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Abstract  44 

Mapping and quantifying the area and type of disturbance within forests is critical for sustainable 45 

forest management. Grizzly bear (Ursus arctos) have large home ranges and diverse habitat needs 46 

and as a result, information on the extent, type, and timing of disturbances is important. In this 47 

research we apply a remote sensing based disturbance mapping technique to the southeastern 48 

extent of grizzly bear range. We apply a data fusion approach with MODIS 250m and Landsat 30m 49 

spatial resolution imagery to map disturbances biweekly from 2001-2011. A regression tree 50 

classifier was applied to classify the disturbance events based on spatial and temporal 51 

characteristics. Fire was attributed based on a national fire database. Results indicate across the 52 

130,727 km2 study area 4,603 km2 of forest were disturbed over the past decade (2001-2011) 53 

impacting 0.35% of the study area annually. Overall, 68.7% of the disturbance events were 54 

attributed to forest harvest, followed by well sites 13.4%, fires 9.3% and road development, 8.6%. 55 

Primary source habitat contained 3.8% of disturbed land, and primary sink areas had 5.9% 56 

disturbed land. Our findings quantify habitat change which can aid managers by identifying 57 

significant areas for grizzly bear conservation.  58 

59 
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1. Introduction 60 

 Sustainable forest management aims to maintain biodiversity, ecosystem structure, and 61 

ecosystem services (Amoroso et al. 2011) while allowing persistence of renewable resources for 62 

future yield. Forested ecosystems are highly dynamic and often subject to a wide range of 63 

disturbances which can include both biological (e.g., disease, insects) and non-biological (e.g., fire, 64 

wind throw) events as well as anthropogenic disturbances including mining, forest harvest, road 65 

building and infrastructure development (Nielsen et al. 2004a). Fire and forest harvest, given time, 66 

will return back to a natural state, whereas roads or well sites represent more permanent changes 67 

and are often viewed as habitat loss (Roever et al. 2008). Disturbances can cause mortality to 68 

organisms and alter the spatial fragmentation of the landscape, with potentially significant impacts 69 

on wildlife habitat (Gardner 1998, Nielsen et al. 2004b). The amount and extent of fragmentation, 70 

available and edge habitat quality, and resource availability are closely related to disturbance 71 

regimes and influence forest productivity and biodiversity (Berland et al. 2008; Linke et al. 2005).  72 

Western Alberta Canada is a dynamic area with widespread resource extraction activities 73 

(Roever et al. 2008). Increased coal, oil, gas, and timber extraction, in addition to local population 74 

growth and subsequent urban expansion and development, impacts biodiversity through habitat 75 

loss and fragmentation (Schneider et al. 2003). Western Alberta represents the eastern limit of 76 

grizzly bear (Ursus arctos) habitat in southern Canada and the last of its historic range in the 77 

province (Nielsen et al. 2009). Grizzly bear within the area occur at low densities due to their 78 

extensive habitat demands. On the east side of the rocky mountain massif, grizzly diet consists 79 

mainly of plant resources (Equistem spp.,Trifolium, Vaccinium spp., Rubus spp., etc.) with a small 80 

proportion of ungulate protein and insects, varying amongst populations (Munro et al. 2006). The 81 

size of individual home ranges is determined by sex (Gau, 1998; McLoughlin et al. 1999), age, 82 

reproductive status, and resource availability (McLoughlin et al. 2000). Grizzly bear have low 83 

reproduction rates, caused by the age at which they reach reproductive maturity, number of 84 

offspring produced, dependency of cubs on the mother for resources and protection, and long 85 

intervals between litters (Alberta Grizzly Bear Recovery Plan, 2008). Based on population 86 

inventory data (2004-2008) and concerns over habitat alteration, the status of this species was 87 

changed to “threatened” in 2010. Resource extraction in western Alberta increases the area of 88 

habitat alteration and the number of grizzly human-bear interactions, which is the greatest cause of 89 

mortality for bears (Nielsen et al. 2009). Grizzly bear require a mosaic of landscapes that had been 90 

historically maintained by wildfires. Because of effective fire suppression and increased resource 91 
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extraction, anthropogenic disturbances have partly replaced the role of fire in providing this 92 

variation in habitat (Bratkovich, 1986, Hillis, 1986; Nielsen et al. 2004b, c). Forest regeneration and 93 

edge habitats provide a range of herbaceous plants and shrubs that are important forage for grizzly 94 

bear (Nielsen et al. 2004a) and thus can, depending on the time since disturbance, provide 95 

beneficial habitat for bears. However roads connecting industries to the resources themselves, 96 

create increased probabilities for bear–human interactions (Berland et al. 2008, Nielsen et al. 97 

