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Abstract:  19 

Unique among earth observation programs, the Landsat program has provided 20 
continuous earth observation data for the past 41 years. Landsat data are systematically 21 
collected and archived following a global acquisition strategy. The provision of robust 22 
data products for free since 2008 has spurred a renaissance of interest in Landsat and 23 
resulted in an increasingly widespread use of Landsat time series (LTS) for multi-24 
temporal characterizations. The science and applications capacity has developed 25 
steadily since 1972, with the increase in sophistication offered over time incorporated 26 
into Landsat processing and analysis practices. With the successful launch of Landsat-8, 27 
the continuity of measures at scales of particular relevance to management and 28 
scientific activities is ensured in the short term. In particular, forest monitoring benefits 29 
from LTS, whereby a baseline of conditions can be interrogated for both abrupt and 30 
gradual changes and attributed to different drivers. Such benefits are enabled by data 31 
availability, analysis-ready image products, increased computing power and storage, as 32 
well as sophisticated image processing approaches. In this review, we present the status 33 
of remote sensing of forests and forest dynamics using LTS, including issues related to 34 
the sensors, data availability, data preprocessing, variables used in LTS, analysis 35 
approaches, and validation issues.  36 

 37 

Introduction 38 

Forests are the most widely distributed terrestrial vegetation type, and thus play an 39 
important role in providing the environmental context and shaping the dynamics of regional 40 
and global ecosystem processes (Wulder, 1998; Westoby, 1989). Forests are important 41 
globally for provision of fiber to meet a range of needs, from local uses such as cooking fuel 42 
through to industrial utilization for construction materials. As such, forests play a role in the 43 
lives of most people on the planet. It is increasingly understood that forests store large 44 
quantities of carbon in both vegetation and soil and also exchange carbon with the 45 
atmosphere. The ability to mitigate the impacts of climate change through enhancement of 46 
carbon sequestration has been identified (Brown, 1996). Forests also sustain important 47 
functions for a variety of biological processes by cycling nutrients through processes such as 48 
decay and tree regeneration (Boring et al., 1981), provide multiple ecosystem services (e.g., 49 
filtration of water, provision of habitat, among others), and protect biodiversity.  50 

Forests can be characterized by both their current state and temporal dynamics. Several 51 
attributes such as structure and composition describe the state of the forest (Graetz, 1990), 52 
whilst the manner in which they change over time define their temporal dynamics (Hobbs, 53 
1990). These dynamics can result from any combination of short-term events (such as 54 
droughts), longer-term variability attributable to climate change, and human activities. 55 
Indeed, there is an increasing sense of urgency to understand temporal dynamics and 56 
resiliency of forest ecosystems in the context of rapid global change (Manning et al., 2009). 57 
Understanding these temporal dynamics can aid both forest management and policy 58 
development (Cohen et al., 2010). For example, one of the major challenges for successful 59 
implementation of the international forest carbon policy, reducing emissions from 60 
deforestation and forest degradation, and through conservation, sustainable management of 61 
forests and enhancement of forest carbon stocks in developing countries (REDD+), is to 62 
estimate national-level net changes in carbon stocks that would occur without policy 63 
implementation (De Sy et al., 2012). Remotely sensed data can potentially address this 64 
challenge by providing a means to estimate baseline forest conditions in a spatially explicit 65 
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manner, departures from which can be employed to assess current and historical trends of 66 
deforestation and forest degradation (Baker et al., 2010)  67 

Earth observation (EO) instruments play an important role in the assessment and 68 
monitoring of forest dynamics in a spatially and temporally continuous fashion. Among the 69 
current and historic constellation of EO satellites, the Landsat series of satellites stands out 70 
for three primary reasons. First, the Landsat program offers the richest and longest running 71 
historical archive (40 years) of systematically collected remotely sensed data (Goward et al., 72 
2006), providing otherwise unavailable opportunities for improved understanding of 73 
mechanisms and extents of past forest changes and recovery. Second, the unique combination 74 
of imagery with a 30 m or similar spatial resolution collected with temporal repeat frequency 75 
of 16 days makes Landsat data well suited for detecting changes on the Earth’s surface across 76 
relatively short time intervals (Coppin and Bauer, 1996; Gillanders et al., 2008; Wulder et al., 77 
2008). Third, due to a new data policy implemented in 2008, all new and archived Landsat 78 
data held by the United States Geological Survey (USGS) are available free-of-charge in a 79 
pre-preprocessed ready for analysis standard format (Woodcock et al., 2008; Wulder et al., 80 
2012), ultimately increasing the opportunity to utilize multi-temporal images representing a 81 
period of time, a large spatial area, or both (Hansen and Loveland, 2012).  82 

 The availability of large volumes of free Landsat imagery, coupled with advances in 83 
image processing methods and computational capacity have stimulated widespread use of 84 
Landsat time series (LTS) in many applications including classification and assessment of 85 
changes in forested ecosystems (e.g., Kennedy et al., 2007), prediction of forest biophysical 86 
parameters (e.g., Main-Knorn et al., 2013), and assessment of vegetation phenology (e.g., 87 
Melaas et al., 2013). To effectively understand how disturbance impacts composition, 88 
structure, and function of forests, it is beneficial to quantify disturbances at a time step 89 
relevant to the affected processes (for example, annually, Masek et al., 2013) and using long-90 
term data sets to, as possible, capture instances and trends related to forest disturbances and 91 
recovery (Frolking et al., 2009). Hence, time series data comprised of image stacks over a 92 
longer duration and greater temporal frequency can provide a more comprehensive 93 
understanding of the complexity of forest disturbance and dynamics than a pair of Landsat 94 
images used in a bi-temporal change detection approach (Cohen et al., 2010; Wulder et al., 95 
2012). Whilst image pairs can inform on a change in state, image stacks and LTS provide 96 
information on trends, and can relate continuous and discontinuous changes in both positive 97 
(accrual) and negative (depletions) directions (Kennedy et al., 2014). Data from daily viewing 98 
sensors such as MODIS and AVHRR are well suited for time series analyses at regional and 99 
global scales, but are less equipped to capture and analyze finer-scale disturbances that are 100 
relevant from management and monitoring perspectives (Walker et al., 2012). The key 101 
advantages of Landsat are a spatial resolution that is appropriate for capturing anthropogenic 102 
impacts (Townshend and Justice, 1988), and a temporal dimension that spans more than 40 103 
years and enables retrospective analyses and long-term characterization of change (Wulder et 104 
al., 2012). LTS data can capture and characterize abrupt, stochastic events as well as subtle 105 
changes, while potentially revealing new patterns or processes occurring across forested 106 
landscapes (Cohen et al., 2010). Indeed, Hansen and Loveland (2012) state that past 107 
approaches relying on bi-temporal image comparisons will soon be replaced by more 108 
exhaustive and data intensive methods employing LTS datasets (e.g., Kennedy et al., 2007; 109 
Huang et al., 2009). Such replacement hinges upon the broader availability of accurately pre-110 
processed LTS data and further development and improvement of automated algorithms for 111 
extracting information characterizing a wide range of forest dynamics. 112 

The needs and challenges of assessing forest dynamics with LTS data are varied and 113 
have not been articulated in a comprehensive manner. LTS data analysis differs from 114 
traditional analysis using single or bi-temporal imagery in many respects, from dataset 115 
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assembly through to creation and validation of a final product. While resources for traditional 116 
forest dynamic assessment approaches using EO data are generally known and widely 117 
discussed in textbooks and review articles (e.g., Coppin and Bauer, 1996; Coppin et al., 2004; 118 
Lu et al., 2004), corresponding resources for time-series based approaches have not matured 119 
to the same level. Several aspects of LTS data analysis such as preprocessing requirements, 120 
criteria for selecting spectral variables (original bands or derived indices), and analysis 121 
approaches have not been the subject of extensive review. Hence, the primary goal of this 122 
paper is to review the current status and recent advances in LTS tools and data processing 123 
techniques, specifically from the perspective of monitoring forests and forest dynamics. In 124 
doing so, we provide (i) a brief history of the Landsat program, as well as insights into issues 125 
related to (ii) image selection, (iii) image pre-processing techniques, (iv) information 126 
extraction techniques, as well as (v) issues pertinent to the validation of products derived 127 
from LTS data. We focus this review on forestry related articles; however, many of the issues 128 
discussed are equally relevant for monitoring dynamics in a wide range of ecosystems. 129 

 130 

Landsat data and related issues 131 

Current and past Landsat missions have used four different types of sensors for the 132 
collection of earth observation (EO) data. The characteristics of each sensor are provided in 133 
Table 1. Landsats 1–5 had a multispectral scanner system (MSS), which acquired data from 134 
1972 through late 1992, and again briefly in 2012. The spatial resolution of the MSS sensor 135 
was approximately 80 m with radiometric coverage in four spectral bands from the visible 136 
green to the near-infrared (NIR) wavelengths. The MSS sensor on Landsat 3 had a fifth band 137 
in the thermal infrared. Landsats 4 and 5, which were launched in 1982 and 1984 138 
respectively, had the Thematic Mapper (TM) sensor in addition to the MSS. The TM sensor 139 
collected data in seven bands with three in the visible region of the spectrum (blue, green and 140 
red), one in the NIR region, two in the shortwave infrared (SWIR1 and SWIR2) region, and 141 
one in the thermal region. The spatial resolution of the TM sensor was 120 m for the thermal 142 
band and 30 m for the other bands. Landsat 5 continued to acquire data until February, 2012, 143 
far exceeding its 3-year design life. Landsat 7 was launched in 1999 with the Enhanced 144 
Thematic Mapper Plus (ETM+) sensor, which has similar spectral and spatial properties as 145 
TM, with a 60 m spatial resolution thermal band and with the addition of a 15 m 146 
panchromatic band. Landsat-7 has also well surpassed its 5-year design life and continues to 147 
acquire data; however, the Scan Line Corrector (SLC) of the ETM+ sensor has been 148 
inoperable since May 31, 2003, resulting in gaps in ETM+ scenes that range in size from two 149 
pixels at the scene center, to 14 pixels at the western and eastern scene edges (Markham et 150 
al., 2004; Maxwell, 2004). While long deactivated to preserve instrument power and aid in 151 
longevity of the favored TM instrument, the dormant MSS sensor on-board Landsat 5 was 152 
briefly reactivated in 2012 to compensate for the difficulties and predicted loss of the TM 153 
instrument. 154 

