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Abstract 

In this research, we developed and tested a remote sensing based approach for stand age estimation. 

The approach is based on changes in the forest canopy height measured from a time series of photo-

based digital surface models (DSMs) that were normalized to canopy height models (CHMs) using 

an airborne laser scanning (ALS) derived digital terrain model (DTM). Representing the Karelian 

countryside, Finland, CHMs from 1944, 1959, 1965, 1977, 1983, 1991, 2003 and 2012, were 

generated and allow for characterization of forest structure over a 68-year period. To validate our 

method, we measured stand age from 90 plots (1256 m
2
) in 2014, whereby producer’s accuracy 

ranged from 25.0% to 100.0% and user’s accuracy from 16.7% to 100.0%.  The wide range of 

accuracy found is largely attributable to the quality and characteristics of archival images and intra-

stand variation in stand age. The lowest classification accuracies were obtained for the images 

representing the earliest dates. For forest managers and agencies that have access to long term photo 

archives and a detailed DTM, the estimation of stand age can be performed, improving the quality 

and completeness of forest inventory data bases.  

 

 

Introduction 

Stand age is an important attribute in forestry. Knowledge of stand age is required, for example, to 

make growth predictions, to inform on the timing of forest management operations, such as 

thinnings and renewal cuttings, as well as the maintenance of age diversity across a given forest 

management area. Stand age is also correlated with growing stock volume and biomass (e.g. 

Lehtonen et al. 2004). Additionally, given stand height and age information, site type can be 

estimated by using site index curves (Holopainen et al. 2010c; Véga and St-Onge 2008; 2009). 

 

Stand age can also be determined by borings or counting whorls from sample trees, which each 

being a laborious and time consuming element of field inventories (Bradford et al. 2008; Racine et 

al. 2014; Véga & St-Onge 2008). When using these methods, a conversion factor is required to 

convert age at breast height to a biological age. Stand age can be also determined based on time 

since last disturbance (Bradford et al. 2008) such as stand-replacing fire, wind damage, or clear-cut. 

If the forest area is managed, disturbance or stand renewal information can theoretically be obtained 

accurately from forest information registers if the relevant information on stand establishment or 

stand replacing disturbance has been recorded. Many of these stand age determination 

methodologies include some element of uncertainty or particular limitations. If the stand age is 

obtained using an increment borer, it is often done only for a single sample tree within a stand 

(typical stand sizes varies from 0.5 ha to 15 ha), for which the selected tree age may differ markedly 

from the stand’s mean age. Stand age can only be calculated from the whorls in young pine stands. 

Stand register information can be of variable quality and completeness (e.g. Holopainen et al. 

2010b); with, for example, different methods for the stand age reported in the stand register are 

implemented, including boring, date of renewal cutting, or through a visual inspection.  

 

Forest resource information is increasingly obtained using remote sensing. In many jurisdictions, 

standwise field inventories have been replaced by an airborne laser scanning (ALS) based inventory 

method in which forest inventory attributes are statistically predicted for the area of interest 

(Hyyppä et al. 2008; Næsset et al. 2004). Field information need only be collected for sample plots 

that are used to create predictive models. The predictive models from the co-located sample plots 

and grid-based summaries of the ALS data allow for area-wide mapping of forest attributes. Stand 

information is summed from the grid cells when required (White et al. 2013a). To extend the 

attribute set available from ALS and remote sensing, there is interest in the development of new 

methods for obtaining stand age at the grid cell resolution (Holopainen et al. 2014; Racine, et al. 



2014). There is an asymptotic relationship between stand age and remotely sensed spectral variables 

(Niemann 1995). Younger stands, prior to crown closure, can be characterized with some success; 

older, more mature stands remain problematic (Duncanson et al. 2010). Time series of satellite data 

can offer a means for capturing change and reporting time since disturbance (Croft et al. 2014; 

Kennedy et al. 2009) that could be further used in the estimation of the stand age (Bradford et al. 

2008).  ALS provides accurate direct measures of tree and stand height (Hyyppä et al. 2012). The 

link between tree and / or stand age with measured heights has shown promise, but is also quite 

variable due to variations in forest management, site fertility and other growing conditions, such as 

climate, water and light availability often confounding this inference (Kalliovirta & Tokola 2005; 

Racine et al. 2014; Véga & St-Onge 2009). For example, Kalliovirta and Tokola (2005) developed 

models for predicting tree age using field measured tree height and crown diameter as predictors. 

The predictors were selected in a way that those could be measured using aerial images or ALS. 

The root mean squere errors (RMSEs) of the developed models varied between 9.2% and 12.8% 

(6.1-7.5 years) depending on the used predictors and tree species.  

