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Abstract

Understanding the relationship between vegetation and climate is essential for predicting
the impact of climate change on broad-scale landscape processes. Utilizing vegetation
indicators derived from remotely sensed imagery, we present an approach to forecast
shifts in the future distribution of vegetation. Remotely sensed metrics representing
cumulative greenness, seasonality, and minimum cover have successfully been linked to
species distributions over broad spatial scales. In this paper we developed models
between a historical time series of Advanced Very High Resolution Radiometer (AVHRR)
satellite imagery from 1987 to 2007 at 1 km spatial resolution with corresponding climate
data using regression tree modeling approaches. We then applied these models to three
climate change scenarios produced by the Canadian Centre for Climate Modeling and
Analysis (CCCma) to predict and map productivity indices in 2065. Our results indicated
that warming may lead to increased cumulative greenness in northern British Columbia
and seasonality in vegetation is expected to decrease for higher elevations, while levels of
minimum cover increase. The Coast Mountains of the Pacific Maritime region and high
elevation edge habitats across British Columbia were forecasted to experience the
greatest amount of change. Our approach provides resource managers with information
to mitigate and adapt to future habitat dynamics. Forecasting vegetation productivity
levels presents a novel approach for understanding the future implications of climate
change on broad scale spatial patterns of vegetation.

Key words: Climate change, Productivity, Dynamic Habitat Index, Forecast, Remote
sensing, British Columbia.

Introduction

Given ongoing climate change, there is a need to understand potential changes in the
spatial distribution of vegetation into the future. Baseline information on the spatial
distribution of vegetation patterns is required; however, such data are often costly and difficult
to acquire. Archival sources of remotely sensed data provide opportunities for the generation
of vegetation productivity data, which can then be used to observe past conditions and to
support model-based predictions of future changes to vegetation across time and space.

Recent advances in image correction and time series analysis have resulted in improved
spatial resolutions and temporal depth of archived satellite data (Kerr & Ostrovsky, 2003), and
as a result, remote sensing based indicators of landscape conditions can provide significant
time series of observations. Data can then be incorporated into a broad ecosystem approach to
gain information on landscape dynamics and vegetation productivity (Hawkins, Field, Cornell,
Currie, Guégan, Kaufman, Kerr, Mittelbach, Oberdorff, O'Brien, et al., 2003; Coops, Wulder,
Duro, Han, & Berry, 2008; Field, Hawkins, Cornell, Currie, Diniz-Filho, Guégan, Kaufman, Kerr,
Mittelbach, Oberdorff, O'Brien, & Turner, 2009; Andrew, Wulder, & Coops, 2011). With overall
temperatures increasing and precipitation regimes varying, several hypotheses can be made
about the impact of climate change on vegetation productivity dynamics (i.e., Li, Xie, Brown,
Bai, Hua, & Judd, 2013). Within western North America we anticipate mid to high elevation
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forests to be impacted the most with increases in productivity associated with warmer
temperatures and a general lengthening of the growing season (Mote, Parson, Hamlet, Keeton,
Lettenmaier, Mantua, Miles, Peterson, Peterson, Slaughter, et al., 2003). Environments that
experience highly seasonal fluxes in vegetation, such as deciduous forests or perennial
grasslands, will also likely be impacted with reduced snow cover (Kawabata, Ichii, & Yamaguchi,
2001) and a general shift towards more productive, coniferous, vegetation types. In the interior
of western North America warmer temperatures without a commensurate increase in
precipitation may lead to a reduction in production due to drought stress (Latta, Hailemariam,
& Barrett, 2009).