2004a, 2008), and are therefore a major factor in bear mortality. Comprehensive management 98 

plans therefore need to recognize and map natural and anthropogenic disturbance while at the 99 

same time minimizing human bear interactions. One possible method of mapping disturbances in a 100 

timely and spatially comprehensive way is through satellite remote sensing. Remote sensing offers 101 

potential to detect and attribute disturbance events across large areas. For instance, the Landsat 102 

series of satellites have proven capable of observing land cover change at 30 m spatial resolution 103 

for over 40 years. However, Landsat has a revisit time of 16 days which, together with frequent 104 

cloud cover, limits timely attribution of disturbances (Wulder et al. 2008a), although increasingly 105 

numerous approaches for mitigating cloud cover have emerged (Kennedy et al. 2007; Huang et al. 106 

2010; Wulder et al. 2011; Griffiths et al. 2013). One potential approach to mitigate this limitation is 107 

by fusing Landsat imagery with other satellite data having a shorter revisit time, such as the data 108 

blending approach of Gao et al. (2006). We use the Spatial Temporal Adaptive Algorithm for 109 

mapping Reflectance Change (STAARCH) (Hilker et al. 2009) to derive disturbance patches based 110 

on biweekly surface reflectance data at 30m spatial resolution. STAARCH uses combined Tasseled 111 

Cap Transformations (TCT) of Landsat Thematic Mapper (TM)/ Enhanced Thematic Mapper Plus 112 

(ETM+) and Moderate Resolution Imaging Spectrometer (MODIS) imagery. While this technique 113 

has been successfully applied to map disturbances across large areas, remotely sensed disturbance 114 

maps may also be used for disturbance attribution. One possible way to attribute disturbance 115 

patches is by their shape and time of occurrence. That is, anthropogenic disturbance patches can be 116 

characterized by their regularity in shape and limited spatial extent, whereas non-anthropogenic 117 

disturbances tend to be more irregular or variable in shape (Stewart et al. 2009). In our previous 118 

work, Gaulton et al. (2011) applied the STAARCH approach to examine 7 years of disturbance 119 

across the region validating the estimates using a yearly Landsat-based change sequence. 120 

Producer’s accuracies ranged between 15 – 85 % (average overall accuracy 62 %, kappa statistic of 121 

0.54) depending on the size of the disturbance event.  122 

 123 
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In this paper we extend this work in three critical ways. First we extend the size of the area 124 

of interest to cover the complete area of grizzly bear source and sink areas. Second we temporally 125 

extend the approach to cover a decade of change in the region. Finally, we attribute the detected 126 

disturbance events as forest cutblocks, fire, well sites or roads using a series of rules defined within 127 

the study area. This unique combination of the increased focus area, the extended time period and 128 

the attributed disturbance types, we believe provides the most comprehensive, analysis of the 129 

disturbance regime in the area. To do so, we our approach was as follows. First, disturbance events 130 

were detected using the STAARCH approach. A decision tree approach was then applied to attribute 131 

disturbance events based on both spatial and temporal characteristics allowing us to assess how 132 

much of this disturbance is anthropogenic or non-anthropogenic in nature. We distinguished 133 

between forest harvest, resource exploration and installations, and road development, as well as 134 

fire disturbance based upon polygons from the national fire database. Classifying disturbance by 135 

type allows anthropogenic change to be quantified and the persistence of cover change to be 136 

calculated. We examine disturbance regimes across the entire region, by season and by type. Lastly, 137 

to demonstrate how these data can be used, we compare disturbance events with Grizzly bear 138 

habitat states (Nielsen et al. 2005) to observe spatial patterns of disturbance with safe harbor and 139 

attractive sink habitats. Our observations aim to provide an indication of how these datasets can be 140 

used to fill missing elements to grizzly bear comprehensive management strategies, which is 141 

quantifying habitat loss and bear-disturbance interactions that can be applied over large areas. 142 