 

While dependent upon the nature of forest management practices being implemented, when using 

predictive question that require site index, errors of 5 years have been demonstrated to dramatically 

influence the predicted site type (Holopainen et al. 2010c) and modeled outcomes. When using site 

type in forest management planning calculations (e.g., growth prediction and renewal cutting 

optimization) errors in stands age should be minimized to decrease uncertainty in decision making 

(Holopainen et al. 2010a; Holopainen et al. 2010d). Thus, the current stand age predictions are often 

considered to be too uncertain to be of practical value in forest management (Maltamo et al. 2009; 

Racine et al. 2014). 

  

ALS or aerial stereo-imagery can be used to create digital surface models (DSMs; White et al. 

2013b). Besides the characterization of above found vegetation, ALS pulses are capable of 

penetrating through vegetation to the ground surface enabling accurate characterization of ground 

height and the production of accurate digital terrain models (DTM). Due to occlusion and 

shadowing, stereo-imagery is not as well suited and capable of mapping ground height in forested 

areas (Vastaranta et al. 2013). However, in conjunction with detailed ALS-derived DTM, DSMs 

created with stereo-imagery can be normalized to represent tree heights (White et al. 2013b). The 

ALS-derived DTM provides the baseline ground measurement, with the stereo-image derived DSM 

capturing the upper canopy envelope.  Improved automatic stereo-image processing, openly 

available historic image archives and ALS-based DTMs have enabled production of time-series of 

canopy height models (CHMs) retrospectively (via differencing of the baseline DTM with the 

photo-derived DSMs). This kind of time-series is well suited to capturing forest structural 

development over time and is based on assumption that the ground level has remained largely 

unchanged over time, which is a reasonable assumption for most regions. Locations with more 

variability in terrain where landslides, slumping, or other geomorphic or geological considerations 

may be present would require additional attention/consideration prior to implementation.    

 

Fujita et al. (2003) and Itaya et al. (2004) analyzed canopy gap dynamics and height changes over 

32-years in an old-growth evergreen broadleaved forest in Japan. They used measurements from a 

transit compass and global navigation satellite system (GNSS) to obtain ground elevation and aerial 

photographs to create DSMs and further CHMs with a spatial resolution of 2.5 m for four different 

points in time. With a detailed ALS derived DTM, similar time-series of CHMs were generated 

over 58-years by Véga and St-Onge (2008). Véga and St-Onge (2009) further used CHM-derived 

time-series for mapping of site index and age by linking multitemporal CHM information with 

growth curves. In forestry, besides canopy dynamic studies and estimation of site index, there are 

possibilities for practical applications in many cases only possible based upon time series of canopy 



height information derived from historical photo archives. Looking forward, many jurisdictions are 

periodically collecting ALS data and on a more regular basis continue to obtain aerial images 

providing the source information for time-series generation and novel applications in the future. 

 

In this research, we developed and tested an approach for stand age estimation using a combination 

of ALS-derived DTM and DSMs created using photos from an image archive. Our approach is 

based on determining time since last disturbance, which in managed boreal forest conditions found 

from Finland, this is usually equal to time since stand renewal via clear-cut harvest. Availing upon 

existing photo archives, we produced multiple photo-based CHMs to map the time of the stand 

renewal and used that information for stand age classification. Our hypothesis was that stand 

renewal result in a dramatic contrast in the height metrics calculated from the CHM and that the 

change reveals the date of renewal. Our time series included CHMs from eight different time 

periods between 1944 and 2012.  

 

Materials and Methods 

Study area and sample plot measurements 

 

The study area covered 37.8 km
2
 in the Palokangas, Ilomantsi, found in the eastern corner of 

Finland (62°53′N, 30°54′E, Figure 1). Dry to dryish forest site types dominate the region. Scots 

Pine (Pinus Sylvestris L.) is the most common tree species in the area.  

The ground plots were sampled using existing stand register information that was obtained from 

Tornator Oyj (Imatra, Finland). The information had been collected using stand wise field 

inventory, with procedures following Koivuniemi and Korhonen (2006).  The sampling was 

targeted to Scots pine-dominated stands with a maximum stand age of 70 years (i.e., stand 

established in 1944), growing in productive forest land, (i.e., the volume growth was at least 1 m
3
 

ha
-1

 per year). The stands were divided to three strata (5–25, 26–50, and 51–70 years) to distribute 

plots roughly over representative age classes. Then, circular plots with a radius of 20 meters (1256 

m
2
), were established at the geometric centroid of the selected stands.  