The Dynamic Habitat Index (DHI), proposed by Mackey, Bryan, & Randall (2004) and
later developed by Berry, Mackey, & Brown (2007) and Coops, Wulder, Duro, Han, & Berry
(2008), is an example of a vegetation productivity indicator that has been shown to be highly
correlated to species richness and abundance. The DHI utilizes estimates of fPAR (the fraction
of Photosynthetically Active Radiation), which measures the amount of radiation absorbed by
the plant canopy at the 400—700 nm wavelength (Asrar, Fuchs, Kanemasu, & Hatfield, 1984).
Acting as a proxy for landscape vegetation primary productivity, fPAR has been demonstrated
as a surrogate measure for species distributions (Xiao & Moody, 2005). The DHI generates a
broad-scale spatial representation of vegetation productivity dynamics, which have been shown
to also provide metrics for assessing change to species richness and variety (Duro, Coops,
Woulder, & Han, 2007; Andrew, Wulder, & Coops, 2011). Three fPAR metrics are used in the DHI:
cumulative greenness, coefficient of variation, and minimum cover. Cumulative greenness
represents the total annual radiation absorbed by the canopy; low greenness values indicate
barren land with no productivity, while high values indicate more productive habitat. The
coefficient of variation indicates the seasonality of plant productivity; high values indicate
seasonal habitats, like alpine environments, while low seasonality values indicate vegetation
regimes that do not change significantly throughout the year, such as a coastal evergreen
forest. Finally, minimum cover represents baseline levels of recurrent vegetation cover (Coops,
Woulder, Duro, Han, & Berry, 2008); high minimum cover values indicate a stable year-round
productive habitat, such as a coastal valley or evergreen forests, while low values indicate
environments that have snow cover for at least part of the year, such as the tundra or arctic. By
assessing the DHI components simultaneously, considerable information can be obtained on
vegetation and landscape dynamics. Examples of the benefits of using DHI to represent
landscape conditions include the findings by Coops, Wulder, & lwanicka (2009) that changes in
DHI were significantly correlated to avian species richness across different functional groups in
the United States. Additionally, in Ontario grassland bird species richness was found to be
highly correlated with the minimum cover and seasonality derived from DHI (Coops, Wulder, &
Iwanicka (2009). Andrew, Wulder, & Coops (2011) found that beta diversity of Canadian
butterfly communities was positively correlated with DHI minimum and cumulative annual
productivity. Michaud, Coops, Andrew, Wulder, Brown, & Rickbeil (2014) found that DHI
metrics were significant contributions to moose (Alces alces) occurrence and abundance
models in Ontario.
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To date, most of these studies have utilized multi-year DHI layers derived from
Moderate Resolution Imaging Spectroradiometer (MODIS) imagery, which has been available
since 2000. With the availability of the re-processed NOAA Advanced Very High Resolution
Radiometer (AVHRR) data since 1987, each of the three components can now be monitored
over longer time periods in order to more completely characterize the dynamics of the habitat
conditions. In addition, it is possible to develop relationships between past climate and DHI
responses over this 25-year period and then make predictions of DHI based on future
anticipated changes in climate as developed by climate modelers. The goal of this research is to
model and map past and future changes in vegetation production using the DHI across British
Columbia, Canada and make inferences about the potential impacts on biodiversity. To meet
this goal we utilized archived remotely sensed data to extract DHI components from 1987 to
2007. We then characterized the relationships between simple climate variables and the DHI
components during this time using regression tree modeling. Future climate information was
then used to predict and map possible scenarios of DHI components to the year 2065. We
hypothesized that our predictions will show that future DHI cumulative greenness and
minimum cover indices will increase and the DHI coefficient of variation indicator will decrease
in response to a changing climate; however, the magnitude of change will vary across the
diverse environments of British Columbia.

Methods
Study Area

The province of British Columbia spans 944,735 km? and has a variety of ecosystems due
to its large size, diverse topography, and climate, which are driven principally by climatological
forcing due to the proximity to the Pacific Ocean, Rocky and Coast Mountains, and continental
air masses (Austin, Buffett, Nicolson, Scudder, & Stevens, 2008; Murdock & Burger, 2010). A
broad ecosystem classification of the province exists and subdivides the province into areas of
similar climate and other biophysical characteristics (soil, topography, and vegetation)
represented by biogeoclimatic regions, from largest to smallest: ecozones, ecoprovinces, and
ecodistricts (BC Ministry of Forests, 2009). For model development we partitioned the province
into six broad regions of similar size based on ecoprovinces: Taiga Plain, Boreal Cordillera,
Mountain Cordillera, Pacific Maritime, Okanagan Caribou, and Kootenay (Figure 1). Within each
ecoprovince we represent spatial datasets, described below, using the average value of the
ecodistrict. That is, each of the 106 ecodistricts across the province acted as the sampling unit
for our study. Within each ecodistrict (more recently updated and renamed “ecosections” by
the provincial government) only minor physiographic and macroclimatic variations occur (BC
Ministry of Environment, 2011).

DATA
Climate
To obtain climate surfaces over the region, we utilized interpolations of climate station
data derived using non-linear adjustments for mountainous terrain as produced and described
by Hamann and Wang (2005). The products of Hamann & Wang (2005) provided spatially
continuous interpolated climatic data for British Columbia that incorporated elevation and
microclimatic drivers as seen in Climate-BC (Hamman & Wang, 2005). A 90 m-Digital Elevation
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Model (DEM), obtained from the Shuttle Radar Topography Mission (SRTM), was converted to
1 km to provide comparable spatial data with our remote sensing data. Climate data were
extracted using the 1 km by 1 km resolution DEM, as the analyst uploads a DEM to the website
to download data at the resolution of the DEM. Annual climate variables from 1987 to 2007
were extracted for integration with the remote sensing data to establish the relationship
between climate and landscape productivity.

