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Abstract 

Natural disturbances such as wind are known to cause threats to ecosystem services as well as 

sustainable forest ecosystem management. The objective of this research was to better understand 

and quantify drivers of predisposition to wind disturbance, and to model and map the probability of 

wind-induced forest disturbances (PDIS) in order to support forest management planning. To 

accomplish this, we used open-access airborne LiDAR data as well as multi-source national forest 

inventory (NFI) data to model PDIS in southern Finland. A strong winter storm occurred in the study 

area in December 2011. High spatial resolution aerial images, acquired after the disturbance event, 
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were used as reference data. Potential drivers associated with PDIS were examined using a 

multivariate logistic regression model. The model based on LiDAR provided good agreement with 

detected areas susceptible to wind disturbance (73%); however, when LiDAR was combined with 

multi-source NFI data, the results were more promising: prediction accuracy increased to 81%. The 

strongest predictors in the model were mean canopy height, mean elevation, and stem volume of the 

main tree species (Norway spruce and Scots pine). Our results indicate that open-access LiDAR 

data can be used to model and map the probability of predisposition to wind disturbance, providing 

spatially detailed, valuable information for planning and mitigation purposes.  

  

KEYWORDS: wind damage, LiDAR, National Forest Inventory, Landsat, forest mensuration, risk 

modelling, open access 

 

Introduction 

Boreal forests are seen as complex and dynamic ecosystems (Drever et al 2006; Kuuluvainen 2009) 

where disturbances are a major process modifying forest structure and composition increasing 

heterogeneity, thus biodiversity (Kuuluvainen et al. 1998; Lewis & Lindgren 2000; Franklin et al. 

2002; Kuuluvainen 2002; Rouvinen et al 2002; Levin 2005). Natural disturbances in forests appear 

in different forms, as abiotic (storm, drought, frost, snow, fire) or biotic agents (pest insects, 

diseases, mammals) (Dale et al. 2001; Fleming et al. 2002), and are seen as impediments to the 

productivity of managed forests (Quine 1995; Lyytikäinen-Saarenmaa & Tomppo 2002; 

Lyytikäinen-Saarenmaa et al. 2006). On the other hand, current forest management procedures may 

deteriorate the resilience of managed forest ecosystems to disturbances (Holling 2001). As ensuring 

biological biodiversity is one of the goals in modern sustainable forest management (Lindemayer & 

Franklin 2002), it has been suggested (Kuuluvainen 2009) that development of new forest 

management approaches (Vanha-Majamaa et al. 2007) is needed. Moreover, these practices would 

maintain heterogeneity and biodiversity which are related to the disturbance resiliency of managed 

forest, a quality which may become even more important as a result of climate change and 

associated changes in disturbance regimes (Westerling et al. 2006; Seidl et al. 2011; Seidl et al. 

2014).  

 

Wind was the most significant abiotic factor causing losses in forest yield in Finland in 2012 (Heino 

& Pouttu 2013). During the summer of 2008, wind storms resulted in the loss of more than 8,1 

million m
3
 of wood from Finnish forests, which equals approximately 15% of the annual cut in 

Finland (Finnish Forest Research Institute 2010). During storms in the winter of 2011, 3,5 million 

m
3
 of wood were damaged, having an estimated value of 120 million euros (Ministry of Agriculture 

and Forestry 2011). Since most of the forests in Finland are owned by private forest owners, losses 

of this magnitude have an impact on those who depend on their forest holdings for their livelihood. 

Forsell and Eriksson (2014) studied the influence of wind disturbance susceptibility on strategic 

forest management planning on a large forest estate (~1200 ha). When susceptibility was taken into 

account in forest management planning simulations, a slight increase (< 2%) in net present value 

was obtained. In order to prevent pest outbreaks and protect forest value, Finnish forest regulations 

require forest owners to remove damaged trees if the volume of damaged timber exceeds a 

designated threshold (Metsälaki 1996; Metsäasetus 2010). 

 

Wind disturbance also impacts those who rely in Finland’s electricity network. Power line networks 

are owned and maintained by electricity companies who are responsible for providing electricity to 

households connected to their networks. When electricity is unavailable, these companies must 

compensate customers. Wind damage is the main reason for interruptions in the supply of 

electricity, thus costs to electricity providers have increased in recent years (Finnish Energy 
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Industries 2013).  

 

Airborne scanning light detection and ranging (LiDAR) is an efficient remote sensing tool for 

spatially accurate stand- and tree-level forest mapping applications. Airborne LiDAR-based 

mapping applications that are now in operational use were developed during the last 15 years 

(Hyyppä & Inkinen 1999; Næsset 2002; McRoberts et al. 2010; White et al. 2013; Wulder et al. 

2013). In addition to producing accurate stand attributes for forest management, LiDAR data show 

great promise for monitoring and modelling to address forest information needs such as when 

estimating changes in aboveground biomass (Hudak et al. 2012; Næsset et al. 2012; Andersen et al. 

2014). LiDAR data can provide wall-to-wall coverage, and the use of geometrically accurate multi-

temporal data enables documentation of changes at the tree level (Yu et al. 2004; Vastaranta et al. 

2012). However, airborne LiDAR is most capable of detecting highest trees (Kaartinen et al. 2012; 

Vauhkonen et al. 2012), thus it is suited best for monitoring of dominant trees. From the viewpoint 

of forest disturbance mapping, multi-temporal LiDAR is convenient for monitoring abiotic tree- or 

stand-level changes in the forest structure, such as thinnings (Yu et al. 2004; Vastaranta et al. 2013) 

or snow- and wind-induced disturbances (Vastaranta et al. 2011; Vastaranta et al. 2012; Honkavaara 

et al. 2013). Biotic changes that have more subtle effects on forest canopy structure within a short 

time window, such as defoliation (Solberg et al. 2006; Kantola et al. 2010), have been more 

problematic to map. 