In total, 90 plots were measured in the field. The field measurement campaign was carried out in 

August of 2014. The field plots were located with a hand held GNSS device (Trimble Pro 6T 

receiver) and the locations were post-processed using virtual reference station data. The forest site 

type following Cajander (1926) was defined for all the plots, and most of the plots (84 of 90) were 

located in dry or dryish site types. Stand age at the breast height was measured by boring a tree 

representing the dominant canopy layer and counting annual rings to determine age. As an 

exception, in young pine stands age was estimated by counting whorls following standard 

measurement practices for small trees. Established conversion factors were added to convert age at 

breast height to biological age. In the study area, the conversion factors used varied from 13 years 

to 20 years depending on the site type (Heikkilä et al. 2011). 

We also collected a sample to evaluate the intrastand variation in the age. For this purpose 24 plots 

were systematically sampled out of 90 plots and five trees per sample plot were measured; one tree 

from the center of the plot and the other trees from 20 meters to every cardinal direction from the 

sample plot center. In 12 out of these 24 plots, stand age was measured by boring and in 12 plots, 

stand age was measured from whorls, based upon the maturity of the trees present.  



 

Figure 1. Study area and location of the sample plots on an aerial image (Copyright for aerial 

images: National Land Survey of Finland©). 

 

Airborne images 

 

The airborne images covered a time interval from 1944 to 2012. A digital camera was used in the 

2012 collection, with film cameras used for the rest of the image time series. The images were 

mostly panchromatic and collected in June and July (leaf-on) at altitudes varying from 4 km to 8 

km. All of the images were originally collected for national level topographic mapping by the 

National Land Survey of Finland (NLS) (data sets of 1977, 1983, 1991, 2003, and 2012) and the 

Finnish Defense Intelligence Agency (data sets of 1944, 1959, and 1965). The NLS is currently 

scanning the entire historical image archive in Finland. From year 2000 Leica DSW 

photogrammetric scanners have been used. Scanning pixel size was 15 µm or 20 μm, providing 

ground sample distances (GSDs) of 0.45-0.88 m. Further details of the image blocks are given in 

Table 1 and 2.  

 

Table 1. Details of the image blocks used. FH: Flying height above the average ground level; FD: 

major flight direction: NS=North-South, EW=East-West; Overlaps: p=forward overlap; q=side 

overlap 

 

Table 2. Camera information. FOV: image field of view at format corner. 

 

Digital terrain model  

 

An ALS-derived digital terrain model (DTM) with a one meter horizontal grid resolution was 

available for the study area. The DTM was based on ALS data that was acquired for research 

purposes in October 2008 with a Leica ALS50-II SN058 laser scanner (Leica Geosystem AG, 

Heerbrugg, Switzerland). The data acquisition parameters include: flying altitude of 500 m at a 

speed of 80 knots, 30 degrees field of view, pulse rate of 150 kHz, scan rate of 52 Hz, laser 

footprint size of 0.11 m, and pulse density of 20 pulses per m
2
. The DTM was processed from the 

point cloud using standard approaches, with ALS data first classified into ground or non-ground 

points allowing for DTM creation using the classified ground points (Axelsson 2000).  

 

General methodological workflow 

 

To summarize, the aim is to classify forest stand age by using a time series of image-based DSMs 

(from archival air photos) and a single time-point DTM (from ALS). DSMs were processed from 

aerial images and normalized to CHMs using the DTM. To derive DSMs from image archives an 

automatic processing chain was developed by Nurminen et al. (2015). In this process, initially the 

interior and exterior orientation of the images is determined. Then images are matched to produce 

DSMs. Then, specific to our approach, forest stand age was then determined by searching the time 

series for the change point where the height of the stand changed notably revealing the occurrence 

of a stand replacing disturbance. Finally, we evaluated stand age classification accuracy using field 



measured stand age data as a reference. In addition, the field measured stand age data was visually 

verified from the images further increasing the accuracy of the reference.  

 

Processing of the aerial imagery 

 

We used the BAE Systems SOCET SET V5.6.0 software (Walker 2007) to implement the required 

photogrammetric production environment. For initial values of exterior orientation in the most 

difficult cases, VisualSFM software (Wu 2013; Wu et al. 2011) was used. In addition some in-

house software was used (for details, see Nurminen et al. 2015).  

 

Interior orientation 

 

The interior orientation is the transformation between the image measurement coordinate system 

and the camera coordinate system. The required information for performing this transformation is 

generally provided in a camera calibration certificate. In our case, the required information was 

available for the images acquired since 1965. For the recent images obtained by digital camera this 

transformation is considered constant for each image related to the same camera calibration. For the 

interior orientation, we used the affine model as the geometric transformation model. The residuals 

of the affine model were less than 10 microns for all the image blocks except for the image block 

captured in 1944 (~40 microns).  