To simulate conditions under a future projected climate, we utilized the Special Report
on Emission Scenarios (SRES) climate scenarios developed by the Intergovernmental Panel on
Climate Change (IPCC) Fourth Assessment Report, AR4 (Nakicenovic & Swart, 2000; IPCC, 2007).
We contrasted three scenarios: “a business as usual” scenario (Al); a less extreme scenario (B1)
that assumes current emissions rates will remain steady until around 2040 and then slowly
drop to about half of the current rate by the end of the century; and A2, the most extreme
scenario in terms of emission rates. We used scenarios from the Canadian Climate Centre’s
Modelling and Analysis (CCCma) third generation general circulation model (CGCM3), which
includes improvements in the treatment of clouds, solar radiation, and land surface processes
along with a simple ocean mixed-layer model with a thermodynamic sea ice component (von
Salzen, McFarlane, & Lazare, 2005; Scinocca, McFarlane, Lazare, Li, & Plummer, 2008). Model
selection was based on using the full range of possible scenarios that were available from
respected institutions and were recommended by the Pacific Climate Impacts Consortium
(Murdock & Splittlehouse, 2011). As with the historical climate data, we uploaded a 1 km by 1
km raster to extract the future projections of climate at a 1 km by 1 km scale (Hamann & Wang,
2005).

A literature review of the most relevant climate variables to extract from Climate BC
indicated that temperature (Running & Nemani, 1988), precipitation (Slayback, Pinzon, Los, &
Tucker, 2003; Potter, Kumar, Klooster, & Nemani, 2007), or a hybrid of both (Carey, 1996;
Hamann & Wang, 2006), represented landscape dynamics well (Daly, Halbleib, Smith, Gibson,
Doggett, Taylor, Curtis, & Pasteris, 2008) (Table 1). Selected temperature-based variables
consisted of mean annual temperature, temperature difference (difference between mean
warmest month temperature and mean coldest month temperature), growing degree days,
number of frost free days, mean coldest month temperature, and Julian date on which frost
free period begins (green up date). Derived-precipitation climate variables were mean annual
precipitation, precipitation falling as snow, and mean summer precipitation. Hybrid climate
metrics consisted of climate moisture deficit and evapotranspiration. Though not a climate
variable, elevation is often an indirect measure of climate processes and elevation data were
also extracted from the 1 km spatial resolution digital elevation model. All twelve listed
variables were available as annual means for the 1 km x 1 km provincial grid in each past
climate (annual 1987-2007 and 1961-1990 mean) as well as 2065 climate scenarios (B1, Al,
A2).
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Remote Sensing Imagery

In this research we utilized a long-term AVHRR dataset that was processed by Fontana,
Coops, Khlopenkov, Trishchenko, Riffler, & Wulder (2012). The approach used to process the
AVHRR is described in detail in Fontana, Coops, Khlopenkov, Trishchenko, Riffler, & Wulder
(2012) and the generation of the DHI from the AVHRR described in Coops, Fontana, Harvey,
Nelson, & Wulder (2014). For completeness, a brief summary of these processing steps is
provided here; however, for more information readers are invited to refer back to the papers
that accompany the processed data. The Advanced Very High Resolution Radiometer (AVHRR)
on board the satellites of National Oceanic and Atmospheric Administration (NOAA) offer a
unique source of long term information on vegetation dynamics. AVHRR data was compiled
from 1985 to 2007 over Canada, the northern United States, and Greenland. Data were initially
preprocessed using the Canadian AVHRR Processing System (CAPS), developed by the Canada
Centre of Remote Sensing (CCRS). Once this was complete, two clear-sky composites for each
10-day period were developed from the forward or backward look angles of the instrument.
This allowed different correction parameters to be developed based on the surface anisotropy,
following recommendations of Los, North, Grey, & Barnsley (2005). As the data was acquired
from a number of different AVHRR sensors over the time period, reflectance values were
normalized to the AVHRR/3 on board NOAA-17 to account for differences in the spectral
response functions, using available relative spectral correction coefficients (Fontana, Coops,
Khlopenkov, Trishchenko, Riffler, & Wulder, 2012). Atmospheric correction was then performed
using the Simplified Method for Atmospheric correction (SMAC) algorithm (Rahman & Dedieu,
1994). The Normalized Difference Vegetation Index (NDVI) was then calculated based on
atmospherically corrected red and near infrared channels (Fontana, Coops, Khlopenkov,
Trishchenko, Riffler, & Wulder, 2012).

