 2004). Once pre-processing is complete, scores 
are calculated and assigned for each pixel observation. Each pixel received four separate scores 
– based on modifications to those proposed by (Griffiths et al., 2013) for (i) sensor, (ii) 
acquisition day of year, (iii) distance to clouds and cloud shadows, and (iv) atmospheric opacity. 
The scores are summed and the best observation for each pixel is selected as the one with the 
highest score. Some of the scores operate at the image level, meaning all pixels in an image 
receive the same score (i.e., sensor and acquisition day of year), whilst other scores are pixel 
specific (i.e., distance to clouds and cloud shadows, and atmospheric opacity). The surface 
reflectance value for the "best" observation is then written out to the annual BAP composite. 
Details on the pixel scoring rules and annual BAP development can be found in White et al., 
(2014). 

4.2. Noise detection and removal 

The first step in our protocol takes the annual BAP image composites and detects and removes 
noisy observations or anomalous values from the image composite. Temporal trajectories of 
values for a given pixel are used to define a range of expectation. Some variation in these 
values is expected through time, but anomalies may occur as a result of clouds or cloud 
shadows that are missed by the automated cloud masking routine, or by haze or other factors. 
It is necessary to identify these anomalous values and distinguish them from more marked 
spectral differences in the pixel series that may be indicative of a change event. Each pixel 
series is assessed to detect outliers using the filtering method proposed by (Kennedy et al., 
2010), where values for a given time are examined in relation to their previous and subsequent 
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spectral values. This outlier analysis is applied to all six Landsat spectral bands. A pixel is flagged 
as noise and set to “no data” when it meets two conditions: first, it is detected as an outlier; 
second, the difference between the spectral value under consideration and the average of 
previous and subsequent values in the pixel-series exceeds a threshold – derived by sensitivity 
analysis – in three or more of the six bands. 

4.3. Assessment of data gaps 

We assessed the prevalence of temporal gaps (pixels with “no data”) in the annual BAP image 
composites, and tracked whether these gaps resulted from the scoring functions used to 
generate the composite (i.e., no suitable imagery was available for a given pixel location) or 
whether the gap was the result of our noise detection process (i.e., the pixel's value exceeded a 
range of expectation determined by its pixel series and was flagged as noise). Gaps were also 
mapped to identify locations in our study area with persistent absence of data. 

4.4. Preliminary infill of data gaps 

As indicated above, it is likely that some pixels will have no observations. Furthermore, pixels 
identified as having noisy observations will likewise have been assigned “no data” value. In 
order to enable the detection of spectral change events, and to avoid interpolation across 
potential breakpoints that are indicative of such events, a preliminary infill of pixel values is 
undertaken. These preliminary proxy values are derived by individually examining each year 
within a pixel series. The spectral value of the preceding or following year is assigned to the 
examined year based on the lowest standard deviation of the two years preceding or the two 
years following the examined year, as Equation 1 indicates. 

   {
 {         }

 if  {         }   {         } 

 {         }
 if  {         }   {         }

 (1) 

where xt is the year in the pixel series to be preliminary infilled, and {         } and 
{         } are the two preceding and the two following years containing data, respectively. 

4.5. Breakpoint detection and generation of change metrics 

A breakpoint represents a change in the temporal development of a pixel's values through time. 
Robust identification of breakpoints enables the assignment of final proxy values to pixels with 
missing observations, as well as enabling change events, and the year in which the event 
occurred, to be correctly identified. The breakpoint detection process is performed over the 
Normalized Burn Ratio (NBR) (Key & Benson, 2006) pixel series, which has been demonstrated 
as sensitive and consistent for the retrieval of disturbance events over forest environments 
(Kennedy et al., 2010). 
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Breakpoints were detected using a variation of the bottom-up algorithm proposed by (Keogh et 
al., 2001). This process is composed of four main steps: 

i. Initially n - 1 segments are created in a pixel series composed of n values. 

ii. Cost in terms of root-mean-square error (RMSE) of merging each pair of adjacent 
segments is computed. 

iii. The pair of segments with the lowest cost is merged. 

iv.The cost is recomputed for the new segments, and the process is iterated until certain 
stopping criteria are fulfilled. 