 

Exterior orientation 

 

Exterior orientation means the location of the image projection center and the rotations of the image 

plane with regards to the chosen ground coordinate system. VisualSFM software (Wu 2013; Wu, et 

al. 2011) was used for the initial exterior orientation of image blocks that did not have accurate a 

priori exterior orientations and camera calibrations (1944 and 1959 images). With only five 

interactively measured GCPs these image blocks were transformed to Finnish ETRS-TM35FIN 

N2000 coordinate system. Later, additional GCPs were interactively measured for these two earliest 

image blocks in SOCET SET software. For 1965, 1977, 1983, 1991, and 2012 datasets an 

interactive procedure was used to determine a priori orientations. The approximate horizontal image 

locations were measured from open topographical data or using a calculated planar rectification. For 

the 2003 image set approximate exterior orientations were available. Then automatic tie points and 

the required GCPs were measured before bundle block adjustments. Finally, self-calibrating bundle 

block adjustments were calculated. Based on quality statistics of bundle block adjustment, RMS-

errors of the GCPs varied between 1.4 m-1.9 m in XY and 1.0 m-2.1 m in Z in image blocks 1944, 

1959 and 1965. After 1977 the RMS-errors of the GCP were found to have dropped and were in 

general between 0.5 m and 1.0 m. 

 

DSM generation 

 

DSMs with 1 m resolution were generated by image matching using an area based matching method 

and a matching strategy suitable for finding spatial agreement in an environment with large height 

differences, such as forest. At maximum, three image pairs per point were used. Accuracy of the 

DSMs was evaluated using ALS DTM where roads are present. The standard deviation of heights 

varied from 0.4 m (2012) to 1.6 m (1944) in road surfaces (width >3m) indicating a proportional 

height error of approximately 0.2–0.25‰ of the flying height for the older blocks and 0.1‰ or 

better of the flying height for the new blocks (since 1977). These results are consistent with the 



expected level of accuracy for photogrammetric elevation measurements (Kraus 1993). CHMs were 

generated by subtracting the DTM from DSMs. 

 
Stand age determination using time series data 

We developed a method that uses the year of discernable previous clear-cut to determine the stand 

age. The most common stand renewal method has been a clear-cut in Finland since the 1950’s 

(Jalonen & Vanha-Majamaa 2001). After the harvest, following national regulations for sustainable 

forest management, the forest is to be regenerating naturally or via artificially (cultivation, planting) 

intervention within the next three to five years according to Finnish Forest Act (1996). Detailed 

CHMs provide information from the canopy structure and related development and change 

(Vastaranta et al. 2013). Under non-disturbed stand growth conditions, the CHM-derived stand 

mean and maximum height would generally show small positive changes. In boreal forest 

conditions, especially in our pine-dominated study area, CHM minimum values originate from the 

ground surface. The standard deviation of the heights would also increase as the height of the trees 

increases, with observations originating from the ground and from the tops of trees. Clear-cut of the 

stand would, as such, result in an abrupt decrease in both mean and maximum heights; additionally, 

a decrease in the standard deviation of the heights should also be detectable.  

 

Hence, to determine stand age, we used a stepwise procedure with the CHM time series data. 

Descriptive height statistics were calculated for sample plots (1256 m
2
) using the CHMs. Statistics 

included minimum, maximum, mean, and standard deviation of the CHM (Table 3) for all the 

stands and for all the time-points. Overall, our data included eight stand age classes (Table 4) that 

were defined by acquisitions of the various epochs of images available. In our approach, we iterated 

through the CHM-derived metrics (mean, max, std) and determined the time-interval of the clear-

cut as follows: 

1) Height metricTn-Height metricTn+1 > Threshold1, and     

2) Height metricTn+1 < Threshold2.   

For example, if CHM-derived maximum height in 1983 is 20 m and 1m in 1991, it means there is 

decrease of 19 m in height between the years indicating a notable change. An additional criterion 

(2) was added to ensure that the canopy height decreased below a given threshold height. Then 

independent optimal threshold values that maximized stand age classification accuracy were 

selected for mean, max, and std of CHM values. The accuracy of the stand age determination was 

evaluated using the aforementioned field measurements and reported in a contingency table. 

 

Table 3. Descriptive statistics of the height metrics extracted from CHM time series for 90 sample 

plots (1256 m
2
).  