 On February 11, 2013, termed the Landsat Data Continuity Mission (LDCM), Landsat 8 155 
was launched with the Operational Land Imager (OLI) and thermal infrared sensor (TIRS). In 156 
addition to the bands present on the Landsat 7 ETM+ sensor, Landsat 8 OLI collects data in 157 
two new bands; a blue band (0.433–0.453 μm) designed principally for ocean color 158 
observations in coastal zones, and a shortwave infrared band (1.360–1.390 μm) that is located 159 
in a strong water vapor absorption feature, facilitating the detection of cirrus clouds. The 160 
widths of several OLI bands have been refined relative to ETM+ bands to avoid atmospheric 161 
absorption features (Irons et al., 2012). The data quality (signal to noise ratio) and radiometric 162 
quantization (12-bits) of the OLI and TIRS instruments are higher than previous Landsat 163 
instruments (8-bit for TM and ETM+). From Landsats 4 to 8, consistency in both sensor and 164 
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image characteristics have been maintained through a rigorous process of calibration and 165 
quality assurance (Markham et al., 2004). As a result, Landsat observations from the TM, 166 
ETM+, and OLI sensors are amenable to time series analysis. LTS studies that seek to 167 
incorporate MSS data into LTS have additional radiometric and geometric considerations, 168 
due principally to differing spatial resolutions and spectral band widths compared to the later 169 
sensors (e.g., Powell et al., 2010; Pflugmacher et al., 2012).  170 

As previously noted, the Landsat satellite sensor series has been continually observing 171 
the earth surface to meet a wide range of information needs for more than four decades 172 
(Wulder et al., 2008). The continuity of the Landsat mission, however, does not entail 173 
uninterrupted collection or complete recording of the data in the archives. Data recording at 174 
the sensor is limited by some physical and technological considerations, including the size of 175 
on-board data storage and data downlink capacity. Optimization of data collection, via 176 
implementation of the long term acquisition plan (LTAP), provides for seasonally refreshed 177 
global terrestrial coverage mating with the system capabilities for image capture, storage, 178 
downlink, processing, and archiving (Arvidson et al., 2006). While variable by sensor, 179 
Landsat 7 currently obtains approximately 400 scenes per day (Ju and Roy, 2008), which is 180 
well above the 250 images specified by system design (Arvidson et al., 2006). The LTAP 181 
implemented for Landsat 8 builds upon previous lessons learned and is augmented by 182 
additional spatial information, such as incorporation of historic expectation and current maps 183 
of cloud cover (Irons et al., 2012). Locations known to have a history of persistent cloud 184 
cover that may require additional acquisition opportunities are given increased priority. 185 
Mission control operations have scheduled objectives for the collection of 400 Landsat 8 OLI 186 
and TIRS terrestrial images per day. Based upon previous experience, the specified number 187 
of scenes per day is likely to be exceeded. Currently, the specified collection level has been 188 
well exceeded with nearly all possible sunlit, continental scenes imaged each overpass, 189 
resulting in over 700 images collected per day (Wulder and Coops 2014). Potential impacts 190 
upon satellite longevity and ground system costs are to be revisited to determine if this 191 
acquisition rate can be maintained. Investigation of the Landsat archive for a given location 192 
and / or time period will show variability in the number of images available. This spatial and 193 
temporal variability in image availability in the global collection is related to historic 194 
implementation of collection (e.g., government vs. commercial), technology available (e.g., 195 
on-satellite and ground storage capacity), and the nature of the downlink of data (e.g., to 196 
international cooperators) (see Wulder et al., 2008 for details). Regarding the last item, there 197 
is an ongoing program focused on collecting unique images from the global international 198 
cooperator network to add these images to the USGS archive (Wulder et al., 2012). Landsat 8 199 
has sufficient onboard recording and downlink capacity to downlink all images collected 200 
directly to the USGS for ingest, processing, archiving, and sharing (Wulder et al., 2012).  201 

 202 

Image selection 203 

Assembling an appropriate set of images for time series stacks may be challenging in 204 
some locations due to the aforementioned spatial and temporal discontinuities in Landsat data 205 
archives. Furthermore, the reduced applicability of images due to clouds and the ETM+ scan-206 
line-corrector (SLC) failure makes the search for adequate high-quality images more 207 
challenging. Ju and Roy, (2008) analyzed the likelihood of obtaining cloud free ETM+ pixels 208 
within and outside the conterminous United States. The authors report a high probability of 209 
obtaining at least one cloud free pixel during any given growing season within the United 210 
States and a moderate probability globally (i.e., summer = 0.78 and spring = 0.75). The 211 
reduced quality of image data due to clouds (and SLC gaps for Landsat ETM+), however, 212 
could be a lesser concern for a pixel based analysis using LTS with sufficient temporal 213 
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density. If an individual pixel is treated independent of its neighbors, selecting the best pixel 214 
among all-available near-anniversary scenes in a time-series reduces the requirement of cloud 215 
free-imagery (Griffiths et al., 2012). Composites are created through a rule-based process to 216 
select the “best” pixel observations from among the candidate images available. The rules for 217 
selecting the best available pixel observation can be related to nearness to a target day of year 218 
and avoidance of atmospheric interference (be it cloud, haze, or resultant shadows), or 219 
prioritization of a particular sensor (see White et al. 2014 for conceptual summary). Those 220 
generating composites at high latitudes will likely encounter issues related to phenology, 221 
whereas those generating composites for locations closer to the equator are more likely to 222 
encounter issues related to persistent cloud cover. Further, due to image overlap increase with 223 
latitude additional opportunities to obtain clear, cloud or snow free, pixels are enhanced. 224 
Notwithstanding, methods to monitor land cover in the presence of clouds, such as those 225 
developed by Zhu et al. (2012), combined with the advancement of techniques to fill 226 
temporal gaps in LTS by Helmer and Ruefenacht (2005), and Goodwin et al. (2013), and 227 
Landsat-MODIS image fusion techniques by Gao et al. (2006), Hansen et al. (2008), and 228 
Brooks et al. (2012) offer additional opportunities to obtain or generate cloud-free imagery. 229 

Besides image quality, selection of an appropriate set of Landsat data in a time series 230 
requires careful consideration of image acquisition dates. Optimal temporal resolution is 231 
difficult to assess as requirements are often application specific (Wulder et al., 2008). For 232 
example, applications focused on vegetation phenology require images spanning all seasons 233 
over the period of interest; whereas, annual or near annual imagery during the same season 234 
(often summer) may suffice for many applications. For certain applications, it is critical that 235 
annual images with near-anniversary dates are selected in order to minimize spectral 236 
differences caused by intra-annual variation in phenology and sun angle differences. Image 237 
selection should consider both image quality (cloud cover) and acquisition date. Landsat 238 
metadata are refreshed daily (http://landsat.usgs.gov/metadatalist.php) and provides details on 239 
the presence of cloud, both overall for the entire image and by image quadrant. A visual 240 
inspection can help to determine if an image is cloud-free over a particular area of interest.  241 

Brazil set an important precedent in early 2008 when the National Institute of Space 242 
Research (INPE) began making satellite data holdings available free of charge1. Encouraged 243 
by the Brazilian precedent, the USGS moved later in 2008 to “web enable” contents of the 244 
Landsat data archive. The policy change to free and open access by the USGS resulted in a 245 
sharp increase in imagery downloads (Wulder et al., 2012) as well as a change in how 246 
Landsat data are used (Hansen and Loveland, 2012). As described in Wulder et al. (2012), all 247 
Landsat images available within USGS archives can be downloaded in a standard analysis-248 
ready terrain corrected format (referred to as Level 1T). However, the USGS Landsat 249 
holdings represent only a portion of the Landsat scenes acquired since 1972 (Loveland and 250 
Dwyer, 2012). Almost 3 million unique Landsat images are currently held by international 251 
agencies with ground receiving stations that directly downlink Landsat data. An effort is 252 
underway to consolidate the Landsat archives of all stations worldwide and make all Landsat 253 
scenes available to users under Landsat Global Archive Consolidation (LGAC). This effort 254 
was started in 2010 and is estimated to last up to six years. More information on the status of 255 
image repatriation to the USGS archive can be found under the auspices of the LGAC project 256 
(http://landsat.usgs.gov/Landsat_Global_Archive_Consolidation.php). Based upon archive 257 
consolidation efforts, users can go to what is effectively a centralized global archive at the 258 
USGS EROS data center to obtain systematically and consistently processed analysis ready 259 
imagery.   260 
  261 

                                                 
1 1. http://www.nature.com/nature/journal/v452/n7184/pdf/452127b.pdf 
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Preprocessing of LTS images 262 

An individual image in an LTS may suffer from different levels of geometric errors and 263 
atmospheric effects. A robust correction for these effects is an important precursor to LTS 264 
analyses. Historically, pre-processing for multi-temporal images required considerable 265 
computational cost and was a limiting factor in time series analysis (Hansen and Loveland, 266 
2012). However, significant improvements in computational power and automated 267 
procedures have enabled efficient and rapid mass-processing of images. Moreover, emerging 268 
techniques for applications, such as land cover mapping from LTS (Gray and Song, 2013), 269 
are being designed to accommodate some degree of spectral variation or noise in LTS. In the 270 
future, such methods may negate the need for radiometric normalization of images in the time 271 
series; however the requirements for pre-processing of LTS images ultimately depend on the 272 
information need, the target (e.g., forests), and the environment being studied. Increasingly, 273 
standardized Landsat data products are being made available as calibrated surface reflectance 274 
products, delivered as Climate Data Records (Dwyer et al., 2011). 275 

Radiometric correction 276 

Radiometric correction procedures are normally specific to the nature of the radiometric 277 
distortions in a given image and typically involve calculating a series of sequential 278 
operations, including calibration to radiance or at-satellite reflectance, atmospheric correction 279 
or normalization, and may also involve applying bi-directional reflectance distribution (i.e., 280 
view angle) normalization, and terrain normalization (Wulder et al., 2012). Most of the 281 
approaches to time-series analysis require that the radiometric differences between images 282 
due to the atmosphere be minimal; however, some notable approaches such as those 283 
developed by Helmer et al. (2009) and Helmer et al. (2010) perform well without 284 
atmospheric correction. 285 