2. Methods 143 

2.1 Study Area 144 

The foothills region of Alberta, Canada, is a transition zone between the Rocky Mountains and 145 

Prairies, with elevations ranging from 700-1700m above sea level. The 130,727 km2 study area is 146 

typified by a wide range of temperature conditions (average temperature -12 to 15 ° C). Forests in 147 

the lower elevations in the foothills region are deciduous or mixed wood and common tree species 148 

include aspen (Populus spp.), balsam poplar (Populus balsamifera), white birch (Betula papyifera), 149 

lodgepole pine (Pinus contorta), white spruce (Picea glauca) and black spruce (Picea Mariana). The 150 

upper elevations in the foothills region is characterized by a distinct change in tree species 151 

dominance from mixed or deciduous to closed conifer forests of primarily lodgepole pine (Natural 152 

Regions Committee 2006). The region has been sub divided into five Grizzly bear habitat states: 153 

non-critical, primary sink, secondary sink, primary and secondary habitats (Nielsen et al.  154 
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 155 

Figure 1: Study area in Alberta showing the foothills area with observed Grizzly bear habitat states. 156 
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2006) the states indicate whether areas are important to grizzly bear and if there is an 157 

increased chance of conflict or mortality (sink areas). 158 

2.2 Data 159 

2.2.1 Disturbance Detection 160 

The STAARCH algorithm relates biweekly change in forest cover at 30m spatial resolution 161 

(Hilker et al. 2009). In brief, the algorithm utilizes a minimum of two Landsat observations of the 162 

same location at the start and end of the study period, in addition to a sequence of MODIS 250 m 163 

images at a biweekly interval (Gao et al. 2006). First, the spatial extent of disturbances occurring 164 

from one Landsat observation to the next is mapped using two or more cloud filtered (Irish et al. 165 

2006) scenes. Disturbances are mapped using a spectral disturbance index (Healy et al. 2005) 166 

based on the brightness, greenness, and wetness indices following calculation of the TCT (Kauth 167 

and Thomas, 1976). Second, a time series of MODIS imagery is used to determine the time of 168 

disturbance at biweekly time steps. To do so, the MODIS based disturbance index is computed 169 

based on the MODIS land bands and compared to identify significant changes in the time series of 170 

bi-weekly observations. The STAARCH algorithm has been applied and validated in previous 171 

research within the same study area (Hilker et al., 2009). This work demonstrated the accuracy and 172 

applicability of the STAARCH based disturbance detection technique, for identifying and 173 

categorizing disturbance based on spatial and temporal metrics. Hilker et al., (2009) found the 174 

STAARCH approach had an accuracy rate for correctly identifying disturbances in the correct year 175 

of 87%, 87% and 89% in 2002, 2003 and 2005 respectively, based on an independently derived 176 

disturbance mapping dataset derived from aerial photography. The spatial accuracy of the 177 

detection area itself was 93% when compared to the validation dataset. Areas where the algorithm 178 

had poorer accuracy were wetter sites, and as a result, disturbances within flood plains and bogs, 179 

may be more poorly represented. Similarly successful disturbance detection is dependent on cloud 180 

free viewing, so in some cases there was an 8-day delay in time attribution due to cloud obscured 181 

MODIS data. Overall however, we are confident in the accuracy of the approach and its applicability 182 

for assessing and attributing disturbances in this region. As persistent cloud and snow cover makes 183 

delineation of disturbance events extremely difficult in winter, the STAARCH methodology is 184 

applied only to growing season images (March to October). As a result, areas disturbed in winter 185 

will appear in the first image in the growing season of the following year (Hilker et al., 2009). 186 

For this project a total of 64 Landsat 5 TM scenes covering an area of 16 path/rows (Table 187 

1), acquired between July 2001 and August 2011 were obtained free of charge and ready for 188 
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analysis (Woodcock et al. 2008) from the USGS GLOVIS archive (http://glovis.usgs.gov/). Images 189 

were selected to minimize cloud cover (where possible to below 30%) as well as the temporal 190 

separation between adjacent scenes across the study area. All images were expressed as top of 191 

atmosphere reflectance and corrected using a dark object subtraction (Song et al. 2001) technique. 192 