 

Table 4. Stand age classes 

 



Results 

Stand age determination in the field 

 

Based on our field measurements, the stand ages varied from 5 to 94 years (mean = 38 years, 

standard deviation = 24.7 years). The number of stands within each stand age class varied with only 

two stands found to be regenerated between 1944 and 1959 compared with 28 stands that were 

regenerated between 1991 and 2003. The accuracy of our stand age field measurements was 

assessed by measuring stand age from 5 sample trees per plot and analyzing the variation and range 

in stand age measurements. Standard deviation of the stand age measurements within sample plots 

was 5.1 years and the average range was 12.3 years. In sample plots where stand age was measured 

by counting whorls, stand age was on average 40.0 years. Standard deviation of the stand age 

measurements within sample plots was only 2.0 years as the average range was 4.7 years indicating 

these stands have a more homogeneous age structure which is presumable within this rather limited 

stratum (i.e. this technique is only possible in relatively young pine stands). We compared the stand 

age information from the existing stand register to our stand age measurements. On average, stand 

age obtained from the register was three years younger with standard deviation of 12 years. 

However, the range of errors was ±25 years in general, indicating large variation in stand age 

accuracy (Figure 2). In addition, we visually verified the time of the renewal. During that process, 

we altered age class of 25 stands.     

Figure 2. Differences between the field-measured stand age and stand age obtained from existing 

stand register. 

 

Stand age classification using time series data 

 

CHM time series data was used to determine time of the previous clear-cut and consequently stands 

age class. In figure 3, stand height development in example stands is presented using the time series 

information. The best overall classification accuracy was 78.9% and it was obtained using changes 

in maximum heights (Figure 4, Table 5). Optimal parameter values for threshold1 and threshold2 

were 5-6 m and 11 m, respectively. In other words, the best classification accuracy was obtained 

when stand maximum height was decreased by at least 5 meters between Tn and Tn+1 and maximum 

height was below 11 meters at Tn+1. In general, it should be noted that the accuracies obtained with 

changes in standard deviations or mean heights were only slightly lower. There was a wide range in 

accuracy between the stand age classes.  Producer’s and user’s accuracies varied from 25.0% to 

83.3% and 16.7% to 83.3% in stands that were regenerated before 1991. Stands that were renewed 

after 1991 were all classified correctly. With our approach, mapped stand age classes generally 

followed current stand boundaries. This partly indicates within stand age variation caused by, for 

example, seed tree or shelterwood cuttings (Fig. 5).  

 

Figure 3. Two examples of the CHM time series data. On the left side the plot has been harvested 

1994 according the field measurements and the level of CHM have clearly lowered between 1991 

and 2003. On the right side the plot represents a typical error in the analysis before visual 

verification, as the clear-cut was determined to have occurred in 1958 by field measurement, but the 

CHM data clearly points out that a clear-cut was done between 1959 and 1965.  

 

Figure 4. Age classification using height statistics derived from CHM. 



 

Table 5. The age classification matrix using the image time-series.  The stand regeneration time 

was defined using change statistics derived from CHM. Here, stand regeneration was defined using 

following parameters: Stand maximum height was decreased at least 5 meters between Tn and Tn+1 

and maximum height was below 11 meters at Tn+1. 

 

Figure 5. Example of the mapped stand age classes using time series of photogrammetrically 

derived DSMs. Aerial image from 2012 on the background (Copyright for aerial images: National 

Land Survey of Finland©). 

 

Discussion 

 

Remote sensing is commonly used to collect information over vast forest areas. Stand age is an 

important forest characteristic for many management applications although it is known to be 

challenging to estimate without field visits (e.g., Maltamo et al. 2009; Holmström et al. 2010; 

Racine et al. 2014). Following the developed time-series method herein, we obtained an overall 

classification accuracy of 78.9% using changes in maximum heights. Considerable variation in 

accuracy was detected between the stand age classes.  Stands that were renewed after 1991 were all 

correctly classified. When estimating age of the older stands, far lower classification accuracies 

were obtained. Presumably lower classification accuracies are caused by two main reasons. Firstly, 

the quality of the old archived images is lower than in ones that are currently in use; this impact 

diversely to the quality of DSMs and automatic interpretation. The lower image quality is seen as 

poorer contrasts, higher noise levels and greater geometric distortions and it is due to poorer quality 

of cameras, film used, and overall systems utilized in historic data as well as due to the distortions 

in films due to ageing (Nelson et al. 2001; Nurminen et al. 2015). Secondly, our ground reference 

age obtained by boring a single tree, includes more uncertainty, because annual growth rings are 

more challenging to measure. However, the effect of this error source was reduced by visual 

interpretation of the images.  The time between the image acquisitions varied from 6 to 15 years. 