Atmospheric correction 286 

Incoming (downwelling) and outgoing (upwelling) radiation from the earth’s surface can 287 
be significantly modified by the earth’s atmosphere. As a consequence, the digital number 288 
(DN) recorded in a Landsat image pixel may not truly represent the reflective properties of 289 
the object in the pixel. Temporal variation in atmospheric properties can have varying effects 290 
on images taken at different dates, ultimately impacting the inter-comparability of images in 291 
the LTS. Atmospheric correction procedures for LTS images can be categorized into absolute 292 
correction and relative normalization (Schroeder et al., 2006). Table 2 lists different 293 
atmospheric correction techniques employed by various studies.  294 

Absolute atmospheric correction procedures entail rectifying individual images in a time 295 
series either using empirical or radiative transfer based approaches. Empirical correction 296 
methods are mostly variants of the dark-object subtraction (DOS) method (Chavez, 1999; 297 
Song and Woodcock, 2003). DOS approaches apply a single correction to all pixels in an 298 
image without considering the pixel-to-pixel variation in atmospheric effects and are not 299 
capable of correcting for multiplicative effects of atmospheric scattering  (Ju et al., 2012). 300 
Hence, despite their simplicity, these methods will provide only a rough adjustment for 301 
atmospheric effects and are generally not suitable for producing consistent results across 302 
images in the time series. Many different absolute atmospheric correction models exist, 303 
including: Simplified Method for Atmospheric Correction (SMAC) (Rahman and Dedieu, 304 
1994), Second Simulation of the Satellite Signal in the Solar Spectrum (6S) code (Vermote et 305 
al., 1997), MODTRAN (Berk et al., 1998), and ATCOR (Richter, 1997). Among them, the 6S 306 
based approach is the most widely used absolute correction technique for LTS analysis. It 307 
enables accurate simulations of the sensor signal by modeling a realistic cloudless 308 
atmosphere described by the mixture of different gases and molecules. A limitation common 309 
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to all absolute atmospheric correction procedures is the requirement for spatially and 310 
temporally explicit atmospheric data such as aerosol optical thickness (AOT) and water vapor 311 
that are rarely available at the location or time of satellite overpass in a routine manner. 312 

Relative normalization procedures involve adjustments to the radiometric properties of 313 
image time series data to match that of a single reference image, via the relationship obtained 314 
between pseudo-invariant features (PIF) from different dated scenes (Song et al., 2001). 315 
Pseudo-invariant features are spatially well-defined objects that are presumed to have stable 316 
reflectance properties over the time series period. A variety of methods have been developed 317 
for the selection of PIFs (e.g., Hall et al., 1991; Schott et al., 1998; Canty et al., 2004; Paolini 318 
et al., 2006). These approaches range from manual selection of features to cover the range of 319 
bright, midrange and dark data values to automatic selection of invariant features using 320 
statistical methods such as multivariate alteration detection (MAD). For LTS, the reference 321 
image is normally corrected using the absolute atmospheric correction method and the other 322 
images in the time series are then normalized to the reference image using PIFs.  323 

None of the existing methods can completely correct for atmospheric effects. Such 324 
absolute accuracy is, however, not essential as time series approaches are generally robust 325 
towards minor perturbations in reflectance due to atmospheric and other effects. However, 326 
some form of atmospheric correction is necessary for large area monitoring through time 327 
(Song et al., 2001). The user can also minimize the atmospheric effects by selecting spectral 328 
variables (e.g., Tasseled Cap Wetness (Section 5)) that are less sensitive to atmospheric 329 
effects (Song and Woodcock, 2003). A few studies have validated the surface reflectance 330 
derived from various atmospheric correction methods (Song et al., 2001;Schroeder et al., 331 
2006; Vicente-Serrano et al., 2008; Ju et al., 2012; Feng et al., 2013) , and have found mixed 332 
results. While different methods have their own share of advantages and limitations, the 333 
method best suited for LTS must have minimum user interaction, and be robust, transparent, 334 
and consistent across all the images in the stack. Though relative normalization produces 335 
consistent results across images, the methods rely on the accuracy of PIF identification and 336 
the reference image correction. Nevertheless, the techniques are suitable for time series 337 
analysis in the absence of the detailed atmospheric data required by absolute correction 338 
methods. 339 

Although radiative transfer based approaches are amenable to systematic large volume 340 
satellite processing, they do require temporally and spatially explicit atmospheric 341 
characterization data (Vermote et al., 2002). A notable advancement is offered by Landsat 342 
Ecosystem Disturbance Adaptive Processing System (LEDAPS) software (Masek et al., 343 
2006), which employs the 6S code. The program estimates per-pixel AOT using the Dense 344 
Dark vegetation (DDV) method (Kaufman et al., 1997) and retrieves other ancillary data from 345 
various sources that include gridded TOMS (Total Ozone Mapping Spectrometer) data, 346 
column water vapor from the NOAA NCEP reanalysis data, digital topography and NCEP 347 
surface pressure data (Ganguly et al., 2012). The LEDAPS approach can be applied to the 348 
historic Landsat Thematic Mapper archive (available since 1982). The recent trend suggests 349 
that the Landsat community is converging towards LEDAPS for generating surface 350 
reflectance products from the historical Landsat archive. The USGS EarthExplorer interface 351 
surface (http://earthexplorer.usgs.gov) and EROS Science Processing Architecture (ESPA) 352 
now provide surface reflectance products for Landsat TM and ETM+ generated from 353 
LEDAPS (http://landsat.usgs.gov/PLSRP.php), which will likely further increase the use of 354 
LEDAPS-processed product in LTS analysis. Furthermore, the USGS is openly sharing and 355 
maintaining the LEDAPS code, further enabling users to implement the software within their 356 
own processing environments. As a physical value, the calculation (or utilization) of surface 357 
reflectance is recommended to offer year-on-year consistency of measures mitigating the 358 
possible impacts and processing requirements of normalization based correction approaches. 359 
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Topographic correction 360 

Topographic effects are observed brightness variations in a single image from the same 361 
cover types as a result of undulating or complex terrain. Topographic effects are often notable 362 
in mountainous regions, and are primarily caused by differential terrain illumination due to 363 
the change in incidence angle between the sun and the surface normal. In addition to 364 
modifying the incident radiation on surface, topography alters the viewing geometry and 365 
introduces BRDF effects (Song and Woodcock, 2003). For time series and change detection 366 
studies the movement of shadows in crevices and north facing slopes through the growing 367 
season can result in erroneous identification of change. Topographic correction of remotely 368 
sensed imagery over mountainous regions is at least as important as atmospheric correction 369 
(Liang, 2005) particularly for time series analysis (Wu et al., 2004). Richter et al. (2009) 370 
provide a useful summary of topographic correction methods. The simplest way of 371 
minimizing topographic influence is to use ratio based indices as spectral variables. If 372 
illumination effects due to topography are proportional across two different bands, the ratio 373 
of the two bands can reduce topographic effects. However, topographic effects generally vary 374 
among different bands, and hence ratio indices may not provide satisfactory results (Liang, 375 
2005). The cosine correction method converts the surface reflectance observed over sloped 376 
terrain to the equivalent value of the horizontal surface by modeling illumination 377 
characteristics of a horizontal surface using the local solar incident angle. The latter is 378 
calculated based upon solar geometry and a digital elevation model (DEM) with a spatial 379 
resolution comparable to the Landsat imagery. The cosine correction method assumes the 380 
earth’s surface is a Lambertian reflector; i.e., reflecting incoming radiation equally in all 381 
directions. Under the Lambertian assumption, images tend to be over-corrected, with slopes 382 
facing away from the sun appearing brighter than sun-facing slopes (Teillet et al., 1982). The 383 
C-correction (Teillet et al., 1982; Meyer et al., 1993) method attempts to factor into the non-384 
Lambertian behavior of earth’s surface by incorporating a correction coefficient (C) to the 385 
cosine correction equation. The method is purely based on the correlation observed between 386 
reflectance and cosine of the incident illumination. The C-coefficient is estimated from the 387 
image as a ratio between slope and intercept of the linear regression between the local solar 388 
incident angle and surface reflectance of the sloped terrain. The C-correction has been found 389 
to be the most effective topographic correction method for Landsat (Wu et al., 2004), 390 
although it also suffers from overcorrection in regions with low illumination conditions (Tan 391 
et al., 2013). A model developed by Tan et al. (2010), which does not assume a Lambertian 392 
surface, overcomes such problem in low illumination condition and has been demonstrated to 393 
perform better than the C-correction in a consistent manner. Topographic normalization is 394 
typically ignored in LTS analysis, except in a few studies (e.g., Lehmann et al., 2013). 395 
Vicente-Serrano et al. (2008) demonstrated that the spatial comparability of images is not 396 
assured without the application of topographic corrections and highly recommended that this 397 
step be included in LTS processing protocols in areas with significant variation in terrain. 398 
Additional research is needed to determine the impact of topographic correction, or lack 399 
thereof, on LTS analysis focusing on different applications and geographical areas.  400 

Geometric correction 401 

Geometric correction of LTS involves accurate registration and correction of terrain 402 
related errors to maintain consistency between image geometry through time. The L1T 403 
Landsat product from the USGS archives is an orthorectified product with ≈30 m and ≈50 m 404 
geo-location accuracy for the US and Global dataset, respectively, depending upon 405 
availability of local ground control points (GCPs), as well as the resolution of the best 406 
available DEM (Loveland and Dwyer, 2012). Ground control points used for the L1T 407 
correction come from the GLS 2005 data set (Gutman et al., 2008). Such standard 408 
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orthorectified products considerably reduce the amount of time and effort users need to create 409 
rectified time-series datasets. However, while explored in more detail elsewhere (Fisher, 410 
1997), a particular pixel does not represent the exact same location on the ground in 411 
subsequent satellite over passes. Further, the geolocation of a given pixel, beyond the fact that 412 
differing contents are represented, can also be expected to vary especially as a function of the 413 
number and quality of GCPs used. Even with an average geolocation error of a half-pixel, 414 
some degradation of time series quality can be expected, including noisy trends in high 415 
variance environments (complexity in land cover or underlying terrain, for instance) or lack 416 
of distinction at or near the edges of features. Not all images in the USGS archives are L1T 417 
products as some scenes are processed to a Level 1 systematic correction (L1G) when 418 
insufficient ground control or elevation data necessary for precision or terrain correction are 419 
available (Potapov et al., 2011). These images and others acquired from different sources 420 
than USGS might need to be manually checked for geolocation accuracy. Hence, a precise co-421 
registration of LTS images may be required especially for those collected outside the US to 422 
ensure a sub-pixel level geo-location accuracy. Such co-registration typically involves 423 
selecting a cloud free image as a base image to which other images are registered. The 424 
geometric relationship between the images is obtained through a transfer function modeled 425 
over a number of tie points. Standard image processing software provides the functionality 426 
for automatic generation of tie points and co-registration of images. The automated 427 
registration and orthorectification package (AROP) is a free software tool provided by NASA 428 
that can automatically produce sets of co-registered images 429 
(http://ledaps.nascom.nasa.gov/tools/tools.html). AROP uses precisely registered and 430 
orthorectified Landsat data (e.g., GeoCover or recently released free Landsat Level 1T data 431 
from the USGS EROS data center) as the base image to co-register and orthorectify 432 
additional images (Gao et al., 2009). Software such as AROP can be used to both evaluate the 433 
geometric fidelity and facilitate coregistration of images in the time series. 434 