Two stopping criteria are used, which are required prior to calculation: the maximum number 
of segments and the maximum merging cost allowed. During the iteration process the 
maximum merging cost value can be dynamically adapted to enforce the algorithm to meet the 
maximum number of segments requirement. The maximum number of segments was set to 5, 
and the maximum merging cost 0.125. An absolute maximum merging cost was chosen to avoid 
challenges of defining costs relative to the time series values as discussed by Kennedy et al. 
(2010). 

The trends computed after implementation of the breakpoint detection process are of four 
distinct types (Figure 4): monotonic trends (i.e., trends with no breakpoints) (Figure 4a); trends 
composed of multiple breakpoints all with positive slope segments (Figure 4b); trends with a 
single breakpoint and a negative slope (Figure 4c); and trends composed of multiple 
breakpoints, with at least one negative slope (Figure 4d). From these trends, segments, and 
breakpoints, we derived a set of descriptive change metrics that allowed us to characterize the 
change events as well as conditions pre- and post-change (Table 1). Metrics relay information 
on change year, magnitude, persistence, and rate and are grouped into pre-change (Figure 4d, 
 ̅1), change (Figure 4d,  ̅2), and post-change (Figure 4d,  ̅3) categories. Change metrics 
characterize the negative segments ( ̅2) using: date (year), persistence, magnitude, and change 
rate. Of particular utility to proxy value assignment, are change year (e.g., represented by 
breakpoint B in Figure 4d), and change persistence (e.g., number of years between breakpoints 
B and C in Figure 4d). 

4.6. Contextual analysis of the change events 

The next step of the protocol analyzes spectral change events in the spatial domain to improve 
the consistency and spatial homogeneity of detection. Since changes are detected in the 
temporal domain (i.e., from the temporal trajectory of the pixel series), the pre-infill process of 
data gaps described earlier may result in spatially discordant disturbance events labelled with 
an incorrect year for change. If we consider discrete events, such as a wildfire, the information 
need is to ensure that these change events are allocated to the correct year and have spatial 
cohesion with neighbouring pixels of the same event. To mitigate these errors, a contextual 
analysis of the disturbances is undertaken in the spatial domain. It is assumed that if a change 
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event is detected in a year with no or few data gaps, and the previous and subsequent years 
also have no or few data gaps, then the change event has been labelled with the correct year. 
We rank the reliability change detection based on data absence where the chances of correctly 
predicting the year of a change event is inversely related to the number of years of missing data 
in the pixel's trajectory. Thus, change detection reliability is ranked according to data 
availability in the years before, during, and after the change event. 

Detected change events are spatially aggregated into pixel segments based on their date of 
occurrence and duration (i.e., persistence). Segments missing less than 50% of observations in a 
given year – before, during and after the change event – are deemed reliable and attributed 
with their date of occurrence. Segments that are missing more than 50% of observations in any 
of the considered years are ranked less reliable. Lower-ranked segments that are spatially-
adjacent (eighth-connected neighborhood) to a higher-ranked segment within ± one year are 
attributed the year of occurrence of the more reliable neighbour. In addition, during this 
process, change events that have a size less than the minimum mapping unit (MMU) are 
removed. The MMU size was determined to support the information needs of Canada National 
Forest Inventory (0.5 ha). 

4.7. Final infill of data gaps and generation of proxy image composites 

The final step of the protocol involves assignment of final proxy values to pixels with no 
observations. These proxy values are computed using a piecewise linear interpolation from the 
temporal segments, in which breakpoints and trends have been identified and characterized, as 
follows: 

                    
       

           
 (2) 

where xt is the proxy value assigned to a pixels with no observation at the year t, and xt-1 and 
xt+1 are the spectral values in years with observations before (t-1) and after (t+1), respectively. 
Proxy values to pixels located in the extremes of the temporal segments are computed using 
linear extrapolation, as indicated in Equation (3): 

                  
       