 

Increasingly, many areas in Europe, USA, and Canada are covered by LiDAR data. For example, 

free and open-access LiDAR data are currently available for approximately 75% of the land areas of 

Finland. Therefore, LiDAR data are increasingly being utilized as input information for spatial 

modelling purposes. To date, there exist only a few studies where LiDAR data have been used for 

spatial modelling of natural disturbances including examples of flood (Gueudet et al. 2004; Agget 

and Wilson 2009; Hohental et al. 2011) and landslide (Liao et al. 2011). In all these cases, the 

primary use of the LiDAR was to produce an accurate digital terrain model (DTM). In addition to 

the DTM, the digital surface model (DSM) is commonly produced by LiDAR data providers. In the 

forested areas, the DTM is used to normalize DSM heights to aboveground heights, resulting in a 

canopy height model (CHM).  

 

As natural disturbances become increasingly common (e.g. Westerling et al. 2006; Seidl et al. 2011; 

Seidl et al. 2014), development of modern planning tools for forest sites that are highly susceptible 

to natural disturbance are needed (Lyytikäinen-Saarenmaa et al. 2008). As a proactive procedure, 

drivers associated with different kinds of disturbances need to be better understood and susceptible 

sites need to be identified. Based upon previous studies, tall trees are expected to be most 

vulnerable to wind disturbance (Lohmander & Helles 1987; Peltola et al. 1999; Jalkanen & Mattila 

2000; Doppertin 2002). Diameter-at-breast-height (dbh) has been found to be a factor driving wind 

disturbance. Peltola et al. (1999) as well as Jalkanen & Mattila (2000) have discover that trees with 

smaller dbh were more vulnerable to wind whereas others (e.g. Simpson 1967; Lohmander & Helles 

1987; Peterson 2000; Doppertin 2002) reported opposite; trees with larger dbh are more likely to 

suffer wind disturbance. Other reported factors associated with wind-induced disturbance are age of 

trees, crown size, health of roots, soil moisture, the amount of conifers, ditching, fertilisation, 

thinning, topography, and position in relation to wind direction (Lohmander & Helles 1987; Wright 

& Quine 1993; Jalkanen & Mattila 2000; Doppertin 2002). LiDAR-based CHM and DTM correlate 

with many variables that have been used to predict risk of wind damage such as tree height, crown 

size, stem density, and topography (Lohmander & Helles, 1987; Wright & Quine, 1993; Peltola et 

al. 1999; Jalkanen & Mattila 2000). As mentioned, with multi-temporal LiDAR data sets it is 

possible to monitor changes occurring in forests. Thus, we believe that utilization of these data sets 

will improve decision making in sustainable forest ecosystem management. These data sets could 
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be utilized also in ecological modelling in regard to changes in forest structure as well as 

heterogeneity of forests. 

 

In addition to the LiDAR data, forest attribute maps at resolution of 400 m
2
 based on Finnish multi-

source national forest inventory (NFI) are freely available for public use provided by the Finnish 

Forest Research Institute (part of Natural Resources Institute Finland). Multi-source NFI forest 

attribute maps, such as species-specific stem volume and biomass (per hectare) maps are produced 

by combining field plot information and Landsat thematic mapper (TM) satellite images. This 

information has limited accuracy for forest management but enables robust characterization of 

forested area (Päivinen et al. 1993; Hyyppä et al. 2000; Tuominen & Haakana 2005; Vastaranta et 

al. 2014). Detailed information used for forest management planning of privately owned forests is 

not available to third parties. For example electricity providers could benefit from knowing which 

areas are very susceptible to wind disturbance, but they do not have the access to this forest 

resource information at the stand level.  

 

The main objective of the study was to test the applicability of open-access LiDAR data for 

modelling the predisposition to wind disturbance in forests. The main emphasis was to investigate 

variables derived from LiDAR data that explain probability of wind-induced forest disturbance 

(PDIS). We also tested whether information about tree species would improve our modelling results. 

For this purpose we used multi-source NFI data to provide auxiliary information about tree species 

(which is challenging to obtain with open-access LiDAR data). The results were expected to 

support decision making in forest management planning and in other sectors (e.g. electricity 

providers), as well as increasing the value of these openly accessible data sources. 

 

Materials 

Study Area 

The study area is located in southwestern Finland with centre coordinates 61°4′33″N, 22°52′3″E 

(Fig. 1) and covers approximately 173 km
2
. The area is comprised primarily of managed boreal 

forests and agricultural fields. The main tree species are Scots pine (Pinus sylvestris, L.), Norway 

spruce (Picea abies [L.] H. Karst), and Silver and Downy birches (Betula spp.). Topography in the 

area is relatively flat, with an elevation range of approximately 50 to 111 m above sea level (asl) 

(standard deviation of 12 m). On 26
th

 and 27
th

 of December 2011, the area was subjected to heavy 

winter storm called the Tapani-storm, which was the strongest storm in Finland in a decade (Finnish 

Meteorological Institute 2011). The Tapani-storm caused extensive damage to the study area with 

the most damaging west and northwest winds blowing at an average speed of 18.3 m/s and a 

maximum speed of 28.7 m/s on December 26
th

 2011.  