To ensure a smooth temporal sequence of the 10-day NDVI data, Coops, Fontana,
Harvey, Nelson, & Wulder (2014) utilized the TIMESAT software (J6nsson & Eklundh, 2004).
TIMESAT fits a mathematical function through a remote sensing vegetation time series using a
Savitzky-Golay filter, which fits adjacent data points with gradually lower level polynomials
using linear least squares, resulting in a smoothed temporal sequence of NDVI observations
(Jonsson & Eklundh, 2004). In past research, using the MODIS sensor, the DHI was developed
using observations of the fPAR intercepted by vegetation, which is a key metric of vegetation
production ranging from zero (on barren land) to one (for dense cover) (Knyazikhin, Kranigk,
Myneni, Panfyrov, & Gravenhorst, 1998). The MODIS fPAR approach uses multiple spectral
bands, a number of which are not available on the AVHRR sensor, restricting our capacity to
derive fPAR directly from the AVHRR reflectance. As an alternative, we derived fPAR using a
2005 land cover-dependent linear scaling of NDVI to fPAR, following the methodology of Los,
Collatz, Sellers, Malmstrom, Pollack, DeFries, Bounoua, Parris, Tucker, & Dazlich (2000) using
the North American Land Cover 2005 database (www.cec.org), which was assumed to be
constant throughout the AVHRR time series.

To limit our analysis to vegetated areas and enhance predictive modeling results, we
utilized a baseline thematic mapping (BTM) land cover classification (BC Ministry of Sustainable
Resource Management, 2001) to mask highly disturbed landscapes, such as agriculture and
urban land cover types, and removed them from the analysis. Results are therefore only



217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260

applicable to natural environments with no long term anthropogenic impacts. Areas identified
by the BTM as water, urban, mining, and agriculture have been excluded from the analysis.
Regression Trees

Regression trees are a robust technique for ecological prediction illuminating
interactions between predictor variables, modeling non-linear relationships, and excluding
insignificant variables (Carpenter, Gillison, & Winter, 1993; Iverson & Prasad, 1998; Berry,
Mackey, & Brown, 2002; Thuiller, 2003; Rounsevell, Ewert, Reginster, Leemans, & Carter, 2005;
Prasad, Iverson, & Liaw, 2006). Using the “rpart” R statistical software package (Therneau &
Atkinson, 1997) individual trees were built for each of the six distinct ecological regions of
British Columbia. Regression trees were built on observed relationships between DHI and
climate from 1987-2007. Model rules, from the observed relationships, were then applied to
data representing future climate scenarios (2041 to 2070).

To understand how we built regression trees for each of the three productivity
characteristics, it is helpful to clarify how input data were organized. Climate and fPAR metrics
were partitioned into the six ecological regions. Within the regions, all data were represented
at the spatial unit of the ecodistrict. For each of the 12 explanatory variables representing
climate (Table 1) and three fPAR variables (cumulative greenness, coefficient of variation, and
minimum cover) representing productivity, 21 annual average values (1987-2007) were linked
to each spatial unit, generating a temporal distribution of climate and productivity values for
individual ecodistricts. Regression tree rules were generated for the full temporal range of
observed productivity values using the same temporal range of climate data.

The regression tree method applied thresholds to the explanatory variables, generating
a ‘tree’ of recursive binary splits. The aim of the regression tree was to identify covariate splits
that maximize the homogeneity of the predicted productivity classes, based on an analysis of
variance (Prasad, Iverson, & Liaw, 2006). The hierarchy of variables used in each split, or the
closer the tree branch to the base of the tree, implied the importance of each variable in the
accurate prediction of productivity.

To improve the stability of the trees we ensured the ecological regions represented
similar ecological and productivity processes as to reduce the effects of extreme values on the
binary splits. We also assessed the independence of predictors prior to modeling. While
methods such as random forest are considered robust for prediction across large datasets,
when predictor collinearity and over fitting occur the “black box” approach to variable selection
and thresholding make it difficult to interpret the impact of climate change on productivity. To
assess the effectiveness of the regression trees a cross-validated error was calculated
comparing predicted to observed productivity for the current climate conditions representing a
coefficient of determination between 0 and 1.