Land cover data was obtained from the Landsat 7 land cover classification of Canada that was 193 

produced for the Earth Observation for Sustainable Development of forests (EOSD) initiative 194 

(Wulder et al. 2008b) representing circa year 2000 conditions.  195 

Table 1: the location and the date of acquisition of the Landsat images used in the research analysis, 196 

obtained from the USGS GLOVIS archive 197 

Path Row 2001 2004 2008 2011 

41 26 2001-10-03 2004-06-21 2008-09-20 2011-09-29 

42 24 2001-09-08 2004-07-14 2008-07-25 2011-08-10 

42 25 2001-09-08 2004-07-14 2008-07-25 2011-09-04 

42 26 2001-09-08 2004-07-14 2008-07-25 2011-09-04 

43 22 2001-09-15 2004-06-19 2007-09-16 2011-09-27 

43 23 2001-09-15 2004-06-19 2008-08-17 2011-08-26 

43 24 2001-09-15 2004-06-19 2008-08-17 2011-08-26 

43 25 2001-09-15 2004-06-19 2008-08-17 2010-07-29 

44 22 2001-07-04 2004-08-13 2008-08-08 2010-10-01 

44 23 2001-07-04 2004-08-13 2008-10-11 2010-10-01 

44 24 2001-07-04 2004-08-13 2008-06-21 2011-08-17 

45 22 2001-08-12 2004-06-17 2009-08-27 2011-09-09 

45 23 2001-08-12 2004-06-17 2008-09-16 2010-07-27 

46 22 2001-09-20 2004-08-11 2008-08-06 2010-07-27 

46 23 2001-09-04 2004-08-11 2008-08-06 2011-08-31 

47 22 2001-08-10 2004-08-18 2008-09-14 2011-09-07 

 198 

2.2.2 Disturbance Attribution 199 

Prior to attribution, any disturbance patches which had adjacent disturbance patches 200 

detected at the same date were merged by Date of Disturbance (DOD), and expanded until no more 201 

adjacent polygons exist. Patches less than one hectare in size were removed based on Hilker et al. 202 

(2011). Fragstats, a landscape ecology tool that calculates intra- and interpatch metrics, was used to 203 

obtain the necessary spatial analytics (McGarigal et al. 2012). A simple way of defining patches is by 204 

using any contiguous disturbed area. The patches are then used to calculate area and shape specific 205 
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parameters including area/density/edge metrics, shape metrics, core metrics, isolation/proximity 206 

metrics, contrast metrics, contagion/interspersion metrics, connectivity metrics, and diversity 207 

metrics (Su et al 2011). Patches are defined as groups of pixels surrounded by null space. Three sets 208 

of metrics were calculated for each patch including area, perimeter, contiguity and perimeter-area 209 

ratio. Core area and core area index, were also calculated and can be used to quantify the area that 210 

is not under edge influence. Lastly, isolation and proximity metrics calculate the distances between 211 

nearby patches (Hilker et al 2011).  212 

A decision tree model previously developed by Hilker et al (2009) was then applied using 213 

the patch characteristics to identify disturbance type. Decision trees use data mining approaches to 214 

find the most accurate predictive method based on patterns within large datasets. As described in 215 

Hilker et al (2009), the key patch metrics identified as the most important variables in disturbance 216 

prediction were date of disturbance (DOD), core area (Core m2), patch area (Area m2), core area 217 

index (CAI), and contiguity index (Contig), described in Table 2. Core area and patch area allow 218 

separation between the relatively small well sites and larger fires, while CAI and contiguity indices 219 

are indicative of the disturbance shape, separating regular shaped harvest areas from elongated 220 

roads or irregular shaped fires.Patch characteristics combined with the DOD were used to classify 221 

well sites, roads, and forest harvest between 2001 and 2011 using decision tree analysis. In 222 

addition to the automatic attribution of the polygons, we utilized the Canadian National Fire 223 

Database and the Alberta ESRD Historical Wildfire Perimeter Data. The two datasets provide 224 

perimeter data for the outer limits of individual fires within Alberta, based on satellite imagery. 225 

Data completeness varies between year and collection agency, and the methods of different 226 

mapping techniques. Fire polygons were used to dictate the fire attribution of intersecting 227 