         
 (3) 

where xk and xk-1 are the spectral values of the two nearest years, k and k-1, with observations. 
As result, the proxy value assigned to a data gap is uniquely a function of the spectral values of 
the temporal segment where the gap is located. Thereby, combining information from the 
different trend components can be avoided, preserving so the change events in the temporal 
series. 
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4.8. Assessment of proxy values 

To assess the impact of our proxy value assignment process, we randomly selected 0.005% 
(116,000), pixels (from all cover types) that had valid pixel observations from each annual 
composite. We masked and flagged these pixels as “no data”, thereby generating synthetic 
gaps, and applied our full protocol as described above. We then assessed the final proxy surface 
reflectance values against the original surface reflectance values (hereafter referred to as the 
reference values). Proxy and references values were compared using a correlation coefficient 
(R), root mean square error (RMSE), bias, and coefficient of variation (CV). For each band and 
group, the correlation coefficient indicates the degree of association between the reference 
and proxy values, the RMSE indicates the average difference between the reference and proxy 
values, and the bias indicates if the proxy values are typically higher or lower than the reference 
values. The CV is useful for comparing amongst different groups, but not amongst different 
spectral bands, as it provides an indication of the differences between the proxy and reference 
values relative to the mean reference value for a band. Bias, RMSE and CV were calculated as 
follows: 
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where Referenceb,i and Proxyb,i are, respectively, the reference and proxy values for each pixel 
in band b, n is the number of samples, and  ̅          

 is the mean spectral value for band b. 

Statistics were computed for all spectral bands, and were also stratified by various conditions. 
First we considered three distinct groupings: all pixels, pixels without change events, and pixels 
with change events. Secondly, we considered the impacts of an increasing number of data gaps, 
as well as consecutive numbers of data gaps, on the quality of the proxy value assignment. 

5. Results 

5.1. Assessment of data gaps 

The proportion of pixels with missing data in the annual image BAP composites across the study 
area (not including pixels identified as water bodies) ranged from a minimum of 0.5% in 2001 to 
a maximum of more than 31% in 2010 over the analysis period (see Figure 5a). On average, 15% 
of each annual image composite had data gaps resulting from our scoring functions (i.e., 
acquisition DOY, distance to cloud and cloud shadow, opacity, and sensor score). By 
comparison, an average of 7.5% of pixels in each annual image composite were flagged as 
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noise, with 2001 being the year with the lowest proportion of noisy pixels (5.8%) and 2002 the 
year with the greatest proportion of noisy pixels (9.6%). When combined, data gaps resulting 
from our scoring functions and noise removal process impacted more than 35% of pixels in the 
years 2004, 2006, and 2010. Approximately 3.5% of the pixels in the study area did not have 
any gaps in any of the annual composites (Figure 5b) and more than 50% of the pixels had three 
or fewer years of missing data. 99.95% of pixels had at least three years of data in the entire 11-
year time series. As indicated in Figure 5c, data gaps were often spatially concentrated, 
occurring more commonly in the northern portion of the study area, and this area was more 
prone to cloud cover, haze, and smoke from wildfires. 

5.2. Breakpoint detection and generation of change metrics 

The characterization of trends in pixel series values, the detection of breakpoints, and the 
generation of descriptive change metrics are an important precursor to assigning appropriate 
proxy values to fill in data gaps. Within our study area, the total changed area per year, 
grouped by the persistence of the change event, is summarised in Figure 6. The average annual 
total area of change (2000-2010) is 3936 km2, with a standard deviation of ± 2920 km2. The area 
of change oscillates markedly and exceeds 6000 km2 in 2002, 2006, 2008, and 2010. Most of the 
change events are of short duration, and persist only for a single year. Figure 7 shows the 
persistence of the change events for 1 to 4 years or longer (Figure 7a), and the spatial 
distribution of change events by year (2000–2010) across the study area (Figure 7b). The 
northern part of the study area is dominated by large change events that persist for a single 
year (e.g., wildfires) whereas, in the southern part of the study area, disturbances are smaller 
and in some locations persist for multiple years (e.g., forest harvesting). 