 

 

Figure 1. Study area. 

 

LiDAR data 

We used national open-access LiDAR data to characterize forest conditions in the study area before 

the Tapani-storm. The data, which are publically available and subject to open data policies, were 

obtained from the National Land Survey of Finland (NLS). The specifications for the data 

collections include a flying altitude of 2000 m, a maximum scan angle of ± 20° and a footprint of 

50 cm; preferential collection occurred during a bare-ground season or during spring time, when the 

trees have small leaves. The minimum point density of the NLS LiDAR data is half a point per 

square meter and the elevation accuracy of the points in well-defined surfaces is 15 cm with a 
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horizontal accuracy of 60 cm. The LiDAR data used in this study were collected in the spring of 

2008.  

 

Multi-Source National Forest Inventory data 

In addition to field measurements, Landsat TM satellite images were utilized in multi-source NFI to 

predict forest attributes using a k-nearest neighbour approach (Tomppo et al. 2008). The results are 

presented as thematic maps (resolution of 20 m x 20 m) of site type, canopy cover, age, mean dbh 

and height, basal area, as well as species-specific stem volume and biomass per hectare. The 

expected accuracy of the predicted forest attributes at the sample plot level varies between 50 to 

80% (RMSE) in stem volume, height and basal-area (Tuominen & Haakana 2005). Information 

from thematic maps of site type, species-specific volume, and biomass were used in this study. In 

Finland, site types are classified based on soil fertility and identified by means of surface vegetation 

by adopting indicator species (e.g. Vaccinium myrtillus) which are also applied when naming the 

site types.  

 

Aerial images 

Aerial imagery was acquired by Blom Kartta Oy © (Helsinki, Finland) to document the event of 

wind damage at the 8th of January 2012. The images were acquired using a Microsoft UltraCamXp 

(Microsoft UltraCam 2013), large-format mapping camera. The average flying height was 5370 m 

above ground level (AGL) provided a ground sample distance (GSD) of 32 cm. The images were 

taken in a block structure, with 16 image strips and approximately 30 images per strip; the forward 

overlap of the images was 65%, whereas the side overlap was 30%; the distances of the image strips 

were approximately 3900 m. The atmosphere was clear, and the solar elevation was as low as 5° to 

7°. The data were collected between 11:56am and 14:11pm local time (UTC +2). Before the aerial 

images were collected, the first snow had fallen, so that there was approximately 10 to 20 cm snow 

cover on ground. It is likely that there was also some snow on trees, but visual evaluation on images 

indicated that the snow was tolerable for delivering accurate data on the study area. 

Photogrammetric processing of used panchromatic images is explained in more detail in 

Honkavaara et al. (2013). 

 

Methods 

Work flow  

The relationship between probability of wind-induced disturbance (PDIS) and LiDAR derived 

predictors as well as multi-source NFI forest attributes was explored and used to model and map the 

wind disturbance predisposition. An overview of the procedure adopted in our study is illustrated in 

Figure 2. Aerial images and visual interpretation were used as ground truth (i.e. reference) instead 

of field measurements and to build strata for selection of sample cells for modelling. DTM and 

CHM were developed from LiDAR data and used for extraction of the predictors describing local 

topography and canopy structure. Forest inventory attributes were extracted directly from multi-

source NFI maps. A logistic regression approach was applied in order to identify the most relevant 

predictors. Final predictor variables were selected using logistic regression based on their 

significance to the model after investigating possible multicollinearity. The goodness of fit as well 

as strength and significance of overall model were tested when validating the models. The resulting 

probability surface was used as a map to identify areas of high predisposition to disturbance caused 

by heavy wind.  

 

Figure 2. Work flow of the study. 
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Sample selection 

Prior to the spatial modelling of wind disturbance probability, areas with disturbance were mapped. 

We used the same study area and same remote sensing data sets that were used in Honkavaara et al. 

(2013). Honkavaara et al. (2013) developed and evaluated a method based on pre-storm LiDAR 

canopy height model (CHM) and post-storm aerial imagery-derived CHM (normalized with 

LiDAR-based digital terrain model (DTM)) to detect wind damage. With their approach they were 

able to map forest stands with disturbance with an accuracy of 100% for areas with and without 

disturbance, 52% for minor disturbance (1-5 fallen trees per ha), and 36% for low disturbance (6-10 

fallen trees per ha). We used this automated disturbance detection (disturbance-no disturbance) as 

stratification for our sample selection to obtain approximately equal samples in forest areas with 

wind disturbance and no disturbance. A systematic grid (16 m x 16 m) was placed over the study 

area and 500 sample cells (250 in strata of wind disturbance and no disturbance each) were selected 

randomly within each stratum. The spatial resolution of the systematic grid was selected because it 

is the same resolution that is applied in LiDAR-based operational forest management planning 

inventory in Finland. Then, the classification of each sampled cell was verified visually from the 

orthorectified aerial imagery acquired in January 2012. A sample cell was determined to have 

disturbance if a group of fallen trees was detected within the cell. During the visual inspection, 70 

samples were removed because they were located in an agricultural field, or as a result of their 

proximity to a road, a house, or other building, i.e. they were not entirely located in forest area. 

Following visual inspection, 430 grid cells remained: 196 were classified as damaged and 234 as 

undamaged. 