STAARCH polygons with the remainder classified as either well site, road, fire, or forest harvest. 228 

2.2.3 Grizzly Bear Habitat States 229 

 The habitat states for the study area were created from the methods derived in Nielsen et al. 230 

2006, which combined the relative probability of adult female occupancy (based on environmental 231 

variables and telemetry data (Nielsen et al. 2005), and risk of human caused mortality (based on 232 

bear mortality data) (Nielsen et al. 2004a) models. From these models Nielsen et al., (2004a) then 233 

derived sink (Delibes et al. 2001, Naves et al. 2003) and safe-harbor (source) areas and extended 234 

them across the complete study area of western Alberta. Attractive sinks are areas where grizzly 235 

bears were likely to occur, but are at higher risk of human-caused mortality. Safe-harbor sites are 236 

areas where grizzly bears are likely to occur, with a lower risk of human-caused mortality. Habitat 237 
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states were divided into five separate groups calculated from the above methods; primary and 238 

secondary habitat (sources), primary and secondary sink (sinks) and non-critical habitat (Nielsen 239 

et al. 2006). 240 

2.3. Data Analysis 241 

Our processing methodology was as follows: First the STAARCH algorithm was applied to 242 

identify disturbance patches. These patches were input into FRAGSTATS to calculate the required 243 

metrics for use in the decision tree developed by Hilker et al. (2011) to attribute each patch as 244 

either well site, road or forest harvest. The fire disturbance layer was then overlaid with the patch 245 

identification layer produced from STAARCH and the decision tree, and patches identified as fire by 246 

the fire database had their attribution changed to fire, regardless of the decision tree attribution. 247 

Polygons attributed as fire by the decision tree, but not contained within the fire polygons, were 248 

attributed to forest harvest. Disturbance polygons were then analyzed temporally (monthly and 249 

annual), for the distribution of anthropogenic and natural disturbance events. Secondly, 250 

disturbance polygons were overlaid with the grizzly bear habitat states to observe disturbance by 251 

type on known Grizzly bear habitat. We estimate confidence intervals on the disturbed areas based 252 

on the accuracy statements developed by Hilker et al. (2009, 2011). In Hilker et al., (2009) 253 

estimates of the accuracy of detecting disturbed areas is, on average, 88% . Hilker et al. 254 

(2011)evaluated the accuracy of the disturbance attribution which was between 83 – 89% .  255 

Table 2: description of the FRAGSTATS metrics used in the decision tree model to identify type of 256 

disturbance (McGarigal et al. 2012)  257 

Metric Name Description 

DoD Date that change was detected from the STAARCH algorithm 

Core Area within individual patches that is greater than 30m from the patch edge 

Area Area of individual patches within the landscape 

CAI Core area divided by the total patch area multiplied by 100 

Contig Average contiguity value for cells - sum of cell values divided by number of pixels 

in the patch minus one, divided by the sum of the template values minus one 

 258 
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3. Results 259 

3.1 Western Alberta Disturbance Attribution 260 

Over the decade of 2001 – 2011 a total of 4,603 km2 (± 276 km2) of disturbances covering 261 

3.5% of the study area were detected. Figure 2 shows the disturbances from 2001 – 2011 and 262 

disturbance type (well-site, road, fire, or forest harvest). The results show an east–west trend 263 

across the area with the Rocky Mountain region to the west having fewer disturbances than the 264 

foothills region in the east. Forest harvest accounts for most of the disturbed area between 2001 265 

and 2011 (Figure 3). Well sites and roads were frequent, but have relatively small spatial extents 266 

(0.03 and 0.02 km2 respectively). Fires, while more infrequent, are larger (0.26km2) than the other 267 

disturbance types, and dominate the spatial patterns in some areas. Forest harvest occurs across 268 

the study area at differing densities and patch sizes (as related to the cut block size). 269 

 Summer (July and August) and fall (September and October) periods accounted for most of 270 

the disturbance area. The summer and fall months (July to October) have the highest proportion of 271 

forest harvesting, although sometimes decreases temporarily during dry periods due to fire risk. 272 

Road construction remained relatively consistent throughout the year; well site construction was 273 

comparatively less from June to August, and forest fires account for a variable portion of 274 

disturbance during the detection period, peaking in late summer, and early fall (Figure 4). 275 