RESULTS
Regression Trees:

The regression tree analysis using the actual climate annual averages from 1987-2007
against the DHI indicators resulted in 18 unique trees (three DHI indicators by six representative
ecological regions) across British Columbia (Table 2). The most important climatic variables in
describing the patterns of DHI included growing degree days, precipitation as snow, number of
frost free days, evapotranspiration, and elevation. The models that produced the highest
confidence occurred in the southern coastal regions of British Columbia, where clear
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productivity gradients are known to exist (Waring, 1969). In contrast, less productive
environments in the north of British Columbia tended to have weaker relationships.

Cumulative greenness was the strongest performing DHI indicator followed by
coefficient of variation (seasonality), and lastly, minimum cover. Trends in regression tree
branches showed that northern regions such as the Boreal Cordillera and Taiga Plain resulted in
models with a larger number of branches (18 to 30), while southern regions such as the Pacific
Maritime had fewest (8 to 14). Patterns of future distributions of the DHI indicators, using the
three climate scenarios (B1, Al, and A2) for 2065 are shown in Figure 2. Overall cumulative
greenness across the province was predicted to increase in 2065; the coefficient of variation (an
indicator of vegetation seasonality) was predicted to decrease almost universally except for the
Boreal Cordillera and minimum cover was predicted to increase along the coast (Pacific
Maritime) and Okanagan Caribou region. The mean change of the indicators between climate
normal and future conditions by increasingly extreme climate scenarios is shown in Figure 3.
Generally, as the climate scenarios became more extreme with respect to changes in
atmospheric CO, and other anthropogenic drivers, the difference in DHI indicators between
climate normal and 2065 conditions were forecast to also increase. Non-uniform responses in
mean DHI were predicted, however, in some cases such as with cumulative greenness in the
Okanagan Caribou and with the coefficient of variation in the Boreal Cordillera. Simultaneous
display of all three DHI components for each climate scenarios enabled better interpretation of
productivity regimes throughout the province (Figure 4).

Model Confidence:

Correlation analysis of the predicted DHI values using the historical long-term climate
with the AVHRR-derived averaged DHI from 1987-2007 indicated good agreement (cumulative
greenness, R®= 0.92, p < 0.01; coefficient of variation R%= 0.89, p < 0.01 and minimum cover R?
=0.72, p<0.01) (Table 2).

Change in Indirect Indicators from Climate Normals Period to 2065:

Provincially, the mean change in the DHI indicators from present day to 2065 using the
A1l scenario was greatest for minimum cover (+50.0%), followed by the coefficient of variation
(-22.0%), and cumulative greenness (+11.0%). These changes are shown individually for each
indicator in Figure 5 and summed (even weights for all 3 indicators) in Figure 6.

Cumulative Greenness:

Individual results for cumulative greenness using the Al scenario showed an overall
increase of 11.0%. The Pacific Maritime is predicted to have an overall increase in cumulative
greenness of 17.8% (B1), 23.5% (A1), and 32.9% (A2). Increased productivity may be beneficial
to generalist species that can survive and adapt to a variety of habitat types. The smallest
change in cumulative greenness between scenarios was predicted for the dryer south central
portion of the Okanagan Caribou region with 2.0% (B1), 1.0% (A1), and 0.0% (A2). Minimal
change was predicted to occur in the lower elevation coastal and mid elevation interior regions.
Some areas such as lowland valleys within the Okanagan Caribou and northeast corner of the
Boreal Cordillera region were forecast to experience a reduction of up to 10% in overall
productivity, principally due to increased temperatures. Overall the greatest difference in
cumulative greenness was predicted for the mid to high elevation areas (500-1500m).
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Coefficient of Variation

Over the province the mean in the DHI seasonality metric, coefficient of variation, was
predicted to decrease 22.0% by 2065 under the Al scenario. The coefficient of variation
provides an indication of the variation within a year in the resource allocation of a site. Highly
seasonal environments have large differences between summer and winter plant productivity.
By 2065, DHI seasonality was projected to have the greatest decrease at higher elevations with
the most change forecasted for edge forest environments like the Coast Mountains in the
Pacific Maritime, low elevation Taiga Plain forests, Vancouver Island highlands (in the Pacific
Maritime), the Mountain Cordillera and to a lesser extent the highland forests of the Kootenay
region. Slight increases in coefficient of variation were projected in the Stikine forests, which
are high elevation edge environments within the southern Taiga Plain region, and little change
in the coefficient of variation was predicted in the southern lowlands that comprise most of the
Okanagan Caribou, and in the Boreal Cordillera regions. The DHI seasonality metric showed
considerable variation across scenarios. Trends between scenarios B1, Al, and A2 showed
clusters of reduced coefficient of variation in the high elevation areas of the Pacific Maritime
and increased coefficient of variation in the northeast. The Pacific Maritime region was
projected to experience some of the greatest decreases in seasonality through the scenarios
from 19.1% (B1), 25.8% (A1), and 35.2% (A2).
Minimum Cover