 

Extraction of the predictor variables 

In the LiDAR point clouds, the ground returns were already classified using the standard procedure 

developed by Axelson (2000). LasTools software (Isenburg 2013) was used to merge the map 

sheets of NLS LiDAR data that covered the study area and to make a DTM and a digital surface 

model (DSM) of the point cloud with 1 m grid spacing. A 1 m resolution CHM was generated from 

the DSM and DTM. Predictors for spatial modelling of PDIS were extracted from the LiDAR and 

multi-source NFI data (Tables 1 and 2) for the sample cells (16m x 16m). We employed surface 

models, namely DTM and CHM, to extract the LiDAR predictor variables. DTM was applied to 

derive variables related to topography and elevation, such as slope and aspect as minimum, 

maximum, and mean elevation values. Mean elevation (also mean value of DTM), slope, and aspect 

were extracted for each sample cell but also for a window of nine 16m x 16m grid cells centred by 

the sample cell to include more information about the surroundings of the sample cells. In addition, 

aspect was calculated as a categorical variable (i.e. northeast, southeast, southwest, and northwest) 

in order to correspond to the direction of the damaging winds, namely northeast. Furthermore, to 

extract variables characterizing forest canopy (e.g. minimum, maximum, and mean values), CHM 

was used. Mean value of CHM was derived for both the sample cell and nine-grid-cell window 

(including sample cell) again to incorporate additional information from enclosing forest. In 

contrast, mean value of CHM only from surroundings of the sample cell was calculated as eight-

cell-window around the sample cell (CHMsur) (i.e. sample cell was not included). Moreover, mean 

value of CHM was determined where the most destructive winds were blowing, that is in northeast 

of each sample cell (CHMwind). 

 

An estimate for forest vertical canopy cover (VCC), which can be expected to describe density of 

forest, was computed by including all the points that were higher than 2 meters (CHM > 2m), which 

is a commonly used threshold value for vegetation points (White et al. 2013). Open areas were 

extracted from the CHM where there was no canopy cover (defined using VCC) and contiguous 

areas were larger than 1 ha. Although there may have been vegetation in areas where CHM was less 
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than 2 m, it was presumed that wind can also cause disturbance to forest sites next to low 

vegetation, e.g. sapling sites do not protect neighbouring forest from wind. Distance to an open area 

(DIST) was calculated as shortest distance to the nearest open area of each sample cell. Proximity 

(Close), on the other hand, was determined as categorical variable describing whether a sample plot 

was located next to an open area or not (Table 2).  

 

Disturbance probability modelling 

The discrete nature of the dependent variable in our study (i.e., disturbance, no disturbance) was 

well suited to the use of logistic regression (LR). Logistic regression is commonly used for 

modelling the probability of an event based on predictor variables (e.g. elevation, slope, tree 

species, and height of trees). It has been applied in forestry to estimate e.g. snow and wind damages 

(Valinger & Fridman 1997; Canham et al. 2001; Scott & Mitchell 2005; Vastaranta et al. 2011; 

Vastaranta et al. 2012).  

 

The logistic regression model for n independent predictor variables (xn) can be described as: 

 

𝑙𝑜𝑔𝑖𝑡(𝑝) = 𝑙𝑛 [
𝑝

(1 − 𝑝)⁄ ] = 𝛽0 + 𝛽1𝑥1 + ⋯ + 𝛽𝑛𝑥𝑛 (1) 

 

When using the logistic model to predict probability of wind disturbance (PDIS) for the study area, 

the predicted probabilities were calculated by transforming them back to their original scale:  

 

𝑃 =  
𝑒

𝑙𝑛[
𝑝

(1−𝑝)⁄ ]

[1+𝑒
𝑙𝑛[

𝑝
(1−𝑝)⁄ ]

]

 (2) 

 

LR coefficients are exponentiated from logarithmic scale and they (e
β0

, e
β1

, etc.) can be interpreted 

as change of the odds of the event of interest (disturbance event) when a predictor variable changes 

one unit. The signs of the coefficients (β0, β1, etc.) indicate if the ratio-change in the odds of wind 

disturbance is increasing or decreasing.  

 

We used logistic regression to form two separate models, one with LiDAR-derived predictors only 

(LRLiDAR)  and one where also multi-source NFI variables were included (LRNFI+LiDAR).  Thus, we 

were able to see if information about e.g. tree species would improve our results. There were 

various combinations with the LiDAR-derived predictors and variables describing the forest (tree 

species, species-specific volumes and total stem volume (m
3
 ha

-1
)) to enter the predictor selection. 

We tested several combinations of predictor variables including LiDAR-derived variables and tree 

species information. There were highly correlated predictor variables (e.g. DTMmean and DTMmax 

r=0.99 as well as VOLspruce and VOL r=0.9). To avoid multicollinearity we only used predictor 

combinations with r<0.5 when modelling the probability of wind disturbance. Potential predictor 

variables were tested using logistic regression analysis in R (v. 3.1.1, R Development Core Team, 

2007) with both stepwise forward and backward elimination of variables. The maximum number of 

steps to be considered was 1000. The final predictors of PDIS were selected based on previous 

studies (Peltola et al. 1999; Jalkanen & Mattila 2000; Hanewinkel et al. 2008), by analysing the 

sample, correlations, cross-classification tables, and on preliminary modelling results. In other 

words, predictors were chosen on the basis of biological plausibility as well as statistical 

significance. Preliminary models of LRLiDAR and LRLiDAR+NFI were also compared separately by 

using Akaike’s information criterion, AIC (Akaike 1974). AIC is an approach to seek the most 

parsimonious model, i.e., it tries to find a model that is best balanced between over or under fitting..  
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Model validation and mapping 

Model validation was performed by calculating fit statistics and prediction accuracy. Nagelkerkes’s 

R-Square (R
2
) was used to assess the goodness of fit of the logistic regression model varying 

between 0 and 1, 0 indicating a weak model and 1 indicating a strong model (Nagelkerke 1991).  