Figure 7c shows the magnitude of the disturbance events (i.e., the difference between spectral 
values at breakpoints C and B in Figure 4d). Change magnitude metrics provide insights 
regarding change severity. The values of the magnitude metric vary from 0 to -2 (corresponding 
to the maximum possible difference between two NBR values) and lower values are related to 
higher severity change processes since they are indicative of greater changes in vegetation 
condition and/or amount of vegetative cover. In our study area, higher severity change events 
are located in the central part. Figure 7d displays the rate of recovery after the major change 
event expressed in NBR magnitude increase per year (i.e. the difference between spectral 
values at breakpoints D and C divided by the time between these breakpoints in Figure 4d). 
Values close to zero represent very slow recovery processes, whereas higher values are related 
to increased post-disturbance regrowth. 

5.3. Generation of proxy image composites 

The protocol presented was used to generate annual proxy image composites for each year 
from 2000 to 2010 as shown in Figure 8. Figure 9 shows a sample of outputs generated from 
each major phase of the protocol for years 2004 to 2007: the annual BAP composite resulting 
from the scoring functions (with data gaps); the data gaps generated during the noise detection 
and removal phase; and finally, the infilling of data gaps using proxy values. As shown in 2004, 
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and to a lesser extent 2005, the noise detection and removal process is useful for mitigating the 
effects of remaining clouds, haze, or for 2004, smoke from wildfires, the latter of which may be 
more challenging to detect using Fmask. Likewise, the performance of the proxy value infilling 
process is evident in 2006 where most of the area was missing data as a function of the BAP 
scoring and the noise removal process. The proxy values for 2006 reproduce a consistent 
spectral response of the vegetation cover resulting from the application of the piecewise linear 
interpolation, which prevented the mixing of spectral information from years preceding and 
succeeding the actual change event (i.e., a salt-and-pepper effect whereby some pixels have 
values pre-change, some have values post-change). Figure 10 shows the contextual analysis 
component of the protocol. In the example shown, a wildfire occurred in 2002, however, as a 
result of the scoring functions and noise removal processes, most of the 2002 image is missing 
data, and the disturbance is not completely visible until 2003. Consequently, using the 
breakpoint detection approach without the spatial component would lead to assignment of the 
incorrect date (i.e. 2003, not 2002), allowing for the correct reconstruction of the spectral 
response of the disturbance event in the proxy values assigned to fill data gaps. 

5.4. Assessment of proxy values 

Reference and proxy values are plotted in Figure 11. The correlation coefficient, RMSE, bias, 
and CV resulting from a comparison of reference and proxy values are summarized in Table 2. 
Comparisons were made for three groups: all pixels combined, pixel series with no change 
events, and pixel series with change events (Table 2). Overall, the measures indicate a strong 
level of agreement between surface reflectance reference values and proxy values (R = 0.71–
0.91, RMSE = 0.008–0.025). Correlations between proxy and reference values were generally 
lower for pixel series with change events (0.63–0.87) compared to correlations for pixel series 
with no change events (0.73–0.92). Across all groups considered, R and RMSE were typically 
lower for bands 1, 2, and 3 (average R = 0.75; average RMSE = 0.009), when compared to bands 
4, 5, and 7 (average R = 0.87; average RMSE = 0.022). Bias was slightly positive for all bands 
with the exception of band 4, for which the bias was consistently negative. Bias was relatively 
consistent across the three groups considered, with the exception of bands 5 and 7, which had 
a higher positive bias for pixels with change events. On average, the CV was higher for pixel 
series with change events (average CV = 23.23), compared to pixel series with no change events 
(average CV = 17.09). 

Reference and proxy values were also assessed in the context of the number of data gaps and 
number of consecutive data gaps (Table 3). Here we report results for band 4 only, but other 
spectral bands exhibited similar trends. As the number of data gaps in a pixel series increases, 
the correlation between proxy and reference values decreases. A similar trend in declining 
correlation is seen in pixel series with consecutive data gaps, but the rate of decline is greater 
and includes a negative correlation at 10 years of consecutive data gaps. Trends in bias and CV 
are likewise greater and more volatile for pixel series with consecutive data gaps. Bias is 
relatively small and negative until 8 or more years of consecutive data gaps occur, at which 
point the bias became larger and positive. 
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6. Discussion 