Generally, September observed the highest amount of forest disturbance through the decade, 276 

accounting for 1,032 km2 of disturbance (22 %), with forest harvesting accounting for 63.5% of that 277 

change. 278 

 Well sites and roads have the smallest footprint in disturbance area, averaging 0.03 and 279 

0.02 km2 respectively, followed by forest harvest (0.13 km2) and fire disturbance (0.26 km2). Non-280 

anthropogenic disturbance (fire) has 2% of the number of disturbance events (Figure 5a) yet 9% 281 

(±0.5%) of the total area observed (Figure 5b). Well sites and roads compose 63% of the 282 

disturbance events (35% and 28% respectively), although composed only 22% (± 2%)of the total 283 

disturbed area (13% and 9% respectively). Forest harvest is 35% of the total disturbance events 284 

and occupies 69% (± 5.5%) of the disturbed area in the study area. 285 

 286 
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 287 

Figure 2: STAARCH output for the Grizzly bear study area classified by the type of disturbance. 288 



13 
 

 289 

Figure 3: Total disturbed area (square kilometers) classified by the type of disturbance and by year 290 

of acquisition over a ten year period for western Alberta. 291 

 292 

Figure 4: Total disturbed area (square kilometers) classified by type of disturbance and by month of 293 

acquisition over the ten year study period for western Alberta. 294 
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 295 

Figure 5: (A) Percent of individual disturbance events, and (B) as fraction of the area in Grizzly bear 296 

study area from 2001 to 2011. 297 

 298 

Figure 6: Total disturbed area (square kilometers) classified by type and habitat state from 2001-299 

2011. 300 

3.2 Habitat State Attribution 301 

Grizzly bear source (primary and secondary) areas had lower total disturbed area than did 302 

sink areas or non-critical habitat (Figure 6). Primary habitat areas had a total of 672 km2 of 303 

anthropogenic disturbance, and 195 km2 of non-anthropogenic disturbance (2.9% and 0.9% of the 304 

area respectively). Secondary habitat areas had a total of 501 km2 of anthropogenic disturbance 305 

and 104 km2 of non-anthropogenic disturbance (2.7 and 0.6 km2). Primary sink areas had a total of 306 

1,055 km2 of anthropogenic disturbance (5.9% of the area), and secondary sink areas had a total of 307 

658 km2 of anthropogenic disturbance (5.3% of the area). Anthropogenic disturbance is 308 

responsible for 97% of the disturbance in both primary and secondary sink habitats, and 95% in 309 
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non-critical habitats. Figure 7 shows the annual area disturbed in each individual grizzly bear 310 

habitat state. Primary and secondary habitat and primary sinks, showed declining trends in 311 

disturbance area from 2001-2011, except in years 2008 and 2009 which were the highest years of 312 

total disturbance, behind 2002. Between the years of 2001-2005 total disturbed area of both 313 

primary and secondary habitat was 933km2, compared with 539km2 from 2006-2011. Total 314 

disturbed area for both primary and secondary sink areas from 2001-2005 was 1092km2, and from 315 

2006-2011 was 680km2. Both source and sink areas show a decline in the amount of disturbed area 316 

from 2001-2011.  317 

 318 

Figure 7: Total disturbed area (square kilometers) classified by year, for individual habitat states 319 

(primary habitat, secondary habitat, primary sink, secondary sink and non-critical habitat) from 320 

2001-2011. 321 
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4. Discussion 322 

In this paper we analyzed a decade (2001-2011) of forest disturbances in western Alberta 323 

as detected by the STAARCH algorithm for fusion of Landsat TM and MODIS satellite data. A 324 

decision tree classifier was used to attribute individual disturbances to forest harvest, fire, well 325 

sites, or roads and consequently the spatial and temporal patterns of disturbances within the 326 

context of grizzly bear home ranges were examined. While we analyzed a decade of data, 2001 and 327 

2011 were incomplete data sets. 2001 included two time stamps, September 22 and October 8, and 328 

2011 included time steps from the beginning of the study period until July 28.This likely reduced 329 

the total amount of area detected in these years, as well as impacting the monthly proportions over 330 

the entire study period. 331 

Our analysis aimed to detect both anthropogenic and non-anthropogenic disturbances for western 332 