Nagelkerke’s R-Square (R
2
) can be used the same way in model validation as the ordinary least 

square regression (OLS) multiple R
2
, although it usually has lower values and is based on 

likelihood (Noruŝis 2005). We used Wald z-statistics and their associated p-values to verify the 

significance of each predictor variable for the model (Hosmer & Lemeshow 2000). When selecting 

the predictor variables we set a significance threshold of p=0.01 in order to keep only highly 

significant variables in the final model. Overall prediction accuracy was also used when comparing 

different combinations of predictor variables. A Likelihood Ratio Test (LRT) was used to measure 

how well our model fits (i.e., the significance of the overall model).  

 

Maps indicating predisposition to wind disturbance were produced by applying the final models by 

using ArcGIS software. This allowed us to identify the areas with high probability of susceptibility 

to disturbance caused by wind (PDIS) across the study area. In the maps a cell size of 16 m x 16 m 

was used which is the same cell size as the sample cells. Accuracies of wind disturbance 

predisposition maps were evaluated by comparing them to the reference obtained by visual 

interpretation of aerial images. If the predicted risk probability was over 0.5, the cell was interpreted 

to have disturbance and then two-scheme classification accuracy percentage and Cohen’s kappa 

values (Cohen 1960; Gramer et al. 2014) were calculated for predisposition wind disturbance maps 

(Eq. 3). 

 

𝐾 =  
Pr(𝑎)−Pr(𝑒)

1−Pr (𝑒)
  (3) 

 

where Pr(a) is the overall agreement among raters, and Pr(e) is the expected chance agreement (if 

agreement occurs by chance only). If the raters are in complete agreement then K = 1. If there is no 

agreement among the raters other than what would be expected by chance (as defined by Pr(e)), K = 

0. 

 

Results 

Factors explaining the event of wind-induced disturbance 

 Sample cells with wind-induced disturbance covered 45.6% of the entire sample. Conifer-

dominated sample cells were the most exposed to disturbance: 82.1% of the entire sample was 

dominated by either Scots pine or Norway spruce and 94.4% of the sample cells with wind 

disturbance was conifer dominated. Variation of predictor variables describing topography, stand 

maturity and species distribution between sample cells with and without disturbance are presented 

in Table 3.  Most of the sample cells (86.7%) were located inside forest stands and based on our 

analyses there was no trend that cells close to an open area would be more vulnerable to wind 

disturbance. VCC was higher for areas with disturbance (79.4%) indicating that dense canopies may 

be more sensitive to wind. Our findings indicate that mature conifer stands are most exposed to the 

wind disturbance. Variables derived from the DTM indicated that there was no substantial 

difference in topography-related attributes between sample cells with wind disturbance and without 

disturbance.  

  

Mean height of nine grid cells (sample cell area included) gave better results than mean height 

within the sample cells only, thus CHMbuf was used over CHMmean when estimating wind 
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disturbance probability (PDIS). For regression model where only LiDAR-derived variables were 

used (LRLiDAR), the selected predictor variables included mean elevation (DTMmean) and mean 

height of surrounding forest (CHMbuf) (Table 4). Based on the Wald test, the target significance 

level (p<0.01) was achieved with these predictors. CHMbuf has greater meaning to PDIS compared to 

odds ratio of DTMmean, although increment in either will increase the PDIS (43.1% and 5.3% 

respectively). 

 

When multi-source NFI information was included in the model, the selected variables included 

mean elevation (DTMmean) and mean height of surrounding forest (CHMbuf) but also stem volume of 

pine and spruce (VOLpine, VOLspruce). Based on Wald statistics all of these variables were 

statistically significant in the model (Table 4). Per unit change, in any parameter, resulted in an 

increase in the odds of wind disturbance predisposition. For example, one unit change in CHMbuf 

will increase the disturbance predisposition by 21.4%. Increment in other parameters increases the 

predisposition much less although it should be noted that the scales of units vary between the 

predictors. 

 

Final models for mapping the susceptibility of wind disturbance 

We were able to predict PDIS with accuracy of 73% with respective Kappa value of 0.47 when using 

LiDAR variables only (LRLiDAR). When information about tree species from multi-source NFI was 

added, the model was in fact improved and resulted with prediction accuracy of 81% (Kappa value 

0.61). The models were compared based on their AIC-value, prediction accuracy, and kappa-value 

as well as strength of the model (Nagelkerke’s R
2
). The model containing a combination of 

DTMmean, CHMbuf, and stem volume of both pine and spruce in the combined approach 

(LRNFI+LiDAR) was found to be best suited to address the probability of wind disturbance explaining 

52% of the variation in wind disturbance. A comparison of different logistic regression model 

scenarios (i.e. LiDAR variable only and combination of LiDAR and multi-source NFI) is provided 

in Table 5.  

 

Mapping the susceptibility of wind disturbance 

The model with only DTMmean and CHMbuf (LRLiDAR) produced the smallest area with a high 

probability (90-100%) of wind disturbance (PDIS), whereas the model that combined LiDAR and 

NFI predictors (LRLiDAR+NFI) resulted in the largest area of high predisposition (Table 6 and Figure 

3). On the other hand, LRLiDAR+NFI also produced larger areas with very low PDIS (0-10%) compared 

to LRLiDAR. Thus, higher disturbance probabilities were difficult to obtain with only LiDAR. 