Provincially, the most substantial changes determined by our model were the minimum
cover DHI metric. Minimum cover was projected to have a mean provincial increase of 50.0% by
2065 under an A1l scenario. Regions of greatest change were predicted to be the Pacific
Maritime and interior mid to low elevations, which have higher and more consistent levels of
productivity throughout the year. DHI minimum cover was forecast to change little in the
northwest of British Columbia and in low (Coastal Vancouver Island) and high elevation areas
(Rocky Mountains). Small patches of decreased minimum cover were predicted in the lower
mainland, Haida Gwaii, and Vancouver Island areas of the Pacific Maritime. The Pacific
Maritime was projected to have an increase of DHI minimum cover across climate change
scenarios from 46.3% (B1), 64.4% (A1), and 89.4% (A2). The Kootenay region had the least
amount of forecasted minimum cover with increases of 22.7% (B1), 28.5% (A1), and 35.6% (A2);
these increases were predicted primarily for low-lying valleys, and although the regional mean
increase may be lesser, the impact may be significant in low elevation landscapes.
DISCUSSION

The availability of contemporary climate and remote sensing data allowed us to model
and then validate our predictions of the DHI under current climate conditions. The regression
trees performed the poorest in the Boreal Cordillera region and best along the Pacific Maritime
region, potentially due to strong climate-vegetation gradients in the south, compared to the
northern parts of the province (Hamann & Wang, 2006). Despite these issues, complexity
parameters, indicative of model success (Therneau & Atkinson, 1997), confirmed the models
were reasonably strong and performed well.

Using three climate change scenarios we then predicted future DHI components in
2065. The results confirmed that each progressively extreme scenario (B1, A1, and A2) showed
progressive shifts in the magnitude of change in each of the indicators, especially in the Pacific
Maritime and Mountain Cordillera regions for all DHI indicators.
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Generally the results indicated that overall provincial DHI seasonality, measured as
coefficient of variation, will decrease and overall cumulative greenness and levels of minimum
cover will increase. However, trends varied spatially. For instance, some parts of the Taiga Plain
were forecast to have decreases in DHI seasonality, cumulative greenness, and minimum cover.
The reduction in cumulative greenness by 2065 in the Okanagan grasslands (within the
Okanagan Caribou) highlight the importance of using regional non-linear relationships between
vegetation indicators and climate variables to ensure the unique interactions between the
numerous landscapes of the province are modeled effectively and spatial variation in
relationships identified.

The DHI coefficient of variation (or seasonality) was predicted to change substantially,
but not uniformly, across British Columbia under climate change. Seasonality may be reduced
the most in high-elevation, coastal habitats. Our models also indicated alterations may occur to
vegetation along edge environments that are sensitive to climate change (Thuiller, 2007), which
is especially evident in the high elevation areas (500—1500 m) of the Pacific Maritime. High
elevation species are particularly vulnerable due to their slow growth, restricted viable habitat,
and limited ability to adapt and migrate (Bakkenes, Alkemade, lhle, Leemans, & Latour, 2002).
Predicted increases in DHI minimum cover by 2065 could indicate that evergreen species may
be more productive and could shift to higher latitudes and elevations (Coops, Wulder, Duro,
Han, & Berry, 2008). Predicted increased year-round minimum cover suggests that that overall
baseline productivity may escalate. Outcomes of this change would likely be increased
productivity of forest habitats throughout the region and better growing conditions for
generalist species to succeed in new habitats (Algar, Kharouba, Young, & Kerr, 2009). The
resulting impacts to species due to increased minimum cover would be substantial. Since
minimum cover indicates year round primary productivity, the projected increase would result
in a more productive environment. The phenology of individual species would need to adapt to
new climatological conditions and generalist primary productivity species would grow at a
faster rate (Badeck, Bondeau, Bottcher, Doktor, Lucht, Schaber, & Sitch, 2004).