In this paper we describe a protocol to produce annual proxy value BAP image composites, 
generated using Landsat TM and ETM+ data, which have no spatial or temporal gaps, and that 
are largely void of anomalous reflectance values and can inform on change over time. We 
applied the protocol to a decade of Landsat data in the boreal forest region of Saskatchewan, 
Canada. To restrict the spectral range related to vegetation phenology and seasonality, we 
defined a consistent date range corresponding with the growing season for the majority of 
Canada’s forested ecosystems. The date range could be modified for other applications (White 
et al., 2014). For example, the date range could be refined and dynamically adapted based on 
latitude (Zhou et al., 2001) or by identifying peak vegetation greenness using high temporal-
resolution sensors such as MODIS. 

When we assessed data gaps in our stack of annual BAP image composites, we found that for a 
single year, up to 35% of pixels of the study area required proxy value assignment, either 
because the pixels had data gaps resulting from a lack of suitable imagery to satisfy the BAP 
compositing rules, or because of noise (i.e., pixels that exceeded a range of expectation based 
on other values in the pixel's trajectory). Due to the long life of Landsat 5, the effective 
temporal revisit for Landsat has been 8 days from the beginning of Landsat 7 ETM+ collections 
in 1999 to the demobilization of Landsat 5 TM in January 2013. While the two sensors have 
offered many opportunities for collecting data at a given location, the potential for data gaps 
has become more prevalent as of 2003 due to the SLC-off status of the Landsat 7 ETM+ sensor, 
with the strong geometric fidelity of the ETM+ instrument resulting in a high degree of spatial 
alignment of the SLC-off portions of imagery over time (Hansen et al., 2011). 

The assignment of appropriate proxy values is enabled by first detecting and characterizing 
spectral change within each pixel series. This phase of the work is centered on the protocol 
description, with a later phase to fully assess the change detection and metrics described 
herein. We defined temporal segments—based on the detection of spectral changes in the 
temporal domain—using piecewise linear interpolation. In addition, we considered the spatial 
domain by applying contextual analysis to these spectral changes. The application of the 
contextual analysis procedure reduces possible errors in the date assigned to a given change 
event (i.e., breakpoint) by relabeling the change event detected in the time series based on the 
presence of data gaps. To do this, reliability of detected change events is ranked based on the 
presence of data gaps in the pixel series. The date (year) of a change event for any given pixel is 
reallocated to the date of a neighbouring pixel’s change event if the neighbouring pixel is more 
reliable within a given time interval. The contextual analysis thereby results in the change event 
polygons with improved spatial contiguity and consistency. Therefore, by using both the 
temporal (via piecewise linear interpolation) and the spatial (via contextual analysis) domains to 
improve the assignment of proxy values, we are able to preserve the spectral response and 
temporal fidelity of the change events (as shown in Figure 10). 

The results of the proxy value assessment indicate that overall, there is a strong level of 
agreement between reference surface reflectance values and proxy values. However, the level 
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of agreement varied by spectral band, and by the presence of change events and data gaps in 
the pixel series (Tables 2 and 3). Lower correlations and lower RMSE values were found for 
bands 1, 2, and 3 compared to bands 4, 5, and 7. Bias was small and positive for all bands 
except band 4, which had a negative bias. Differences between these bands most likely results 
from atmospheric effects, which are known to impact the shorter spectral wavelengths more 
markedly than the Landsat bands in the infrared and mid-infrared (Liang, Fang, & Morisette, 
2002). Not surprisingly, it is more difficult to generate an accurate proxy value when change 
events and data gaps are present in the pixel series. On average, pixel series with change events 
had a lower correlation between proxy and reference values (0.76 versus 0.85 for no change 
pixels), a higher RMSE (0.019 versus 0.012), a greater bias (0.0005 versus 0.0002), and a larger 
CV (23.23 versus 17.09) (Table 2). Data gaps—years for which there are no data available that 
meet the BAP criteria—likewise have a negative impact on the generation of proxy values 
(Table 3). Correlation, RMSE, and CV are relatively stable until there are 5 or more years with 
data gaps and trends are similar for consecutive years of data gaps. Bias however has a 
different trend: after 8 or more years with consecutive data gaps, bias changes from being 
small and negative, to large and positive. Many years of consecutive data gaps may be of 
greatest concern in areas that are very dynamic (i.e., that have a large amount of change 
annually), and where persistent, extensive cloud cover limits the availability of suitable imagery. 
In such circumstances, using spatial interpolation techniques to fill in data gaps may be 
considered as a complement to the lack of spectral information in the time series. 