 Time series analyses that integrate Landsat MSS data with TM and ETM+ data must 435 
address the difference in spatial resolution of the MSS sensor (60 m) with the TM and ETM+ 436 
sensors (30 m). Integration of Landsat MSS into the time series is especially important in 437 
establishing the long-term trend in forest dynamics as well as improving the time step of 438 
Landsat data in the time series. In 2010, the USGS released a new MSS data product with 439 
improved radiometric and geometric corrections 440 
(http://landsat.usgs.gov/NewMSSProduct.php). MSS data are now produced by the Level 1 441 
Product Generation System (LPGS), similar to TM and ETM+, and are cross-calibrated to 442 
improve radiometric consistency across sensors (Pflugmacher et al., 2012). This can 443 
significantly increase the utility of MSS data in time series analysis. Very few studies have 444 
utilized MSS data in the LTS analysis (Powell et al., 2010; Gómez et al., 2011; Pflugmacher 445 
et al., 2012; Liu et al., 2013; Ahmed et al., 2013). The majority of these studies resampled 446 
MSS imagery to 30 m. Pflugmacher et al. (2012) found that, despite being terrain corrected, 447 
the geometric accuracy of MSS was not as high as TM and ETM+ and required further co-448 
registration to a reference image. Landsat 8 OLI product specifications indicate that the 449 
geometric accuracy is within 12 m of previous Landsat sensors (Irons et al., 2012). The 450 
Landsat 8 L1T products have improved geometric accuracy due to the pushbroom sensor 451 
design and a fully operational onboard global positioning system (GPS) to measure the 452 
exterior orientation directly, rather than inferring it from ground control points (Roy et al., 453 
2014). 454 

Spectral variables used in LTS 455 

  In a forest monitoring context, the prime objective of a LTS is to characterize and 456 
summarize forest dynamics over time based upon the observed temporal trajectory of a 457 
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spectral variable. The spectral variables (SV) range from single band reflectance to a host of 458 
indices calculated from different algebraic manipulations of the original spectral bands and 459 
their derivatives. Commonly used SVs are known for their maximum sensitivity towards 460 
forest structure or green leaf area, and can be broadly categorized into four groups according 461 
to how they are calculated: (1) spectral bands or summation of spectral bands, (2) ratio 462 
indices, (3) tasseled cap indices and (4) spectral mixture analysis (SMA) based indices (Table 463 
3).  464 

A single spectral band or summations of bands having similar responses to vegetation 465 
structure in a time series is frequently utilized for constructing LTS. The bands are chosen on 466 
the basis of their greatest sensitivity to changes in vegetation properties. Kennedy et al. 467 
(2007) used the SWIR1 band (band 5 in TM and ETM+) in LTS to detect disturbances in 468 
coniferous forest of Oregon, USA. Schroeder et al. (2011) obtained the highest overall 469 
accuracy with the SWIR1 band to map wildfire and clearcut harvest disturbances across a 470 
boreal forest in Saskatchewan, Canada. The SWIR1 band reflectance is useful because it is 471 
less impacted by atmospheric noise and usually has low values for forests but high values for 472 
soil and non-photosynthetic components of vegetation, such as bark and branches. Lehman et 473 
al. (2013) used an index based upon the summation of the red and SWIR1 bands, which is 474 
negatively correlated with vegetation density, to map forest cover trends in Australia. Huang 475 
et al. (2009) developed Vegetation Change Tracker (VCT) specifically for monitoring forest 476 
disturbance using LTS. VCT calculates a forestness index (a measure of a pixel’s likelihood 477 
of being forested) via a summation of normalized values of the red, SWIR1, and SWIR2 478 
(band 7) bands. The SWIR bands are of great importance for ecological applications using 479 
Landsat (Cohen et al., 2004). Landsat MSS data lack a SWIR channel, thereby confounding 480 
LTS analyses that seek to integrate MSS and TM/ETM+ data (Pflugmacher et al., 2012). 481 
Ratio indices utilize band combinations in the form of a ratio to maximize contrast between 482 
vegetation greenness and background spectral components. The most common ratio index is 483 
the normalized difference vegetation index (NDVI), which is calculated as: 484 

………. …………………………………………………(1) 485 

NDVI is sensitive to the vigor and density of green vegetation as well as leaf area but is 486 
also strongly impacted by soil and atmospheric noise (Schroeder et al., 2011). Some variants 487 
of NDVI that are more resistant to soil effects (e.g., soil adjusted vegetation index, SAVI)) or 488 
atmospheric noise (e.g., atmospheric resistant vegetation index, ARVI) are rarely utilized in 489 
LTS. However, the normalized difference moisture index (NDMI) and the normalized burn 490 
ratio (NBR) indices, which contrast the reflectance difference between the NIR and SWIR in 491 
an equation from similar to NDVI, are frequently used. The NDMI has demonstrated utility 492 
for detecting forest harvests of varying intensities (Jin and Sader, 2005) and for 493 
characterizing insect infestation dynamics (Goodwin et al., 2008). Kennedy et al. (2010), 494 
Cohen et al. (2010), and Hais et al. (2009) found NBR more responsive to different 495 
disturbance types (e.g., clear-cuts, fire, bark beetle outbreak etc.) as compared to NDVI. 496 

The Tasseled Cap Transformation (TCT) is an orthogonal transformation that converts 497 
Landsat bands into three components related to the brightness (TCB), greenness (TCG), and 498 
wetness (TCW) of the surface (Kauth et al., 1976). TCT components correspond to the 499 
physical characteristics of vegetation and have been widely used for studying forest change 500 
(Cohen et al., 2002; Wulder et al., 2004; Healey et al., 2005; Jin and Sader, 2005; Kayastha et 501 
al., 2012). From an LTS perspective, TCB and TCG serve as in important bridge between 502 
MSS and TM or ETM+ imagery (Powell et al., 2008). Among the three TCT components, the 503 
TCW has been found to be the least sensitive to topography (Cohen et al., 1995; Song and 504 
Woodcock, 2003) and atmospheric correction (Song and Woodcock, 2003) as compared to 505 
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TCB and TCG, and thus has been frequently used in LTS (Jin and Sader, 2005; Kennedy et 506 
al., 2010; Griffiths et al., 2012). The TCW contrasts the sum of the visible and NIR bands 507 
with the sum of the SWIR bands. It has been shown to be an important indicator of forest 508 
maturity and structure in closed canopy forest stands (Cohen et al., 1995) and works equally 509 
well in both coniferous and deciduous forests (Griffiths et al., 2012) across various 510 
disturbance types (Hais et al., 2009). Other derivatives of TCT indices have also been 511 
recently developed, including the Disturbance Index (Healey et al., 2005; Hais et al., 2009), 512 
which contrasts between TCG and TCB, and the TC angle (TCA) (defined as the arc tan of 513 
ratio between TCG and TCB) (Asner et al., 2009; Powell et al., 2010; Schroeder et al., 2011; 514 
White et al., 2011; Gómez et al., 2012). The rationale for developing these indices is that 515 
canopy removal has the opposite spectral response in TCG and TCB, which can be enhanced 516 
in a ratio or difference form to help identify both disturbance type and intensity.  517 

The fraction of canopy cover (CF) calculated from spectral mixture analysis (SMA) has 518 
been found useful for monitoring disturbance in semi-arid and dryland forests (Röder et al., 519 
2008; Yang et al., 2012) as well as mapping canopy damage due to understory fires (Morton 520 
et al., 2011) and forest degradation in tropical environments (Souza et al., 2005; Alencar et 521 
al., 2011). SMA assumes that the spectrum of each pixel is a linear combination of a few pure 522 
spectra, called endmembers (Roberts et al., 1998). The major challenge working with SMA is 523 
difficulty associated with finding pure endmembers. This because the size of a pure object is 524 
often smaller than the Landsat pixel size, and endmember variability can greatly increase 525 
with the size of the study region (Röder et al., 2008). Asner et al. (2009) developed an 526 
automated method for mapping tropical deforestation and forest degradation, which employs 527 
a large spectral endmember library derived from extensive field measurements and 528 
hyperspectral satellite imagery. Similarly, in a study of the Brazilian Amazon, Souza and 529 
Siqueira (2013) developed an image-based approach for obtaining generic endmembers from 530 
Landsat n-dimensional spectral space (following Small (2004)) to generate fraction images. 531 