Mapping future scenarios for DHI indicators provides insights into how habitats will shift
across British Columbia. Our understanding of the spatial changes aids our ability to properly
prescribe best practices in conservation and management strategies (Lemieux & Scott, 2005;
Gayton, 2008). Although our prediction method has some benefits, it also has some inherent
limitations. Some researchers have argued that regression tree-based methods are too
responsive to slight changes in climate ( Iverson & Prasad, 1998; Guisan & Thuiller, 2005) and
these types of climate-led predictions are over-simplified and do not incorporate sufficient
ecological processes into the prediction (Hampe, 2004). Pearson and Dawson (2003) argued
that the climate-determined models are validated by comparing simulated and actual species
distributions and it is accepted that for macro (regional to global) studies a climate-
deterministic approach would account for shifts (Hampe, 2004; Hamann & Wang, 2006;
McKenney, Pedlar, Lawrence, Campbell & Hutchinson, 2007). Climate-determined regression
trees have been used by other researchers (Franklin, 1995; lverson & Prasad, 1998; Thuiller,
2003; Harrison, Berry, Butt, & New, 2006) to determine productivity shifts at the regional to
global scale. Interpretation of our results should emphasize broad ecosystem shifts to in order
to highlight the possible directionality of future spatial changes.
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Cumulative greenness, seasonality, and minimum cover were all forecasted to change
markedly by 2065. Some threatened species that currently occur in areas likely to undergo the
most change are the burrowing owl (Athene cunicularia), Indra swallowtail (Papilio indra), three
lobed daisy (Erigeron trifidus), Carolina draba (Draba reptans), and Lyall’s mariposa lily
(Calochortus lyallii), and poor pocket moss (Fissidens pauperculus) (Species at Risk British
Columbia, 2012). Specialist species in high elevation environments were also indicated to be at
higher risk. Given the anticipated changes to seasonality, it is likely that high elevation edge
environments may continue to shift to higher elevations (Hebda, 1998). More productive
habitats (as indicated by increases in minimum cover and cumulative greenness) can expand
into the former seasonal habitats and are projected to move up mountain sides, and overall,
forest ecosystems are projected to have greater vegetation productivity (Davis, Lawton,
Shorrocks, & Jenkinson, 1998).

CONCLUSION

The results of our forecasting efforts provide a promising method to generate spatially
explicit information of possible future shifts to vegetation productivity, which can be used to
supplement direct sampling methods. The benefits of our methods are that they do not require
direct sampling and therefore are an efficient and inexpensive method to monitor vegetation.
Using productivity measures from enhanced remote sensing approaches to produce the DHI
has provided an improved ecological landscape understanding at a broad spatial resolution.
Utilizing climate information at 1 km spatial resolution in forecasting allowed for mapping of
spatial variation in shifts of vegetation components due to climate change. Our methods can be
repeated, enhanced, and updated regularly to give up-to-date information about the impacts to
the terrestrial environment with complete and uniform coverage for large regions.
Understanding the nature of possible spatial shifts in vegetation productivity is important for
effectively planning for the future of protected areas, aiding conservation strategies, and
properly managing natural resources. Our results provide detailed spatial information indicating
the broad impact of climate change on vegetated landscapes. By understanding climate change
impacts, decision makers can be better informed to properly adapt and mitigate these impacts.
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Tables
Table 1: Details the landscape, temperature, hybrid, and precipitation variables used in the

regression tree process and their use in forecasting literature.

Regression tree explanatory variables

Reference

Explanatory .
Variable Details
(Running & Nemani, 1988; Slayback,
Mean annual Average annual temperature (°C) Pinzon, Los, & Tucker, 2003; Hamann
temperature & Wang, 2006; Latta, Hailemariam, &
Barrett, 2009)

Temperature difference

Temperature difference between
mean coldest and mean warmest
months (°C).

(Algar, Kharouba, Young, & Kerr
2009; Coops, Wulder, lwanicka, 2009)

Growing degree days

Growing degree days greater than
0,

5°C

(Running & Nemani, 1988; Pearson,
Dawson, Berry, & Harrison, 2002;
Algar, Kharouba, Young, & Kerr,

2009)

Number of frost free
days

Total number of frost free days
(greater than 0°C)

(Nigh, Ying, & Qian, 2004; Hamann

& Wang, 2006)

Mean coldest month
temperature

Average temperature of the coldest
month (°C)

(Running & Nemani, 1988; Pearson,
Dawson, Berry, & Harrison, 2002;

Algar, Kharouba, Young, & Kerr,
2009)

Julian date on which
frost free period begins

Spring up date on which frost free
period begins (temperatures greater
than 0°C)

(Monserud, Huang, & Yang, 2006)

Climate moisture deficit

Hargreaves climate moisture
deficit; precipitation and
temperature metric

(Carey, 1996; Hamann & Wang, 2006;
Latta, Hailemariam, & Barrett, 2009)

Evapotranspiration

Hargreaves reference
evapotranspiration; precipitation
and temperature metric

(Currie, 1991; Hamann & Wang,
2006)

Mean summer

Mean annual summer (May to
September precipitation (mm)