From the two thresholds used, threshold1 is affected by the time span. We also tested height changes 

per year (detected change normalized by number of years), but it did not improve the classification 

accuracies. We assume that has to be due to rather robust parameters: Threshold1 determines simply 

that there has to be a decrease in the canopy height. Then threshold2 determines that the height of 

the canopy must be below certain height limit.    

 

Looking forward, many jurisdictions report intentions and programs to continue to collect digital 

photography on a regular and increasingly routine basis (Holopainen et al. 2014). In these cases 

time-series-based stand age determination could be applied.  With narrow time-windows between 

the image acquisitions, stand age can be presumably estimated with accuracy improving the forest 

inventory, management, and planning. Considering that the image acquisition time-interval was ~10 

years and first images were acquired in 1944 in our data, the obtained accuracy (78.9%) is still 

comparable with other remote sensing based age estimates that have been obtained with aerial 

images (Holmström et al. 2010) or single time point ALS (Maltamo et al. 2009; Racine, et al. 

2014). Holmström et al. (2010) used interpretation of aerial photographs and nearest neighbor 

estimation to predict stand age and obtained 15% RMSE at the stand level. Maltamo et al. (2009) 

predicted stand age using national forest inventory sample plots and ALS data using k-MSN 

imputation approach. The RMSEs for Scots pine and Norway spruce at the plot and stand level was 

found to vary from 16.7 years to 23.5 years, respectively. Racine et al. (2014) predicted stand age 

using ALS-derived forest structural variables (e.g., height metrics, penetration of the laser pulses) 



and site attributes (e.g., elevation, slope, and aspect) as predictors in nearest neighbor imputation. 

The stand prediction error obtained was less than 10 years (RMSE 19%) indicating that forest 

height is well correlated with stand age although there remains some level of uncertainty.  

 

Nurminen et al. (2015) demonstrated that with historical (i.e., before 1960) imagery, it is difficult to 

achieve a DSM accuracy level common to modern large-format aerial cameras. However, following 

a thorough self-calibration during the bundle block adjustment and by carefully reconstructing the 

missing camera calibration, it was possible to obtain forest canopy height information of a feasible 

quality; the height errors in well-defined targets were 0.3–0.9 m for the datasets collected since 

1970 and for the older datasets, they were 1–2 m. These values indicated a proportional height error 

of approximately 0.2–0.25‰ of the flight height for the older blocks and 0.1‰ of the flight height 

or better for the new blocks. Detailed DTMs have been available only since ALS has become 

common in the 2000’s (Hyyppä et al. 2008; Hyyppä et al. 2009; Wulder et al. 2013). Thus, when 

obtaining retrospective canopy heights from DSM time series, one must assume that ground level 

has remained largely unchanged over time.   

Defining stand origin can be challenging and cause uncertainty to stand age estimation. There are 

many definitions in use and it depends on the information need. In Finland, forests have to be 

regenerated after the cutting using natural or artificial (cultivation, planting) methods within three to 

five years following harvest according to the Finnish Forest Act (1996). Thus, if the time of the 

previous cutting can be mapped, it can be used to determine stand age rather accurately, as we have 

demonstrated, especially so in younger stands.  This finding cannot be generalized to the other areas 

with different forest management practices. However, on the other hand, time-series of CHMs can 

be also used to map time when a canopy height reaches some predefined threshold and that can be 

used as stand origin after adding some conversion factor respective to the age at the breast height 

conversion factors.  

 

Following common practices, stand age was measured using an increment borer with reference 

measures obtained by boring a single dominant tree. The correct age class was further ensured by 

visual interpretation of the imagery, because in some stands, the reference stand age did not agree 

with the drastic decrease in CHM (e.g., Figure 3 right panel). It is also noted that we measured 

within stand variation of 5 years (Std) and range of 12 years in age. In addition, a conversion factor 

was added to convert age at the breast height to biological age. This may also cause some 

uncertainty. In our approach, stand age was defined as a time since last disturbance.  Bradford et al. 

(2008) aimed to determine the relation between the time since disturbance and measured tree age 

(boring). They concluded that in mainly natural, sub-alpine forest located in the Southern Rocky 

Mountains, observed tree age was poor predictor for time since disturbance. However, the forest 

management and the stand renewal patterns in Finland are far more controlled. In our case, it was 

safe to assume that the disturbance was always a clear-cut and new stand was established only few 

years after the cutting which is determined by common practice and enforced by Finnish forest 

legislation. During the visual verification from the imagery, we detected only two other 

regeneration systems than clear-cuts (shelterwood cuttings). Both of these stands were misclassified 

by our approach.  