 
   

Figure 3. Maps indicating predisposition to wind disturbance derived from two models. Left panel 

LRLIDAR (using DTMmean and CHMbuf only) and on the right LRLiDAR+NFI (model of combination of 

DTMmean, CHMbuf, VOLpine, and VOLspruce).  

 

Discussion 

With increasing frequency of disturbance events caused by wind storms (Schelhaas et al. 2003), 

there is a need to identify areas of high predisposition to wind disturbance in order to inform forest 

management planning and respond to information needs in other sectors (e.g., electricity providers). 

Remote sensing data such as LiDAR brings cost efficient and accurate data for spatial modelling, 

particularly when these data are freely and openly available to the public. 

 

A logistic regression approach is well suited for estimating probabilities of forest disturbances, thus 

it was used to model the predisposition to wind disturbance. In our analyses, the most important 



10 

 

spatial factors explaining the probability of wind-induced disturbance (PDIS) were DTMmean, 

CHMbuf, VOLpine and VOLspruce. Our finding that PDIS was higher for sites at higher elevations is in 

keeping with the findings of Fridman & Valinger (1998) and Hanewinkel et al. (2004). Moreover, 

we found that taller trees are more vulnerable to wind disturbance, confirming the results of 

Lohmander & Helle (1987) and Doppertin (2002), and that the dominance of conifer species is also 

significant when modelling wind disturbance (e.g. Jalkanen & Mattila 2000; Doppertin 2002; 

Hanewinkel et al 2004).  

 

In our models, slope and aspect were not significant factors in explaining the susceptibility to wind 

disturbance. This is similar to findings by Hanewinkel et al. (2004) and Hanewinkel et al. (2008), 

although it should be noted that many studies have produced contrary results (e.g. Baker 1915; 

Alexander 1964; Foster & Boose 1992; Wright & Quine 1993; Doppertin 2002). In our situation we 

assumed that this is due to uniform topography of the study area where terrain heights do not vary 

significantly (grid-cell level standard deviation of DTM is 12 m). Variables describing closeness 

and distance to an open area (Close and Dist, respectively) were expected to influence to the model 

but were actually found to be not significant to our model. This is inconsistent with the findings of 

Boe (1965), Cremer et al. (1977), Young & Hubbel (1991), and Valinger et al. (2000) and may in 

part be due to the unique configuration of open and forest areas in our study site and merits further 

investigation (e.g. did it have importance that the ground was not frozen at the time when the 

disturbance occurred). 

 

Vertical canopy cover (VCC) describing stand density and structure did not contribute significantly 

with PDIS, similar results were found by Doppertin (2002). The sample cells with wind disturbance 

had on average a higher mean value of CHM than areas located next to the sample cells in the 

direction in which storm winds were blowing. Thus, the wind disturbance predisposition decreased 

as the mean height of forest in the source wind direction increased. This demonstrates about shelter 

effect of large trees in northwest where the most destructive winds were blowing in our study area 

which is in line with the findings of e.g. Andersen (1954) and Boe (1965). 

 

We did not want to use LiDAR 3D point metrics in the modelling because we wanted to have robust 

models without a need for campaign-to-campaign or sensor-to-sensor calibration which is required 

when 3D point metrics are used. Those metrics are generally used in area-based forest inventory 

using LiDAR (e.g. Næsset 2002; White et al. 2013). DTM and CHM are more robust for different 

flight and scanning parameters (Vastaranta et al. 2012). In addition, LiDAR surface models, such as 

DTM and DSM are readily available products that a user can order without a need of further 

knowledge about LiDAR processing (Vastaranta et al. 2013). 

 

Species-specific stem volume information obtained by multi-source NFI increased the prediction 

accuracy and fit of our model. Presumably, the predicative power of multi-source NFI forest 

attribute maps comes from a rough classification of stand maturity (amount of stem volume per 

hectare) as well as the broad conifer-deciduous classification based on Landsat TM spectral values 

(Tomppo et al. 2008). We used volume instead of species proportions in basal area to describe the 

distribution of tree species because information on species-specific volume based on multi-source 

NFI was openly available. Our sample were mainly dominated by Scots pine and Norway spruce, 

which might have affected the result that sample cells with wind disturbance were also mainly 

conifer dominated. This might have also had an effect on the significance of VOLpine and VOLspruce 

in the LRLiDAR+NFI. However, with LiDAR-derived predictors only, we were not able to find all 

sample cells where wind disturbance had occurred but information about tree species gave more 

accurate results. Winter storms happen in leaf-off season, thus deciduous stands have lower risk for 

wind disturbance (Peltola et al. 1999). In our models, increment in stem volume of pine or spruce 
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(m
3
 ha

-1
) increased the wind disturbance predisposition. It should be pointed out that information 

from the multi-source NFI is based on Landsat TM imagery and field plots. This means that 

predictions at plot level may include more uncertainty than it is typically expected from forest 

management planning information obtained by LiDAR (Tuominen & Haakana 2005; Peuhkurinen 

et al. 2007; Wulder et al. 2012; Vastaranta et al. 2013). 