In addition to being an essential precursor to the assignment of appropriate proxy values, the 
breakpoint detection process results in the generation of a series of change metrics that have 
potential widespread utility for mapping, modelling, and characterizing land cover and land 
cover dynamics (Table 1). These metrics provide a comprehensive characterization of change 
events that can enable an improved understanding for monitoring purposes, particularly with 
regards to the severity, timing, and duration of various change processes in a region, as well as 
the pre- and post-change processes. For this study area in Saskatchewan, where the dominant 
change agent is wildfire, the outputs from the change metrics correspond to expectations for 
annual change in this boreal region (Delong & Tanner, 1996). Thus, whilst changes in the 
northern part of the study area region, which are typically large and persist for only a single 
year, are most often caused by wildfires, changes located in the southern part of the study 
area, which are smaller and in some cases persist for more than a single year, are most often 
anthropogenic in origin (e.g., harvesting, post-insect infestation or fire salvage) (Masek et al., 
2011; Schroeder, Wulder, Healey, & Moisen, 2012). 

The assignment of proxy values is complicated by the presence of change events in the pixel 
series. Currently only major events are captured when defining the segments from which the 
piecewise linear interpolation is performed, which may hinder the detection of smaller, more 
subtle disturbances and consequently create proxy values that do not accurately represent the 
true spectral values. Characterizing multiple disturbances within the pixel series may be 
particularly important when considering longer periods of time (e.g., 1990–2010). Additionally, 
extrapolation of values at the beginning and the end of the time series requires special 



17 
 

attention; although, the extra years included in our process (1998-1999 and 2011-2012) are 
aimed at mitigating this issue. 

Lastly, data gaps constitute a major challenge for image compositing. In our example, the 
impact of data gaps was mitigated through the assignment of proxy values and the use of 
contextual information to aid in the correct labelling and characterisation of disturbance 
events. A number of methods have been proposed in the literature to assign proxy values to 
data gaps including the use of alternate satellite imagery, such as SPOT (French: Satellite Pour 
l'Observation de la Terre, “Satellite for observation of Earth”) or IRS (Indian Remote Sensing) 
(Gao, Masek, Schwaller, & Hall, 2006; Hilker et al., 2009; Rulloni, Bustos, & Flesia, 2012). When 
considering alternate imagery, it is necessary to recall that although some non-Landsat imagery 
fulfill certain baseline requirements that enable them to emulate Landsat image characteristics, 
it is unlikely that sufficient similarity exists to enable direct integration (Wulder, White, Masek, 
Dwyer, & Roy, 2011). Sentinel-2 to be launched in 2015 was developed to enable compatibility 
with Landsat (Drusch et al., 2012) and may offer an opportunity for direct incorporation of 
reflectance values for spatially and spectrally complementary channels. However, this will 
require further investigation to solve issues such as matching different spectral bands’ 
bandwidths or different spatial-resolution imagery integration. Satellites collecting data that 
are not subject to the same levels of radiometric calibration and spatial precision may not offer 
direct integration, but could be subject to some form of normalization to enable incorporation 
of imagery to a BAP process. 