 

The method was validated using sample plots (1256 m
2
) from which the stand age were obtained as 

well. In other words, the validation resolution was already at “sub-stand level”, but coarser that 

what is currently used when forest inventory attributes are predicted using ALS data and field plots. 

When ALS-based forest inventory is applied in Finland, the prediction resolution is 256m
2
. 

However, our method is not depended on stand boundaries and can provide thematic maps of stand 

age to be used with other forest attribute maps in forest management.  



 

We used small scale airborne image archives in our investigation, which are available since World 

War II in many developed countries. The interesting aspect with the small scale data is that it is 

possible to provide DSM time series covering entire countries and over large areas, providing the 

presence of ALS data for DTM generation. Larger-scale materials are also available (Korpela 2006; 

Véga & St-Onge 2008; 2009); these images provide improved height accuracy, but their areal 

extent is not in most cases as large as of the small-scale archives. Satellite imagery, such as from 

Landsat, can provide dense time series change information over large areas and may prove 

compatible with our approach to offer additional disturbance information to support the mapping of 

time since disturbance.   

For forest managers and agencies that have access to long-term photo archives and a detailed DTM, 

the estimation of stand age can be performed using time-series characterizations of canopy height, 

improving the quality and completeness of forest inventory data bases. The utility of the time-

series-based forest stand age determination is dependent on time interval and quality of the images 

available. In addition, accuracy is affected by forest management practices such as practices and 

regulations associated with ensuring post-harvest regeneration.  Based on our analyses, aerial 

images acquired after 1991, provided accurate stand age classifications.  
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Figures 

 

Figure 1. Study area and location of the sample plots on an aerial image (Copyright for aerial 

images: National Land Survey of Finland©). 

 



 

 

Figure 2. Differences between the field-measured stand age and stand age obtained from existing 

stand register. 

 

 

Figure 3. Two examples of the CHM time series data. On the left side the plot has been harvested 

1994 according the field measurements and the level of CHM have clearly lowered between 1991 

and 2003. On the right side the plot represents a typical error in the analysis before visual 

verification, as the clear-cut was determined to have occurred in 1958 by field measurement, but the 

CHM data clearly points out that a clear-cut was done between 1959 and 1965.  

 

 



 
 

Figure 4. Age classification using height statistics derived from CHM. 

 

 

 

Figure 5. Example of the mapped stand age classes using time series of photogrammetrically 

derived DSMs. Aerial image from 2012 on the background (Copyright for aerial images: National 

Land Survey of Finland©). 

 

 

 

 

 



 Tables: 

Table 1. Details of the image blocks used. FH: Flying height above the average ground level; FD: 

major flight direction: NS=North-South, EW=East-West; Overlaps: p=forward overlap; q=side 

overlap 

 

Date of 

flight 
Scale FD 

Overlaps 

p;q (%) 
GSD (m) Camera 

13.7.1944 1:30K EW 
67, 38 

0.45 
Zeiss-Aerotopograph  

RMK HS 1824 

22.7.1959 1:40K NS 
67, 36 

0.62 
Zeiss-Aerotopograph  

RMK HS 1818 

27.7.1959 1:40K NS 
 

0.61 
Zeiss-Aerotopograph  

RMK HS 1818 

4.6.1965 1:60K NS 
79; - 

0.88 
Carl Zeiss Oberkochen  

RMK 15/23 

11.6.1977 1:31K EW 59; 39 0.47 Wild Heerbrugg RC10 

5.6.1983 1:31K EW 63; 25 0.45 Wild Heerbrugg RC10A 

29.7.1991 1:31K EW 70; 22 0.63 Wild Heerbrugg RC20 

7.6.2003 1:31K NS 65; 29 0.62 Wild Heerbrugg RC20 

16.7.2003 1:31K NS  0.62 Wild Heerbrugg RC20 

14.6.2012 1:75K NS 
60; 30 

0.45 
Vexcel Imaging 

UltraCam Xp 

 

 

Table 2. Camera information. FOV: image field of view at format corner. 
Camera name Lens; f (mm) Image format 

(cm) 

FOV; 

+/-°   

FMC Lab. 

Calibration 

Zeiss-

Aerotopograph 

RMK HS 

1824 

ORTHOMETAR; 

204.53 

18×18 32 No NA 

Zeiss-

Aerotopograph 

RMK HS 

1818 

TOPOGON; 

100.00 

18×18 52 No NA 

Carl Zeiss 

Oberkochen 

RMK 15/23 

PLEOGON; 

152.45 

23×23 37 No 1st January 

1963 

Wild 

Heerbrugg 

RC10 

NAG II 

213.57 

23×23 28 No 23rd 

February 

1976 

Wild 

Heerbrugg 

RC10A 

NAG IIA 

214.08 

23×23 28 No 10th 

February 

1983 

Wild 

Heerbrugg 

RC20 

NAGA-F 

214.10 

23×23 28 Yes 5th May 

1990 

Wild 

Heerbrugg 

RC20 

UAGA-F 

153.03 

23×23 37 Yes 21st January 

2002 

Vexcel 

Imaging 

UltraCam Xp 

100.50 6.786×10.386 32 Yes 18th 

October 

2011 

 



Table 3. Descriptive statistics of the height metrics extracted from CHM time series for 90 sample 

plots (1256m
2
).  