There are multiple classes of SVs to choose from to create a LTS; the decision to select a 532 
particular SV is, however, not straightforward. One approach might involve using all spectral 533 
bands and potentially useful vegetation indices such as those adopted by Helmer et al. (2010). 534 
Several studies have compared the performance of selecting SVs for different applications, 535 
finding some to outperform others. However, as evidenced by these studies, the superiority of 536 
one SV over others is purely empirical; they have not been routinely tested across different 537 
vegetation types, soil conditions as well as disturbance types or intensities. In addition to 538 
vegetation structure, SVs are sensitive to many factors related to illumination, atmosphere, 539 
topography, and soil background. Song et al. (2002) used a forest succession model (ZELIG) 540 
and a canopy reflectance model (GORT) to produce spectral trajectories of forest succession 541 
from young to old-growth stages and demonstrated that TCW and TCG are much better 542 
predictors of forest successional stage as compared to TCB. They found that the wetness 543 
component has a higher signal to noise ratio, making wetness patterns less sensitive to 544 
atmospheric and topographic noise. Cohen et al. (2010) presented similar results for 545 
disturbance monitoring demonstrating that TCW performed best for detecting recovering or 546 
persistent forests. Similarly, Sonnenschein et al. (2011) found little difference in sensitivity 547 
among four SVs (NDVI, SAVI, TCG, and SMA fractions) for analyzing trends of gradual 548 
changes in dryland ecosystems whereas the response of the indices differed markedly for 549 
abrupt events such as fires. Rogan et al. (2002) found SMA outperforming TC components in 550 
monitoring multitemporal vegetation change in California. According to Roy et al. (2006), 551 
NBR, which was found most useful by Kennedy et al. (2010) for disturbance mapping, was 552 
far from optimal for burn severity mapping. One goal in the mapping of forest dynamics 553 
using LTS is to create a reliable method that is extendable across different sites. Such broader 554 
applicability requires simultaneous testing of all common SVs in empirical studies supported 555 
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by rigorous evaluation of their sensitivities to vegetation dynamics across different sites and 556 
atmospheric conditions.   557 

 558 
Finally, as shown in Table 1, Landsat sensors are characterized by slightly different 559 

spectral responses and can introduce sensor-induced differences in SVs values. The potential 560 
error caused by such differences is generally greater for a single band than vegetation indices 561 
(Vogelmann et al., 2001). Until recently, these sensors were not consistently calibrated and 562 
the ability to perform time series analysis was limited. Recent work has placed all Landsat 563 
radiometers (MSS, TM, and ETM +) onto a consistent radiometric scale, and radiometric 564 
uncertainties have been quantified. These calibration updates have been instituted at the 565 
USGS EROS archive and all data currently being distributed contain the most accurate 566 
radiometric calibration available (Markham and Hedler, 2012). Teillet et al. (2001) compared 567 
Landsat 7 ETM+ and Landsat 5 TM and found top-of-atmosphere NDVI differences of 1 – 568 
4%. Li et al. (2014) compared SVs derived from ETM+ and OLI sensors and found high 569 
degree of similarity (coefficient of determination greater than 99.9%) between vegetation 570 
indices derived from different sensors even though individual band values varied slightly. 571 
They found that NBR values had the greatest similarity among different vegetation indices. 572 
Based upon the comparison of NDVI values simulated for different sensor systems, Stevan et 573 
al. (2003) found that the NDVI values computed from the Landsat-ETM+ sensor can differ as 574 
much by 2% from the TM sensor. The effect of such inconsistencies in the cross-calibrated 575 
USGS level-1 product has not been studied in detail in the context of LTS application, and 576 
the users need to be aware of these limitations. The analysis of long-term trends and variation 577 
in the time series are central to the majority of the LTS approaches reviewed in this paper, 578 
thus being more robust to slight spectral variation attributable to sensor differences and other 579 
uncertainties than single or bi-temporal images based analysis. 580 

Approaches for analyzing LTS  581 

Conventional methods for analyzing remote sensing data that include one or a small set 582 
of imagery are not readily extendable to LTS analysis. Over the past two decades, the remote 583 
sensing community has been using time series analysis for studying long-term vegetation 584 
dynamics with different global coverage products from daily viewing sensors such as MODIS 585 
and AVHRR. These sensors have a high temporal resolution, a low spatial resolution, and a 586 
large image footprint. Daily acquisitions from these sensors result in high data densities and 587 
concomitant analysis approaches that aim to characterize seasonal and intra- and inter-annual 588 
trends (e.g., Eastman and Fulk, 1993). These types of analyses are generally not well suited to 589 
the less dense time series constructed from Landsat, which are constrained by the temporal 590 
revisit and historic acquisition characteristics of the Landsat program. 591 

Similarly, the analysis method most suited for one LTS application does not necessarily 592 
lend itself to other applications. In studies focused on phenology, analysis methods typically 593 
concentrate on accurately capturing different seasonal events such as the date of the onset of 594 
greenness, the date of leaf senescence, and duration of the growing season from LTS data, 595 
whereas the analysis of disturbance dynamics focuses on a set of attributes such as 596 
disturbance year, magnitude, and types of disturbance events. Table 3 lists examples of 597 
commonly applied LTS analysis methods by specific applications. To date, LTS analysis 598 
techniques have been mainly developed for disturbance analysis and mapping with few 599 
exceptions such as the Threshold Age Mapping Algorithm (TAMA), which is an automated 600 
procedure for mapping forest age using LTS data (Helmer et al., 2009). Techniques used for 601 
disturbance analysis have also been proven useful in other applications such as characterizing 602 
current forest structure (Deel et al., 2012; Pflugmacher et al., 2012). Changes in forested 603 
ecosystems can be categorized into three types: (i) abrupt changes caused by stand replacing 604 
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disturbances (e.g., clear-cutting, crown fire, large scale insect defoliation etc.), (ii) changes 605 
related to partial removal of canopies (e.g., partial harvest, understory fire, insects and 606 
diseases), and (ii) subtle changes occurring gradually through time (e.g., forest degradation, 607 
tree mortality, and forest successional dynamics). The ability of any system to detect changes 608 
in forested ecosystems is dependent upon the method’s ability to discriminate real changes, or 609 
changes of interest, from apparent changes caused by variations in background signal and 610 
noise (e.g., phenological variation, Bidirectional Reflectance Distribution Function (BRDF) 611 
effects, image artifacts etc.) (Kennedy et al., 2014). 612 

Past studies using LTS have demonstrated that the effect of abrupt changes leading to 613 
stand clearance and subsequent recovery can be accurately distinguished from apparent 614 
change (e.g., Huang et al., 2009; Helmer et al., 2010; Kennedy et al., 2010). Such changes 615 
can also be accurately characterized based upon different attributes such as year of 616 
disturbance, disturbance types, and nature of forest regrowth or recovery depending upon the 617 
temporal density of the LTS. On the contrary, partial removal of canopies caused by 618 
disturbance agents such as understory fire, insects, diseases, and partial harvest are difficult to 619 
detect and monitor, although advances are ongoing and given appropriate support information 620 
an emerging capacity is evident (Cohen et al., 2010).  621 

LTS approaches for change detection can be broadly categorized into two types: image 622 
classification and trajectory-based analysis. 623 

 624 

 Image classification based analysis 625 

Classification based approaches for change detection mainly include post-classification 626 
comparison of independently produced results from each end of the time interval of interest, 627 
followed by a comparison to detect changes and disturbance types. Individual images are 628 
separately classified, thereby minimizing the problem of radiometric calibration between 629 
dates (Coppin et al., 2004). As such, availability of near anniversary images and stringent 630 
atmospheric correction are not strictly necessary for post classification comparison. However, 631 
the accuracy of the post-classification comparison is usually dependent upon the accuracy of 632 
the initial classifications as the misclassification and misregistration errors present in the 633 
original images are compounded in the final map. A similar classification approach has been 634 
widely used for change detection with bi-temporal images and has been reviewed in detail in 635 
the literature (Coppin et al., 2004; Lu et al., 2004). In a tropical forest environment, Helmer et 636 
al. (2010) created eight cloud-free Landsat composites spanning from 1984 to 2002 and 637 
classified each individual Landsat image into land cover and forest disturbance types using a 638 
supervised decision tree algorithm. Potapov et al. (2012) generated epochal Landsat 639 
composites representing 2000–2010) for the Democratic Republic of the Congo. The image 640 
composites were then classified using a decision tree based classifier for mapping forest 641 
change. The forest cover and monitoring results were then compared with results from 642 
Hansen et al. (2008) for the 1990–2000 interval and analyzed to reveal generic patterns in 643 
forest cover loss dynamics within the country. They estimated the total forest cover loss 644 
within the common area of analysis for 1990–2000 as 1.25% of study area, compared to 645 
1.89% for the 2000–2010 interval, indicating a substantial decadal increase in forest loss 646 
(34%). One advantage of such classification approaches is that a broad suite of 647 
complementary information including Landsat bands, their derivatives, as well as auxiliary 648 
information from other data sources can be included as input variables to the classification. 649 
More importantly, such a classification scheme affords multitemporal disturbance analysis to 650 
be implemented over regions otherwise lacking in sufficient temporal frequency (e.g., annual 651 
or near annual) required for trajectory-based analysis. Souza et al. (2013) used fraction 652 
images calculated from SMA as input variables in a knowledge based decision tree 653 



 

15 

 

classification. Their method performed well for mapping both deforestation and forest 654 
degradation due to selective logging and forest fire in Amazon forest. Asner et al. (2009) 655 
applied a similar approach in a fully automated system called CLASlite to identify 656 
deforestation and forest degradation in Brazil and Peru. The disturbance maps from 657 
CLASlite, however, require additional analysis in order to interpret them as specific types of 658 
disturbance (anthropogenic vs. natural; logged vs. fire scars). Rather than detecting changes 659 
between two classified images, Schroeder et al. (2011) employed all images in the LTS stack 660 
(from different years) as input into a supervised minimum distance to mean classifier to map 661 
fire and harvested areas in a boreal forest environment. 662 

Trajectory-based change detection 663 

Trajectory based approaches utilize the temporal patterns of spectral variables to 664 
detect disturbance types and magnitude. Unlike classification, it involves analysis of a time 665 
series of single spectral variables, and can be further divided into four categories: (1) 666 
Threshold based change detection, (2) single curve fitting, (3) hypothesized curve fitting, and 667 
(4) trajectory segmentation. Threshold based change detection requires a prerequisite 668 
threshold value to determine forest disturbances. The curve fitting and trajectory 669 
segmentation based approaches capture the trend and disturbance events based upon 670 
information derived from the time-series without the need for estimating thresholds. 671 
Trajectory-based approaches allow for insights to be based upon, often subtle, trends that can 672 
become evident when many years of imagery are considered in sequence. Change detection 673 
based upon image pairs informs on change in state, whereas, trajectory based approaches can 674 
inform on the nature of the change in state, such as via rates or magnitudes of change. 675 
Utilizing trajectory-based approaches allows analysts to understand change in more than a 676 
binary fashion and does not require an additional analytical stage to produce sets of image 677 
classifications. Post-classification change approaches are limited by the accuracy of the 678 
classifications being differenced, limiting the effectiveness and reliability of the approach. 679 
Trajectory-based approaches, however, call for robust radiometric correction and availability 680 
of near anniversary images to minimize false detection of changes due to phenology 681 
(although, noting that algorithms such as LandTrendr compensate for this), BRDF, and 682 
atmospheric effects. Ideally, trajectory-based approaches also require creation of time series 683 
with sufficient image density to capture the disturbances of interest, with complications 684 
arising due to cloud cover and sparse historic image coverage for some regions. 685 