7. Conclusions 

The remote sensing research community is currently discovering how best to exploit the 
massive amount of data available following the opening of the Landsat archive. These 
applications all take advantage of Landsat’s temporal depth and global coverage to improve 
monitoring of terrestrial ecosystems. In this paper we presented a protocol that aims to bring 
together a number of change detection approaches from time series analyses (that are often 
undertaken on only a single or a limited number of scenes) as well as large area mapping 
methods (which can be spatially extensive but typically only relate epochal changes, rather than 
accounting for annual changes). The BAP compositing process generates image composites 
through an approach that is pixel-based rather than scene-based. A portion of the pixels in 
these BAP composites are either missing observations or have noisy or anomalous values. The 
protocol presented herein—using Landsat TM and ETM+ data—enables the production of 
spatially contiguous, cloud- and haze-free, spectrally-consistent, temporal series of proxy 
surface reflectance composites. As an important precursor to proxy value assignment, the 
protocol analyzes the spectral reflectance values of the pixels through time and generates a set 
of change metrics that characterize the year, persistence, rates of change, severity, recovery, 
rates of recovery, as well as the pre- and post- change event scenarios. These proxy 
composites, together with the change metrics, provide valuable independent information for 
systematically mapping, monitoring, and reporting physical characteristics of land cover, land-
cover changes and related dynamics over large areas for extended time periods at regional or 
national levels. These outcomes can be used as model inputs, such as in support of carbon 
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budget modeling, providing extensive information to resource managers and decision-makers 
to assist the development and application of policies for enhanced land management. Future 
work will focus on the application of the protocol to different areas and further improvements 
to the change metrics (and thereby the proxy values) by allowing for multiple change events 
within the pixel series to be identified and characterized. In addition, we are actively exploring 
the use of these proxy value composites and change metrics to characterize land cover, land 
cover change, and vertical forest structure. 
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Tables 

Table 1. Change metrics generated (see also Figure 4d). 

 Metric Description 

Pre-change 

Pre-change magnitude 

variation 

Difference between NBR values at breakpoints B and 

A 

Pre-change persistence Number of years between breakpoints B and A 

Pre-change evolution rate 
Ratio of pre-change magnitude variation to pre-

change persistence 

Change 

(negative 

segments) 

Change year Year in which breakpoint occurs. 

Change persistence Number of years between breakpoints B and C 

Change magnitude variation 
Difference between NBR values at breakpoints C and 

B 

Change rate Ratio of change magnitude to persistence 

Post-change 

Post-change magnitude 

variation 

Difference between NBR values at breakpoints D and 

C 

Post-change persistence Number of years between breakpoints D and C 

Post-change evolution rate 
Ratio of post-change magnitude variation to post-

change persistence 
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Table 2. Assessment of proxy values relative to reference values for all pixels, no change pixels, and change pixels. 
Units for RMSE and bias are surface reflectance. 

Ban
d 

All pixels No change pixels Change pixels 

R R2 RMSE Bias CV R R2 RMSE Bias CV R R2 RMSE Bias CV 

1 0.72 0.51 0.0079 0.0008 25.42 0.73 0.54 0.0071 0.0008 23.76 0.63 0.39 0.0103 0.0008 29.33 

2 0.76 0.57 0.0085 0.0008 18.47 0.79 0.62 0.0076 0.0008 16.65 0.68 0.46 0.0114 0.0007 23.36 

3 0.84 0.71 0.0086 0.0012 22.49 0.86 0.74 0.0076 0.0012 20.63 0.76 0.57 0.0118 0.0012 26.36 

4 0.91 0.83 0.0249 -0.0027 12.23 0.91 0.83 0.0238 -0.0027 11.22 0.87 0.76 0.0287 -0.0027 16.67 

5 0.88 0.77 0.0202 0.0007 14.78 0.90 0.81 0.0171 0.0006 12.85 0.78 0.61 0.0291 0.0013 19.25 

7 0.91 0.82 0.0151 0.0011 20.37 0.92 0.85 0.0119 0.0010 17.43 0.84 0.71 0.0236 0.0018 24.46 
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Table 3. Assessment of proxy values relative to reference values in the context of 
an increasing number of data gaps, as well as an increasing number of 
consecutive data gaps. Results are presented for band 4 only (although trends for 
other bands are similar). Units for RMSE and bias are surface reflectance. 