Year Height metric Mean Sd Median Min Max 

1944 

Min -3.5 1.3 -3.4 -9.6 -1.4 

Max 9.9 4.1 9.7 2.5 19.9 

Mean 0.9 1.9 0.4 -1.8 9.1 

Sd 2.1 1.2 1.7 0.7 6.0 

1959 

Min -2.7 3.3 -2.4 -21.1 5.0 

Max 13.0 4.7 14.0 1.4 22.5 

Mean 4.3 3.5 3.5 -0.7 15.3 

Sd 2.9 1.4 2.7 0.5 7.4 

1965 

Min -2.9 1.9 -2.8 -6.5 3.1 

Max 10.5 5.4 10.9 1.3 21.7 

Mean 3.2 3.4 2.6 -0.9 13.1 

Sd 2.4 1.4 2.1 0.5 6.5 

1977 

Min -2.6 2.4 -2.1 -12.0 3.1 

Max 8.7 6.1 8.3 0.6 21.7 

Mean 2.5 3.4 1.0 -1.0 13.1 

Sd 1.9 1.4 1.5 0.2 5.3 

1983 

Min -2.3 2.9 -1.9 -20.3 9.0 

Max 9.0 7.1 6.5 0.6 24.0 

Mean 2.4 4.3 0.7 -0.4 18.1 

Sd 1.8 1.7 1.0 0.2 5.9 

1991 

Min -0.3 3.0 -0.2 -6.3 16.5 

Max 12.2 7.0 10.9 0.6 25.5 

Mean 6.4 5.0 5.1 -0.6 20.2 

Sd 2.5 1.9 1.8 0.2 7.7 

2003 

Min -0.6 2.5 -0.9 -4.6 12.1 

Max 8.0 6.5 8.6 0.1 21.6 

Mean 3.2 4.1 1.1 -0.5 15.2 

Sd 1.8 1.7 1.2 0.1 7.6 

2012 

Min 0.0 1.9 -0.1 -7.6 8.2 

Max 8.7 5.9 8.8 0.7 20.1 

Mean 4.1 4.1 2.1 0.2 13.1 

Sd 1.6 1.4 1.3 0.1 5.1 

 

 

 

 

 

 

 



Table 4. Stand age classes   

Stand age class Regenerated 
Stand age range in our data 

based on boring 
Number 
of stands 

0 Before 1944 74-94 4 

1 Between 1944 and 1959 56-60 2 

2 Between 1959 and 1965 50-55 27 

3 Between 1965 and 1977 42-49 7 

4 Between 1977 and 1983 32-37 5 

5 Between 1983 and 1991 26-31 6 

6 Between 1991 and 2003 12-22 28 

7 Between 2003 and 2012 5-10 11 

 

 

 

Table 5. The age classification matrix using the image time-series.  The stand regeneration time 

was defined using change statistics derived from CHM. Here, stand regeneration was defined using 

following parameters: Stand maximum height was decreased at least 5 meters between Tn and Tn+1 

and maximum height was below 11 meters at Tn+1. 

 

  Predicted             Row Total 

Ground 
reference 

-1944 
1944-
1959 

1959-
1965 

1965-
1977 

1977-
1983 

1983-
1991 

1991-
2003 

2003-
2012 

Producer's 
accuracy, % 

-1944 1 0 0 0 3 0 0 0 
4 

25 

1944-1959 1 1 0 0 0 0 0 0 
2 

50 

1959-1965 4 2 17 2 1 0 0 1 
27 

62.9 

1965-1977 
0 0 0 

7 0 0 0 0 
7 

      100 

1977-1983 
0 0 0 3 1 1 0 0 5 

                60 

1983-1991 
0 0 0 1 0 5 0 0 6 

                83.3 

1991-2003 
0 0 0 0 0 0 28 0 28 

                100 

2003-2012 
0 0 0 0 0 0 0 11 11 

                100 

Column Total 6 3 17 13 5 6 28 12 90 

User's accuracy, 
% 

16.7 33.3 100 53.8 20 83.3 100 100   

 

 

 