(Notaro, Liu, & William, 2006;
Hamann & Wang, 2006)

precipitation

Precipitation as snow

Average annual snowfall (mm)

(Running & Nemani, 1988; Pettorelli

et al., 2005; Notaro, Liu, & William,

2006; Potter, Kumar, Klooster, &
Nemani, 2007)

Mean annual
precipitation

Average annual precipitation (mm)

(Running & Nemani, 1988; Slayback,
Pinzon, Los, & Tucker 2003; Potter,
Kumar, Klooster, & Nemani, 2007;
Latta, Hailemariam, & Barrett, 2009)

Elevation

Landscape topography (m)

476

(Hamann & Wang, 2006; Daly,
Halbleib, Smith, Gibson, Doggett,
Taylor, Curtis, & Pasteris, 2008; Latta,

Hailemariam, & Barrett, 2009)
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Table 2. Regression tree dominant splits, complexity parameters, and coefficient of

determination.

Regression Tree Dominant Splits, Complexity Parameters, and Coefficient of Determination

(R?)

Region Cumulative Greenness Coefficient of Variation Minimum Cover
Number of frost
Number of frost Mean annual free days,
Paqlflc free days, growing 0.668 tempgrature and 0671 | 9rowing degree 0514
Maritime degree days, mean growing degree days, and
annual temperature days precipitation as
snow
Precipitation as
Precipitation as snow, humber of
Okaganan Elevatlo_n, _ 0.478 Sniow, 0.680 frost free de}ys, 0.509
Caribou evapotranspiration - date on which
evapotranspiration ;
frost free period
begins
Kootenay Elevation, number 0.616 Elevatlon_anc_i 0508 EIevatlon_anc_i 0.487
of frost free days evapotranspiration evapotranspiration
Growing dearee Climate moisture
Growing degree d g degre deficit,
Mountain days ays, precipitation precipitation as
. Lo 0.435 as snow, and 0.453 0.360
Cordillera evapotranspiration, snow, and mean
" mean annual
elevation L annual
precipitation
temperature
Seasonal Precipitation as Precipitation as
temperature snow, Julian date snow, julian date
Boreal Plain difference, Julian | 0.214 P 0.283 L 0.413
J on which frost on which frost
date on which frost free period begins free period begins
free period begins P 9 P 9
Precipitation as Prsenc(l)e\;ta:;lggnas Precipitation as
Taiga Plain snow, 0.419 ' 0.244 snow, 0.063
- summer —
evapotranspiration N evapotranspiration
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Figure Legends
Figure 1: Study Area: British Columbia and the regional analysis borders.
Figure 2. DHI vegetation indicator results: present day and 2065 B1, A1, and A2 scenarios.

Figure 3. Regional and provincial percent change in DHI cumulative greenness, minimum cover,
and coefficient of variation from present day to B1, Al, and A2 scenarios.

Figure 4. Composite DHI model results. Simultaneous display of the spatial distributions of the
metrics uses a color gun technique where the red, green, and blue color bands each represent a
different DHI component; consequently coefficient of variation is represented by red, cumulative
greenness is characterized by green, and minimum cover, blue. The resulting image is a display
of all three vegetation indicators to be observed at once resulting in a comprehensive view of the
spatial shifts occurring to the habitat. Dark colored regions have little of all three DHI while light
colored areas have high predicted levels of DHI. Furthermore, areas of definitive color with little
mixing detail the dominant habitat indicator; for example, a region that is purely red denotes a
highly variable habitat (high coefficient of variation). As indicators shift over time such as when
seasonality decreases, other components such as cumulative greenness or minimum cover
develop to fill into newly favorable habitats. Common DHI blending occurred with light blue,
yellow, and darker colorations like purple or dark orange. The light blue regions represent the
most productive habitats with high minimum cover, high cumulative greenness, and low
seasonality found in coastal and low elevation habitats. Darker purple and orange colorations
indicate low productivity, low seasonality, and low minimum cover. Present day through to
scenarios B1, Al, and A2 indicate the greening of the province and decreases in seasonality.
Observations of the composite DHI allow for more site specific analysis of change. Examples of
typical climate-driven reactions are shown along the Coast Mountains of the Pacific Maritime
where seasonality decreases and greenness increases. Sites alongside mountains in the Taiga
Plain region have the opposite reaction to decreasing seasonality and decreases in all DHI
variables are predicted in the future scenarios.

Figure 5. Change analysis for cumulative greenness, seasonality, and minimum cover from
present day to 2065 using the Al scenario.

Figure 6. Composite DHI change map comparing present day to the Al scenario. Red areas
highlight the greatest overall vegetation indicator change.
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