 

The output from the logistic regression is a probability of disturbance occurring and we used that to 

produce wind disturbance predisposition maps describing the likelihood that any given grid cell has 

wind disturbance. When predicting the probability of disturbance or no disturbance, we gained 73% 

and 81% prediction accuracies with LRLiDAR and LRNFI+LiDAR, respectively, compared to visual 

interpretation. This means if a similar storm would happen at similar site conditions (such as 

temperature, soil moisture, wind direction etcetera), we would be able to map the predisposition to 

wind disturbance with high accuracy. In practice, much lower accuracies will be obtained due to 

variation in many natural factors. In order for our results to be useful to forest practitioners, the 

resolution of 16 m was selected because this is the commonly used grid cell resolution for Finnish 

operational forest management planning applying LiDAR data. In addition, forest resource 

information from privately owned forests is typically provided at a 16 m resolution. Multi-source 

NFI forest resource maps have a spatial resolution of 20 m and resampling the multi-source NFI 

forest attribute maps to 16 m likely impacted our model results.  

 

Maps indicating predisposition to wind disturbance produced with the logistic regression models 

could be extended to cover larger areas (e.g. circa 1 million ha) presuming that similar drivers are 

associated with a predisposition to wind damage as we found in our study area (i.e. elevation, stand 

height, and amount of conifers). The resulting maps could also be included in the database of forest 

attribute information provided by the Finnish Forest Centre. Forest managers could then incorporate 

this knowledge of wind damage susceptibility into their strategic planning when assessing 

operational environment and determining which management practices should be used in order to 

preserve biodiversity and maintain sustainable use of the ecosystem services that the forests 

provide. Our approach is best suited for mapping and modelling disturbance events that are 

associated with topography as well as forest height and density because these attributes can be 

obtained from LiDAR-based DTM and CHM. Other potential drivers, such as forest health, may 

also be related to a predisposition to wind damage, but are difficult to measure and are often not 

available as wall-to-wall data sources over large areas. 

 

Our approach provides detailed 3D information about forest structure and topography and the 

spatial resolution of the model outputs (16 m) are advantageous when compared to Stadelmann et 

al. (2013), Thom et al. (2013), and Pasztor et al. (2014). Moreover, our approach enables the 

inclusion of predictor variables describing forest structure from CHM, such as mean height and 

vertical canopy cover, which have been discovered to act as a driver of wind disturbance (Fridman 

& Valinger 1998; Peltola et al. 1999; Jalkanen & Mattila 2000; Hanewinkel et al. 2008). 

Furthermore, LiDAR data, which are spatially extensive and openly accessible, could also be used 

to estimate PDIS with acceptable levels of accuracy if NFI data are unavailable or outdated. 

 

LiDAR and multi-source NFI data covering entire Finland have been freely and openly accessible 

to the public since 2012. Use of these data for estimating the predisposition to wind disturbance, as 

demonstrated herein, provides an example of additional beneficial uses for these data. Increasing 

the value of the data is one of the objectives in collecting detailed forest resource information in 

Finland and this study serves that purpose.    
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Table 1. Statistics of the extracted continuous predictor variables within sample cells (n = 430) 

derived from digital terrain model (DTM), canopy height model (CHM), and multi-source national 

forest inventory (NFI). 

Predictor Description 
Data 

source 

Statistics within sample cells 

Min Max Mean Sd 

Slope Slope, degrees DTM 1.57 30.18 5.94 3.46 

Aspect Aspect, degrees DTM 45.50  312.89 177.55 47.51 

DTMmin Minimum value of DTM, m DTM 49.36  109.91 77.51 12.26 

DTMmean Mean value of DTM(also  elevation, 

m) 

DTM 50.44  111.08 78.25 12.28 

DTMmax Maximum value of DTM, m DTM 51.91  112.14 79.06 12.34 

DTMsd Standard deviation in elevation, m DTM 0.06  2.68 0.35 0.32 

CHMmin Minimum value of CHM, m CHM 0.00  2.08 0.00 0.22 

CHMmean Mean value of CHM, m CHM 0.59  20.48 8.42 3.78 

CHMmax Maximum value of CHM, m CHM 6,14  31,56 20,49 4.53 

CHMsd Standard deviation in CHM, m CHM 1.52  9.63 5.53 1.55 

VCC Vertical canopy cover over 2 m, % CHM 8  100 74 21 

DIST Distance to the open area, m CHM 0.00  151.44 22.37 29.86 

VOL Total stem volume per unit area, m
3
 

ha
-1

 

NFI 0  386 153 95.11 

VOLpine Stem volume of pine, m
3
 ha

-1
 NFI 0  234 52.78 40.62 

VOLspruce Stem volume of spruce, m
3
 ha

-1
 NFI 0 316 74.64 84.32 

VOLbirch Stem volume of birch, m
3
 ha

-1
 NFI 0  133 23.02 20.91 

VOLOBL Stem volume of other broadleaved 

species, m
3
 ha

-1
 

NFI 0  38 2.05 4.60 

BMpine Total biomass of pine, kg ha
-1

 NFI 0  14037 3334.38 2561.10 

BMspruce Total biomass of spruce, kg ha
-1

 NFI 0  20668 5282.77 5627.91 

BMBL Total biomass of broadleaved 

species, kg ha
-1

 

NFI 0  12110 2205.26 1907.24 

BMcrownpine Biomass of living crown for pine, kg 

ha
-1

 

NFI 0  1852 523.27 424.00 

BMcrownspruce Biomass of living crown for spruce, 

kg ha
-1

 

NFI 0  4464 1210.92 1170.40 

BMcrownBL Biomass of living crown for 

broadleaved species, kg ha
-1

 

NFI 0  2572 466.84 390.12 

BMrootspine Biomass of roots for pine, kg ha
-1

 NFI 0  2100 499.34 382.45 

BMrootsspruce Biomass of roots for spruce, kg ha
-1

 NFI 0  3567 909.2 950.72 

BMrootsBL Biomass of roots for broadleaved 

species, kg ha
-1

 