Alberta, as there is no timely, publicly available, comprehensive data source for the region on well 333 

sites, road building and forest harvest activities, derived in a consistent and transparent manner. 334 

The Canadian National Fire Database has publicly accessible historical fire polygons and these were 335 

used to allocate fire attribution on the intersecting STAARCH polygons, regardless of the decision 336 

tree results. Well sites, roads, fires and forest harvests were selected as the critical disturbance 337 

types for observation, as they represent the most common and spatially unique disturbances in the 338 

region. We applied an existing model to attribute the detected disturbances which used a unique 339 

combination of time of disturbance, as well as spatial features of the detected patch. The use of an 340 

automated change detection and attribution framework is an important goal both for remote 341 

sensing scientists as well as natural resource managers as it reduces subjectivity and improves the 342 

timeliness of change data (Stewart et al. 2009). The use of shape and contextual attributes adds 343 

additional dimensions to disturbance patches and evidence from a number of papers supports the 344 

use of shape-based and reflectance-based attributes (Stewart et al. 2009). Our approach which 345 

incorporates the temporal dimension of when the disturbance event occurred throughout the year 346 

is novel. Surface or open pit mining, pipelines, and seismic lines, also exist although these were 347 

omitted from our analysis as mines account for a small proportion of the study area only (0.55 348 

ha/km2; Linke and McDermid 2012). Pipelines and seismic lines were also omitted as they have a 349 

narrow disturbance footprint (Stewart et al. 2009) which cannot be reliably detected in our data 350 

fusion approach.  351 

 352 

The rate and amount of disturbance shows a degree of agreement with other studies. Linke and 353 

McDermid report 0.62% annual rate of change/disturbance comparing well to the observations in 354 
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this paper. Stewart et al (2009) identified similar levels of well site disturbance, but higher levels of 355 

road disturbances over their smaller, more industrial area. Pasher et al. (2013) in a recent study 356 

report 60% of mapped anthropogenic polygons across the whole boreal were cut blocks, followed 357 

by mines (0.9%), oil and gas infrastructure (0.1%), well sites (0.4%). The relative proportions of 358 

anthropogenic disturbances matches well with our finding. Lastly, our results attribute the area of 359 

fire disturbance at rates lower than anticipated likely due to a miss-classification with harvest. In 360 

2003 for example, a significant fire year, the levels of area burnt detected in this study compared to 361 

the large fire database, are much lower; in some cases less than half. This suggests that fire patterns 362 

and size are similar in spatial characteristics to harvest events, a goal of sustainable forest 363 

management objectives in the area. 364 

  365 

Gaulton et al (2011) observed 22% of disturbance events in the first two time stamps of 366 

each year using the STAARCH approach, compared with 23.4 % in this research. This may be a 367 

result of disturbances occurring outside of the study period (November-February) being recorded 368 

in the next cloud free day in the following year. Disturbance peaked in August and September, 369 

corresponding to the driest months of the year making it ideal for resource extraction (Gaulton et 370 

al. 2011). Our results peaked from September to October, with fire disturbance reaching its 371 

maximum in September. Stocks et al. (2003) found that the largest fires in Canada burned in the 372 

months of June and July. The majority of the fires have low value-at-risk and do not require 373 

intensive fire suppression, allowing for large burn areas. However, our research observed a limited 374 

area and did not cover large unsuppressed northern fires (Stocks et al. 2003). 375 

Well sites and roads are subject to omission, due to their small area. STAARCH polygons less 376 

than one hectare in size were not included in the study, as they have a high potential for 377 

misclassification (Hilker et al. 2011) and as a result the number of events and disturbed area is 378 

likely under observed. Expanding the STAARCH polygons to join neighboring polygons resulted in 379 

an increased size of individual disturbance events. Our mean disturbance area was 0.068km2, 380 

compared with 0.034 km2 found by Gaulton et al. (2011) for the same study area. The overall rate of 381 

disturbance was not impacted; we observed 0.35% of disturbed land per year, compared to 0.4% in 382 

Gaulton et al. (2011). 383 

Understanding life history traits and habitat interactions is necessary for creating comprehensive 384 

management plans for species of conservation concern (Franklin et al. 2000). Grizzly bear 385 

represent a long-lived species with expansive home ranges and low reproductive rates, with high 386 
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demand for detailed management plans (Nielsen et al. 2006). We analyze habitat states to examine 387 

if our observations were in line with the model framework and general trends in disturbance rates. 388 