Threshold-based change detection methods 686 

Threshold based change detection methods employ a predetermined threshold value for 687 
identifying forested pixels in a time series. A year marked by significant deviation from this 688 
threshold value as compared to the preceding year is identified as the year of disturbance. 689 
Additional information gathered from the pattern of deviation in subsequent years can then be 690 
used to identify the magnitude of disturbance and recovery times. The VCT developed by 691 
Huang et al. (2010) is a threshold based automated forest change mapping algorithm that 692 
utilizes a parameter called the Integrated Forest Z-score (IFZ) as spectral variable in LTS 693 
analysis. IFZ is an inverse measure of the likelihood of a pixel being forested (pixels below a 694 
threshold IFZ value are considered forested). The IFZ threshold value is calculated based 695 
upon the distribution of values from several pixels that are identified as pure forest pixels. Liu 696 
et al. (2013) modified the IFZ models by normalizing phenological differences in the images 697 
acquired at different times and growing seasons before calculating IFZ scores. Such 698 
normalization procedures are useful in regions where it is almost impossible to collect image 699 
time series during the peak forest growing season. Kayastha et al. (2012) used a similar 700 
threshold based approach to map changes in forested wetland ecosystems in northern 701 
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Virginia, USA via the forestness index calculated from tasseled cap images. The major 702 
limitation of threshold-based techniques is that the threshold is empirically determined and 703 
thus is not directly transferrable to other study areas characterized by different vegetation 704 
types and vegetation densities. Thus, the requirement of computing the threshold adds a 705 
significant cost to processing time (Verbesselt et al., 2010).  706 

Stueve et al. (2011) found erroneous results with VCT that appeared to be associated 707 
with wetlands and agricultural fields in complex and highly fragmented forest landscapes. 708 
They found that significant improvements in the algorithm could be obtained by 709 
incorporating a non-forest mask derived from snow-covered, winter time series images. 710 
Thomas et al. (2011) evaluated forest disturbance history maps derived from VCT for six 711 
sample locations in the USA and found that the method performed reasonably well in dense 712 
forest and with stand-clearing disturbances, but performed poorly in sparsely vegetated 713 
canopies and for non-stand clearing disturbances, such as thinning and partial damage from 714 
natural disturbance events. 715 

Single curve fitting 716 

Within the framework of trajectory based change detection (trend analysis), univariate 717 
time series data are considered a mixture of a long-term movement or trend, cyclic seasonal 718 
fluctuation, and residual random movements (de Beurs and Henebry, 2005). Trend analysis 719 
for LTS usually involves suppressing seasonal effects by selecting near-anniversary date 720 
images corresponding to the timing of peak vegetation growth. A pixel-wise trend function 721 
generally based upon least squares regression (LSR) is fitted between a SV (integrated over a 722 
year) and time. The trend is expressed as the slope of the regression curve. The sign of the 723 
slope indicates either an increase or decrease in vegetation cover or density depending upon 724 
the type of spectral variables used. A slope that is significantly different from zero (at some 725 
significance level (critical p-value)) determines presence or absence of a trend (Vogelmann et 726 
al., 2012). The slope represents the rate at which change occurs over time. The difference in 727 
the value of the fitted function between the beginning and terminal date of the LTS is used to 728 
characterize the magnitude of change over time (e.g., Sonnenschein et al., 2011).  729 

Various studies have demonstrated the utility of single curve fitting for analyzing forest 730 
dynamics. Röder et al. (2008) used a linear trend analysis to characterize spatiotemporal 731 
patterns of vegetation cover development in Northern Greece using a time series of fifteen 732 
Landsat images from 1984–2000. Lehmann et al. (2013) used linear and quadratic fitting to 733 
analyze forest cover trends from LTS for the whole Australian continent. They calculated 734 
different summary variables such as mean, slope, and quadratic coefficients from the 735 
temporal sequence of a woodness index dataset. In addition to slope for summarizing the 736 
linear trend, the coefficients of quadratic curvature were found to be important for 737 
understanding disturbance and recovery. McManus et al. (2012) analyzed a 24-year (1986–738 
2010) LTS in a latitudinal transect across the boreal forest-tundra biome boundary in northern 739 
Quebec, Canada in an effort to understand tundra and boreal forest vegetation response to 740 
climate change. With linear trend analysis, they found that the area is experiencing a strong 741 
positive trend in the NDVI, which is indicative of significant increases in peak growing 742 
season leaf area. Vogelmann et al. (2012) used trend analysis to assess gradual changes 743 
occurring in four different natural ecosystems. Their general rule for trend analysis was that 744 
regression models with high positive or negative slope values are more likely to be 745 
statistically significant and thus the pixel locations where p values are at 0.01 and 0.05 levels 746 
of confidence can effectively depict spatial trends. With this approach, they found that high 747 
elevation understory conifers showed range increases towards lower elevations in the White 748 
Mountains of New Hampshire, USA. 749 
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A known shortcoming of the trend analysis approach is that standard underlying 750 
statistical assumptions made by least squares regression such as data normality and equal 751 
variance is generally difficult to meet (de Beurs and Henebry, 2005). Violation of the 752 
assumptions results in an inadequate representation of the data by the fitted function 753 
(Chandler, 2011). Similarly, the presence of autocorrelation in the data may provide incorrect 754 
estimates of standard errors at least in small samples, so that standard hypothesis tests and 755 
confidence intervals are invalid. Furthermore, statistical outliers in the data pose a problem 756 
for trend estimation because the regression estimator can be overly sensitive to outlying 757 
observations, which ultimately influence the trend fitted (Muhlbauer et al., 2009). Indeed 758 
trends may be biased leading to a false interpretation of the data. Statistical outliers may also 759 
impact significance levels and have major implications for the reliability of confidence 760 
intervals and hypothesis tests. 761 

Hypothesized curve fitting 762 

Many phenomena associated with forest change may have distinct temporal progression 763 
both before and after the disturbance event, resulting in a characteristic spectro-temporal 764 
signature (Hayes et al., 2007; Kennedy et al., 2007). A forest experiencing gradual change 765 
might be represented by a linear trend, whereas, a forest in steady-state (i.e., no change) can 766 
be represented by a horizontal line with no slope. Similarly, disturbance agents causing 767 
abrupt changes may result in a sharp change in the trajectory followed by a stable, increasing 768 
or decreasing trend determined by the course of the forest recovery process. Thus, the trend 769 
of forested pixels may be better analyzed by fitting curves characteristic of certain 770 
disturbance types, rather than a single linear or polynomial function. This approach requires 771 
the definition of change trajectories based upon the expected behavior of the SV, given 772 
disturbance type, before and after disturbance events. Trajectory based change detection can 773 
be interpreted as a supervised change detection method with hypothesized trajectories 774 
representing training signatures specific to different disturbance types (Verbesselt et al., 775 
2010). The major limitation of this approach is that the shape of the trajectory must be 776 
predefined, and the method will only function properly if the observed spectral trajectory 777 
matches one of the hypothesized trajectories. Kennedy et al. (2007) used such idealized 778 
trajectory fitting to detect and label disturbances in coniferous forests of western Oregon, 779 
U.S.A. Similarly, Gillanders et al. (2008) compared trajectories of each pixel to the four 780 
predefined disturbance curves hypothesized for mine development and rehabilitation in 781 
Boreal forests in Alberta, Canada.  782 

Trajectory segmentation 783 

The previously discussed long-term trend calculations show the overall trend across the 784 
entire time period, but provide little information on whether different sub-trends exists. 785 
Kennedy et al. (2010) recently developed a technique named LandTrendr to characterize 786 
distinct sub-trends within a trajectory based upon temporal segmentation. It employs an 787 
endogenous data-driven approach to decompose the trajectory into a series of straight-line 788 
segments to capture broad features of the trajectory as well as sub-trends. The result of the 789 
segmentation is a simplified representation of the spectral trajectory, where the time position 790 
and spectral value of vertices of segments provide the essential information needed to 791 
produce maps of change, or serve as predictor variables for informing on forest structure 792 
(e.g., Pflugmacher et al., 2012). The advantage of this approach is that the straight-line 793 
segments allow detection of abrupt events such as disturbances as well as longer-duration 794 
processes such as regrowth. Moreover, no predetermined model of change is required as the 795 
data themselves determine the shape of the trajectory. Cohen et al. (2010) found that the 796 
LandTrendr algorithm captures abrupt disturbances such as clear-cuts as well as or better than 797 
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two-date change detection methods and detects subtle changes such as insect-related 798 
disturbance and growth with reasonable robustness.  799 

The utility of LandTrendr has been demonstrated in different geographical regions for a 800 
wide range of dynamics related to different disturbance regimes (Kennedy et al., 2010; Meigs 801 
et al., 2011; Griffiths et al., 2012; Ohmann et al., 2012). In addition to the ability of detecting 802 
both abrupt events and trends in data, the strength of LandTrendr lies in its ability to compute 803 
a number of metrics that provide information on disturbance magnitude and regeneration. 804 
Furthermore, since the segmentation process distills an often-noisy yearly time series into a 805 
simplified series of segments avoiding most false changes (Kennedy et al., 2010), it provides 806 
flexibility for integrating many near-anniversary images to select cloudless pixels. One 807 
potential weakness of LandTrendr lies in its reliance on the p-values of F-statistics in 808 
deciding on a final number of segments, since the reliability of p-values diminishes in the 809 
presence of different noise and autocorrelation, especially for small-sized datasets.  810 