Number of 
years 

With data gaps With consecutive data gaps 

R R
2
 RMSE Bias CV 

Number 
of 

samples 
R R

2
 RMSE Bias CV 

Number 
of 

samples 

0 0.92 0.85 0.0269 -0.0022 12.36 6687 0.92 0.85 0.0269 -0.0022 12.36 6687 

1 0.92 0.85 0.0255 -0.0024 12.07 14472 0.92 0.85 0.0245 -0.0028 11.92 66275 

2 0.92 0.85 0.0245 -0.0028 11.92 20523 0.90 0.81 0.0248 -0.0029 12.44 31586 

3 0.91 0.83 0.0244 -0.0029 11.94 23897 0.89 0.79 0.0244 -0.0025 12.50 9087 

4 0.90 0.81 0.0244 -0.0029 12.14 21561 0.83 0.69 0.0293 -0.0023 15.08 2138 

5 0.90 0.81 0.0245 -0.0029 12.37 15361 0.74 0.55 0.0365 -0.0007 19.24 399 

6 0.88 0.77 0.0251 -0.0027 12.88 8599 0.79 0.62 0.0325 -0.0014 17.22 143 

7 0.87 0.76 0.0253 -0.0027 13.26 3599 0.81 0.66 0.0399 -0.0064 19.73 33 

8 0.85 0.72 0.0269 -0.0028 14.19 1159 0.79 0.62 0.0250 0.0119 15.81 24 

9 0.79 0.62 0.0340 -0.0013 18.33 300 0.50 0.25 0.0511 0.0184 31.16 9 

10 0.83 0.69 0.0297 0.0040 17.22 81 -0.72 0.52 0.0706 0.0366 44.31 4 

11 0.87 0.76 0.0284 -0.0040 15.36 30 0.80 0.64 0.0261 -0.0006 11.13 3 
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Figures 

Figure 1. Spectral values for pixel series with no change events, pixel series with 
noise related to shadow, cloud, or haze, and pixel series with change events. 
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Figure 2. Location of the study area (> 375,000 km2) within the Canadian boreal 
forest. Footprints of the 50 Landsat WRS-2 scenes used are shown. 

 

  



27 
 

Figure 3. Workflow of the proposed protocol for image compositing of dense 
temporal series. Numbers indicate the main steps comprising the protocol and 
correspond with Section 4 subsections. 
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Figure 4. Graphical depiction of trends computed from the pixel-series and their 
components: (a) monotonic, (b) multiple breakpoints all with positive slopes, (c) 
single-breakpoint; and (d) multiple-breakpoint (showing breakpoints – A, B, C, D – 
and segments – s  1, s  2, s    –. Adapted from Plugmacher et al., 2012). 
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Figure 5. (a) Percentage and origin of data gaps in the study area for the target 
years 2000-2010, and (b) cumulative histogram and (c) spatial distribution of both 
pixel-scoring and noise-detection data gaps along the study area (water bodies 
are masked). 
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Figure 6. Total changed area by year and persistence 
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Figure 7. Change events labeled by: (a) persistence, and (b) year of occurrence. (c) 
Change magnitude distribution. Although values of this metric vary from 0 to -2 
(corresponding to the maximum possible difference between two NBR values), 
colour ramp has been adjusted from 0 to -1.3 for display purposes. (d) Vegetation 
recovery rate after a major change event. 
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Figure 8. (a) Annual image composites resulting from the BAP scoring showing the 
data gaps, and (b) annual image composites infilled with the proxy values for the 
whole study area. 
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Figure 9. Detail of the different phases of the image compositing process for the 
years 2004-2007. First and second row respectively show the data gaps resulting 
from the BAP scoring (included buffered clouds, shadows and haze, e.g., 2006) 
and noise removal processes (including residual clouds or smoke, e.g., 2004). 
Third row shows the final image composites infilled with the proxy values. 
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Figure 10. Detail of the different phases of the image compositing process for the 
years 2000-2003. The first row shows the data gaps resulting from both the BAP 
scoring and noise removal processes. The second row shows the changes 
detected after the analysis of the pixel series (temporal domain), and after 
performing the contextual analysis (spatial domain). The third row shows the final 
image composites infilled with the proxy values. 
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Figure 11. Observed (reference) vs. predicted (proxy) values in surface reflectance 
units. Solid line represents the linear fitting and dotted line is the 1:1 line. 

 