We confirm, as anticipate that higher percentages of anthropogenic disturbances occurs in sink 389 

habitats rather than source habitats. Higher rates of disturbance typically results in increased 390 

probability of human-bear interactions, and subsequent mortality (Nielsen et al. 2004c, 2006, 391 

2008). The overall disturbed area of quality Grizzly bear habitat per year has declined over the past 392 

decade, but resource extraction is likely to expand further into core habitat areas (Schnieder et al. 393 

2003)making human-bear interactions more likely (Nielsen et al. 2004a, 2006). Although 394 

anthropogenic disturbance was higher in sink rather than source areas as expected, sink areas still 395 

represent high quality habitat, but with increased risk of mortality. As the majority of grizzly bear 396 

mortality is human-caused (McLellan et al. 1999, Benn and Herrero 2002), ease of access to quality 397 

habitat areas must be reduced. Disturbances can have lasting impacts on habitats decades after the 398 

disturbance event occurs (Nielsen et al. 2004a) and some anthropogenic land cover changes (well 399 

sites and roads) represent more permanent fixtures on the landscape (Roever et al. 2008). 400 

Decommissioning of resource roads is a management objective that may have the most positive 401 

influence on grizzly bear persistence in Alberta. Understanding the impact of anthropogenically 402 

derived forest edges is another major issue given their attraction to grizzly bear, in particular in 403 

relation to food resources. A number of studies have compared grizzly bear telemetry data and 404 

edges extracted from a combination of satellite-derived land cover data and conventional vector 405 

datasets (roads, pipelines, and forest harvests). Results have demonstrated that in general female 406 

bears selected anthropogenic edges, whereas males selected natural edges and both sexes selected 407 

the natural transition of shrub to conifer (Stewart et al., 2013). Edge metrics could relatively easily 408 

be extracted from remote sensing (Wulder et al., 2009) such as in this decadal dataset, to provide 409 

fine spatial scale information for improving management of edge features and ultimately 410 

minimizing human-bear conflicts (Stewart et al., 2013). The combined use of Landsat and MODIS 411 

imagery can provide both broad scale assessment of disturbance within the major conservation 412 

zones, as well as at the stand scale for edge detection. The overall approach contributes to 413 

identifying areas of grizzly bear conservation concern, and whether or not management practices 414 

can be implemented to reduce attractive sink areas. 415 

 416 

The STAARCH disturbance detection and attribution represents a tool for land managers to 417 

observe changes in habitat area, identify disturbance type and identify areas of conservation 418 

concern for grizzly bears. The ability to identify anthropogenic and non-anthropogenic 419 
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disturbances is important for bear conservation. Anthropogenic disturbances increase the number 420 

of human-bear interactions, by creating access from resource roads into core habitat areas. Human 421 

caused mortality accounts for about 90% of bear mortality in the Rocky Mountains (Benn 1998, 422 

Craighead et al. 1988, McLellan et al 1999), therefore identifying anthropogenic disturbances can 423 

aid in bear management (Nielsen et al. 2004c, Nielsen et al. 2008). Our decade study period has the 424 

potential to be extended to observe Grizzly bear disturbance interaction over long periods. This 425 

would provide land managers with information for making better informed decisions on grizzly 426 

bear protection in Alberta.  427 

5. Conclusion 428 

 In this paper we demonstrate the ability to map and attribute disturbances as detected by 429 

the STAARCH algorithm across the foothills of western Alberta. This is made possible by fusing fine 430 

spatial resolution of Landsat images(30m) with the high temporal resolution of MODIS (bi-weekly) 431 

images, which have lower spatial resolution of 250m. Anthropogenic disturbances (forest harvest, 432 

well sites and road construction) are the most influential disturbances on the landscape of south 433 

western Alberta, in terms of number and area affected. This disturbance has both positive 434 

(increased forage) and negative (increased human-bear interactions) implications on important 435 

grizzly bear habitat. Our research represents a viable monitoring tool for land managers through 436 

quantification the disturbed area while also characterizing the type of disturbance.  437 
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