Accuracy assessment 811 

Accuracy assessment is an integral part of a mapping or spatial assessment process 812 
involving the evaluation of map quality against some known reference samples. Any 813 
validation method should be statistically rigorous and defensible in order for spatial products 814 
and information to be used in scientifically sound management and policy decisions 815 
(Stehman et al., 1998). In LTS analysis, validation may range in complexity depending upon 816 
the nature of the application and the related product. Validating thematic maps of continuous 817 
or categorical response variables is akin to the methods for evaluating similar products using 818 
single-date imagery, as reference samples are required only for the terminal year of the series 819 
for such analysis. A comparison of predictions with reference samples is the usual basis for 820 
validation. For continuous measurements, accuracy is typically expressed via metrics such as 821 
the root mean square error (RMSE), correlation coefficient (r), and the coefficient of variation 822 
(R2) between predicted and observed values from reference samples. In thematic mapping 823 
with categorical data, accuracy is usually expressed as percentages of correctly classified 824 
cases for each mapped class by constructing an error or contingency matrix (Foody, 2002). 825 
Such accuracy measures are typically estimated from a sample and thus are subject to 826 
uncertainty (Olofsson et al., 2013). Hence, the error matrix is increasingly considered to be 827 
inadequate for full accuracy reporting, and new approaches for techniques for constructing 828 
inferences in the form of confidence intervals and equivalence tests are increasingly popular 829 
(McRoberts, 2010). 830 

 Validation of change maps requires collection of reference samples for different 831 
observation periods. Map accuracy is usually evaluated on the basis of whether a particular 832 
category of change has been correctly identified or not. In the case of LTS analysis, reference 833 
samples may need to be collected for each observation year in the series. In addition, a LTS 834 
change-map may contain different change categories such as disturbance types, change year, 835 
and residence time as compared to the bivariate change response (i.e., ‘change’ or ‘no 836 
change’) attained in conventional change-maps. Hence, the collection of a sufficient number 837 
of reference samples is a challenging task. Accuracy assessment is often avoided in studies 838 
concerned with disturbance mapping because historical reference datasets can be 839 
prohibitively expensive to compile and often times are rarely available. The lack of a 840 
statistically rigorous accuracy assessment reduces the credibility of derived change maps. 841 
Recent examples, such as Cohen et al. (2010), indicates that the importance of robust 842 
evaluation of the LTS change products is being gradually recognized and that innovative 843 
approaches to validation are being developed. 844 

A sound validation technique requires that a proper sampling and response design be 845 
followed for selecting and labeling reference samples into change class. The sampling design 846 
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should be based upon a probability based design such that the probability of selecting each 847 
sampling unit is known (Foody, 2002; Olofsson et al., 2014). The disturbed area usually 848 
represents a small portion of the map, and disturbance events may be sparsely represented in 849 
time. Hence, a sampling design for LTS should be sensitive to rare classes in both space and 850 
time. Among different probability based designs, a stratified random sampling design can 851 
make better use of smaller sample sizes and represent rare classes, ultimately providing 852 
adequate precision (Thomas et al., 2011). However, caution should be applied when 853 
allocating an equal or optimal number of samples instead of proportion samples because the 854 
inclusion probability for sampling units in different strata will vary. Unequal inclusion 855 
probabilities should be accounted for in the estimation formula used to generate the error 856 
matrix (Stehman et al., 1998).  857 

The labeling of reference sample points may be based upon different information 858 
sources. Although field visits can be costly and may not accurately describe past disturbance 859 
events and their intensity (Cohen et al., 2010), they can potentially yield useful information 860 
about current and historical forest conditions. Other sources of information such as historical 861 
national forest inventories, aerial photographs, or high spatial resolution images can also act 862 
as proxies for ground reference data. Zimmerman et al. (2013) used reference disturbance 863 
classes obtained through photointerpretation of image sets from the National High Altitude 864 
Program (NHAP), National Aerial Photography Program (NAPP), and the National 865 
Agriculture Imagery Program (NAIP) for validating disturbance maps in the Western Great 866 
Lakes region of the US. Goodwin et al. (2008) used independent helicopter based survey data 867 
collected in three different years to validate maps of mountain pine beetle (Dendroctonus 868 
ponderosae) outbreak in western Canada.  869 

Reference data from historic surveys or aerial photos may or may not exist and hence 870 
cannot always be relied upon for validation. Other manual approaches levering data in the 871 
existing time series can be used to support validation in such situations. For example, Helmer 872 
et al. (2009) manually inferred secondary forest age via viewers simultaneously displaying a 873 
series of image dates or date combinations in RGB color space for accuracy assessment. A 874 
similar technique was also adopted by Helmer et al. (2010) who used simultaneous sequential 875 
observations of tasseled cap wetness images to assign age classes and disturbance types. 876 
Cohen et al. (2010) developed a tool named TimeSync primarily to facilitate accuracy 877 
assessment of a LTS time series analysis. Using TimeSync, a trained interpreter can manually 878 
define different change classes by interpreting pixel trajectories, much in the same manner as 879 
the time series algorithm automatically does. TimeSync, however, allows the interpreter to 880 
account for spatial, spectral, and temporal context as well as ancillary high-resolution Google 881 
Earth images when labeling reference pixels. According to Kennedy et al. (2010), TimeSync 882 
is necessary as it is nearly impossible to find reference data with the same temporal 883 
frequency, depth and spatial coverage of Landsat data. It has been demonstrated to work well 884 
or even better as compared to other ancillary reference datasets such as from US Forest 885 
Service Forest Health Monitoring Program and the US Bureau of Land Management in 886 
evaluating the LandTrendr segmentation for a wide range of forest change process in Oregon, 887 
USA (Cohen et al., 2010). Hence, TimeSync provides a promising tool for accuracy 888 
assessment of LTS change maps, and a growing number of studies have recently incorporated 889 
it. However, performance is contingent upon the ability of a human LTS interpreter for 890 
accurately labeling disturbance event, types, and magnitudes. In the absence of high 891 
resolution Google Earth images, the method merely evaluates how well the algorithm fits the 892 
data rather than how well it predicts change. A spectral variable may be greatly sensitive to 893 
atmospheric noise, BRDF effects, phenology and background. Consequently, the signal due 894 
to real change or lack thereof may be completely masked in the temporal trajectory, and false 895 
agreement between the visual label and model prediction is likely. As such, the reference and 896 
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the prediction dataset are not independent and may inflate accuracy as compared to 897 
conservative estimates provided by an independent reference dataset. Among the papers 898 
reviewed for this manuscript, six studies used TimeSync as a means for disturbance 899 
validation, seven used visual interpretation of the image in the time series, thirteen others 900 
used a combination of field data, high resolution imagery, and visual interpretation for 901 
validation, while eleven studies did not mention a validation procedure. 902 

Conclusions 903 

The Landsat series of satellite sensors represents the longest-running space-based earth 904 
observation program. The spatial, spectral, and temporal resolution offered by Landsat data is 905 
well suited and increasingly established and operational in usage for forest management and 906 
analysis. The change to a free and open Landsat data distribution policy in 2008 has 907 
accelerated the use of Landsat time series (LTS) for forestry research and applications. 908 
Interest in LTS has been further enhanced by the recent introduction of several novel 909 
automated data processing techniques suitable for multitemporal analysis. Moreover, the 910 
launch of Landsat 8 in February 2013 ensures the continuity of the Landsat mission—at least 911 
in the short-term. Nonetheless, as identified herein, challenges remain in order for the 912 
analysis of LTS to move into a more operational realm, especially in the global context.  913 

The assembly of an LTS stack with sufficient temporal density is more challenging in 914 
jurisdictions outside of the United States. Repatriation of images held by International 915 
Cooperators into the United States Geological Survey (USGS) archive is actively being 916 
pursued to mitigate this (Wulder et al., 2012). User must also be mindful that historic storage 917 
and computing conditions are not the same that we enjoy today. In the early 1970s when the 918 
first Landsat was launched, satellite and ground systems had markedly slower satellite 919 
downlink rates and capacity, limited on-satellite storage, and ground storage largely on 920 
magnetic tapes, as well as no internet to facilitate data storage, archive, and transfer needs, 921 
among a myriad of other issues. Notwithstanding these limitations, the USGS and many other 922 
US and foreign governments worked in partnership to obtain and safe-keep the images we 923 
have access to today. Projects such as the Web-enabled Landsat Data (WELD), which 924 
provide Landsat Enhanced Thematic Mapper Plus (ETM+) data composites on a monthly, 925 
seasonal, and yearly basis over the conterminous United States (Roy et al., 2010), provide a 926 
model for a promising new era of globally available Landsat composite products that take 927 
advantage of the full Landsat archive. An expansion of such a project for broader 928 
geographical regions could help facilitate widespread use of LTS data. In the absence of 929 
composite products being readily available, operational large area LTS analyses would 930 
require substantial computational resources to compile and preprocess Landsat data. 931 
Centralized computing infrastructure that allows users to bring algorithms to the data offer an 932 
opportunity to reduce network, storage, and computation overheads, mitigating what could 933 
otherwise be a limitation to the analysis of long term, large area datasets, especially in 934 
developing countries (Wulder and Coops., 2004).  935 

Accurate methods for correcting atmospheric, topographic and geometric errors are 936 
necessary for inter-comparison of images in the time series. Both relative and absolute 937 
atmospheric normalization techniques have been regularly used to correct radiometric errors. 938 
Although some studies have found relative normalization sufficient for LTS analysis, the 939 
comparative ease of implementation and fast processing offered by new tools such as 940 
LEDAPS have made absolute correction techniques viable in most situations. Unlike 941 
geometric and atmospheric correction, topographic correction was rarely applied in the LTS 942 
studies reviewed. The standard products delivered by the USGS are in a Level 1 terrain 943 
corrected (L1T) format, which is a top of atmosphere terrain corrected form. Beyond this first 944 
order topographic correction, the impact of topography – especially over mountainous terrain 945 
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– remains a topic requiring further research. It is worth noting that the USGS has expanded 946 
beyond the Landsat L1T to introduce a suite of Essential Climatic Variables, of which surface 947 
reflectance data, based upon the LEDAPS algorithm, can be ordered and downloaded for 948 
free.  949 

A wide range of spectral variables (SVIs) have been employed in LTS analysis based 950 
upon their enhanced sensitivity to vegetation greenness. The performance of individual SVIs 951 
differs mostly due to their varied sensitivity to external factors such as topography and 952 
atmospheric conditions. The most appropriate SVI depends on the application, with Tasseled 953 
Cap components emerging as a popular choice in many applications, particularly for studies 954 
that are seeking to incorporate Multispectral Scanner System (MSS) and data from other 955 
sensors. Further research is needed into quantifying the uncertainties due to varying spectral 956 
response of different sensors on the time series analysis using Tasseled Cap and other indices. 957 

Approaches for analyzing LTS are nascent and evolving, and ultimately expected to 958 
improve. It is worthwhile emphasizing that these novel and informative analytical techniques 959 
are using data from a satellite program this is over 40 years old. At the time of this review, 960 
there are mainly two change detection algorithms commonly used for LTS: classification or 961 
trajectory analysis. Classification based techniques are an extension of traditional change 962 
detection techniques based upon two images. Trajectory-based methods identify trends and 963 
breakpoints corresponding to disturbance events, stability, and recovery time, and have been 964 
found useful for characterizing different disturbance regimes. Users should understand the 965 
strength and limitations of each method prior to conducting an LTS analysis, ideally selecting 966 
a given method based upon their particular information needs. Although a comparative 967 
analysis is potentially useful when selecting an algorithm, it is ultimately more important that 968 
users understand the relative merits of a specific algorithm in light of their specific 969 
information needs, and the amount of resources and effort that they are willing to expend. 970 

In summary, unprecedented advances in the assessment of forest conditions and 971 
dynamics have been realized in recent years using LTS data as an information source. Many 972 
issues and challenges still remain to harness the full capabilities offered by rich, freely 973 
available LTS datasets. In particular, issues associated with pre-processing, analysis, and 974 
validation of LTS all require further research, however best practices are beginning to emerge 975 
as approaches mature.   976 
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Table 1. Landsat sensors and their characteristics 1534 

Sensors Bands Wavelength 
(micrometers) 

Resolution 
(meters) 

Acquisition 
years 

 
 
Multispectral 
Scanner 
(MSS) 

Landsat 1-3 Landsat 4-5  
 

1972-2001* 
 

Band 4 Band 1 0.5-0.6 60 
Band 5 Band 2 0.6-0.7 60 
Band 6 Band 3 0.7-0.8 60 
Band 7 Band 4 0.8-1.1 60 

 
 
 
 
Thematic 
Mapper (TM) 

Landsat 4 -5   
 
 
 

1984 -2012 

 Band 1 0.45-0.52 30 
Band 2 0.52-0.60 30 
Band 3 0.63-0.69 30 
Band 4 0.76-0.90 30 
Band 5 1.55-1.75 30 
Band 6 10.40-12.50 120 
Band 7 2.08-2.35 30 

 
 
 
Enhanced 
Thematic 
Mapper  
Plus 
(ETM+) 

Landsat 7  
 
 

 
1999- 
Ongoing 

 
 
 
 

 Band 1 0.45-0.52 30 
Band 2 0.52-0.60 30 
Band 3 0.63-0.69 30 
Band 4 0.76-0.90 30 
Band 5 1.55-1.75 30 
Band 6 10.40-12.50 60 
Band 7 2.08-2.35 30 
Band 8 0.52-0.90 15 

 
 
 
Operational  
Land Imager  
(OLI)  
and  
Thermal  
Infrared  
Sensor  
(TIRS) 

Landsat 8  
 Band 1 0.43 - 0.45 30  

 
 
 
2013 - 
Ongoing 

Band 2 0.45 - 0.51 30 
Band 3 0.53 - 0.59 30 
Band 4 0.64 - 0.67 30 
Band 5 0.85 - 0.88 30 
Band 6 0.85 - 0.88 30 
Band 7 2.11 - 2.29 30 
Band 8 0.50 - 0.68 15 
Band 9 1.36 - 1.38 30 
Band 10 10.60 - 11.19 100 
Band 11 11.50 - 12.51 100 

*Following failure of the TM sensor on Landsat 5, the MSS sensor was reactivated for a short 1535 
period of time prior to satellite decommissioning (Table source: http://landsat.usgs.gov). 1536 
  1537 
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Table 2. Most common atmospheric correction techniques used 1538 

Categories Method Description References 
 
 
 
 
 
 
 
 
1. Absolute 

 
 
DOS 

Assumes existence of features 
with near zero reflectance and 
the signal reported for these 
feature is attributed to 
atmosphere and subtracted from 
all the pixel 

Neuenschwander and 
Crews, 2008 
Deel et al., 2012 
Mishra et al., 2012 
 

 
 
 
6S 

A 6S radiative transfer based 
method calculates surface 
reflectance by modeling of a 
realistic atmosphere described 
by the mixture of different 
gases and molecules.  
 

Asner et al., 2009 
Li et al., 2009 
Huang et al., 2010 
Kayastha et al., 2012 
McManus et al., 2012 
Alencar et al., 2011 
Masek et al., 2013 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. Relative 

 
MAD 

Uses Canonical correlation 
analysis to identify pseudo-
invariant pixels which are used 
to normalize the image using 
reduced major axis regression 

 
Gómez et al., 2011 
Lehmann et al., 2013 
 

 

 
 
 
 
COST+MAD 

One base image is corrected 
using COST method and other 
images are normalized to the 
base image using MAD 
approach (COST is based upon 
DOS method that deals with 
both additive and multiplicative 
effect of atmosphere using 
atmospheric transmittance 
calculated from cosine of solar 
zenith angle.) 
 

 
Goodwin et al., 2008 
Griffiths et al., 2012 
Kennedy et al., 2012 
Pflugmacher et al., 
2012 
Yang et al., 2012 
Kennedy et al., 2012 
 

 
6S+MAD 

One base image is corrected 
using 6S method and other 
images are normalized to the 
base image using MAD 
approach 

Schroeder et al., 2006 
Powell et al., 2010 
Liu et al., 2013  

 1539 

  1540 
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Table 3. Examples of spectral variables and approaches used in LTS for different forest 1541 
monitoring applications 1542 

Landsat Method Spectral 
Variables 

References 

1. Forest cover /species mapping 

2000-2008 ETM+ 
1984-1987 TM 

Multitemporal classification 
using decision tree classifier 

 

Tasseled cap and 
others 

Helmer et al., 2012 

2000 -2012 
ETM+ 

Multidate compositing and 
decision tree classifier 

Spectral bands Potapov et al., 2012 
Hansen et al., 2013 
 

2000 -2005 
ETM+ 

Multidate compositing and 
decision tree classifier 

Spectral bands Potapov et al., 2011
 
 

1989-2006 
TM/ETM+ 

Joint multitemporal 
classification using a 
Bayesian rule 
 

Single date 
probability image 

Lehmann et al., 2013 

1983-2006 
TM/ETM+ 

Classification of exotic 
species using support vector 
machine 

Stacks of image in 
5 year increment 

Gavier-Pizarro et al., 
2012 

 

2. Change Detection/Disturbance mapping 

1984-2004 
TM/ETM 

Curve Fitting B5 reflectance Kennedy et al., 2007
 
 

1988-2010 
TM/ETM+ 

Linear trend analysis NDVI and 
SWIR/NIR ratio 

Vogelmann et al., 2009 
Vogelmann et al., 2012 
 

1984-2008 
TM/ETM+ 

Temporal Segmentation 
(Landtrendr) 

 Kennedy et al., 2010 

       
1973-2008 
MSS/TM/ETM+ 

Object based – hierarchical 
spatial and temporal 
segmentation 

 

Tasseled cap angle 
(TCA) 

Gómez et al., 2011 
 

1989-2006 
TM/ETM+ 

Linear and quadratic 
polynomial fitting 

Woodness Index  
 

Lehmann et al., 2013 

       

1984-2006 
TM/ETM+ 

 

Threshold based 
(Vegetation Change Tracker) 

Integrated 
Forestness Z-score 
(IFZ) 
 
 

Huang et al., 2010 
Stueve et al., 2011 
 
 

2001-2003 (all 
available images 
for the years) 
TM/ETM+ 

Prediction of Landsat images 
and uses threshold for change 
identification 

 

Disturbance index 
(DI) 

Zhu et al.,  2012 
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1984-2008 
TM/ETM+ 

Subtraction between DI and 
minimum DI for all images 

DI Deel et al., 2012 

       
1986-2010 
TM/ETM+ 

 

Linear trend analysis NDVI McManus et al., 2012 

TM/ETM+ 
1986-2008 

Threshold/decision tree 
 

Mainly band-5 : 
other indifferent 
indices were also 
compared 
 

 
Schroeder et al., 2011 

TM/ETM+ 
1992-2006 

Threshold/decision NDMI Goodwin et al., 2008 
 

TM/ETM+ 
1984-2005 

Decision tree classification 

B1-5, B7, NDVI , 
NDMI, and TC 
indices 
 

 

Helmer et al., 2010 

 
3. Biophysical variables and canopy chemistry 
 
1972-2010 
MSS/TM/ETM+ 

Forest structure woody /dead 
Biomass , basal area 
estimation using LTS metrics 
and lidar 

 

TCA 
 
 
 

Pflugmacher et al., 2012 

1985-2006 
TM/ETM+ 

Curve fitting ( biomass 
estimation) 

TCA, NDVI, DI Powell et al., 2010 

1984-2008 
TM/ETM+ 

Canopy nitrogen/forest 
structure estimation using 
disturbance metrics from LTS 
and hyperspectral images 

DI Deel et al., 2012 

       
1975 – 2003 
MSS/TM/ETM+ Threshold based technique 

(forest age) and biomass (with 
lidar) 

WBDI Helmer et al., 2009

 

 
1984-2005 
TM/ETM+ 

Decision tree classification 
(disturbance and age) and 
regression tree ( height and 
percentage foliage cover) 

B1-5, B7, NDVI , 
NDMI, and TC 
indices 

Helmer et al., 2010 

 
 
 

4. Phenology 

1984-2002 
TM/ETM+ 

Logistic function used to 
derive phenological markers 

Variable 
vegetation fraction 
derived from SMA 

Fisher et al., 2006 
Elmore et al., 2012 
 
 

1982 -2011 
TM/ETM+ 

Logistic function to derive 
phenological markers 

 
EVI 

 
Melaas et al., 2013
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2006 TM and 
synthetic images 
using STARFM 

Timing and magnitude of 
peak NDVI 

NDVI Souza et al., 2013 
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