NFI 0  2071 372.76 333.33 

ASLbuf Mean elevation from a window of 

nine grid cells (including sample 

cell), m 

DTM 51.67  110.86 78.19 12.25 

Slopebuf Slope from a window of nine grid 

cells (including sample cell), degree 

DTM 1.84  24.41 5.95 2.74 

CHMbuf Mean value of CHM from a window 

of nine grid cells (including sample 

cell), m 

CHM 0.81  17.63 7.53 3.38 

CHMsur Mean value of CHM around the 

sample cell (sample cell not 

included), m 

CHM 0.29  7.26 1.23 0.59 

CHMwind Mean value of CHM in the direction 

of storm winds, m 

CHM 0.28  13.61 1.24 0.80 
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Table 2. Descriptions of extracted categorical predictor variables within sample cells (n=430). 

Predictor Description Data 

source 

Number of 

classes 

Distribution of classes 

Aspectpoint Aspect in compass points DTM 4 NE: 113 

SE: 107 

SW: 108 

NW: 102 

Close Sample cell location: 

Proximity to an open 

area 

CHM 2 Next to an open area: 57 

Not next to an open area: 373 

SP Main tree species NFI 6 Pine : 174 

Spruce : 179 

Birch : 69 

Other broadleaved : 1 

Mixed : 4 

No trees : 3 

ST Site type NFI 7 Grove: 1 

Grove-like: 78 

Myrtillus type: 293 

Vaccinium type: 42 

Callunus type: 5 

Lichen type: 1 

Rock: 10 

 

 

 
 
Table 3. Mean values of predictor variables in sample cells with and without damage. 

Predictor variable Sample cells with damage Sample cells without damage 

DTMmean (m) 81.0 76.0 

DTMsd (m) 0.33 0.37 

Slope (°) 5.5 6.3 

Aspect (°) 175 179 

CHMmax (m) 21.3 19.8 

CHMmean (m) 9.7 7.3 

VCC (%) 79.4 68.8 

Hbuf (m) 9.1 6.2 

VOL (m
-3

 ha 
-1

) 209 105 

VOLpine (m
-3

 ha 
-1

) 71 37 

VOLspruce (m
-3

 ha 
-1

) 118 38 

VOLbirch (m
-3

 ha 
-1

) 19 27 

VOLOBL (m
-3

 ha 
-1

) 1 3 

Close (%) 5.1 20.3 

SPpine (%) 39.3 42.0 

SPspruce (%) 55.1 30.7 

SPbirch (%) 5.1 25.5 

SPOBL (%) 0.5 1.7 

Dist (m) 30.9 15.2 
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Table 4. Parameters and fit statistics for the logistic regression models with DTMmean and Hbuf 

(LRLiDAR). and combination of these two with stem volume of pine and spruce per hectare 

(LRLiDAR+NFI). 

Predictors 

for  LRLiDAR 

Estimate Std. 

Error 

z value Pr(>|z|) e
β
 % 

change 

in odds 

Wald Wald 

sig. 

Intercept -6.974414 0.922634 -7.559 0.000   57.1 0.000 

DTMmean 0.051753 0.009717 5.326 0.000 1.053116 5.31 28.4 0.000 

CHMbuf 0.358002 0.041574 8.611 0.000 1.430468 43.05 74.2 0.000 

Predictors 

for 

LRLiDAR+NFI 

Estimate Std. 

Error 

z value Pr(>|z|) e
β
 % 

change 

in odds 

Wald Wald 

sig. 

Intercept -7.567191 1.091151 -6.935 0.000   48.1 0.000 

VOLpine  0.021675 0.003310 6.548 0.000 1.02191 2.19 42.9 0.000 

VOLspruce 0.011135 0.001978 5.631 0.000 1.0112 1.12 31.7 0.000 

DTMmean 0.049585 0.011393 4.352 0.000 1.05083 5.08 18.9 0.000 

CHMbuf 0.194245 0.048271 4.024 0.000 1.2144 21.44 16.2 0.000 

 

 

 
 
Table 5. Validation for different logistic regression models for wind damage probability (PDIS). 

Model Number of 

predictors 

AIC Prediction 

accuracy. 

% 

Kappa-

value 

Nagelkerke’s 

R
2
 

Likelihood Ratio 

Test (LRT) 

Chi-

square 

p-value 

LRLiDAR 2 + intercept 477.52 73 0.47 0.33 121.22 <0.0001 

        

LRLiDAR+NFI 4 + intercept 393.04 81 0.61 0.52 209.70 <0.0001 

 

 

 
 

Table 6. Percentage of the study area with certain probability of wind-induced forest disturbance 

(PDIS) when using two different logistic regression models. 

Damage 

probability (PDIS) 

Model with LiDAR-

predictors (LRLiDAR) 

 Combination 

(LRLiDAR+NFI) 

0-10% 36.72  58.07 

10-20% 21.40  7.52 

20-30% 9.20  4.97 

30-40% 7.79  4.16 

40-50% 7.32  3.71 

50-60% 6.67  3.58 

60-70% 5.36  3.77 

70-80% 3.65  4.30 

80-90% 1.70  5.34 

90-100% 0.20  4.58 
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Figure 1. Study area. 
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Figure 2. Work flow of the study. 
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Figure 3. Maps indicating predisposition to wind disturbance derived from two models. Left panel 

LRLIDAR (using DTMmean and CHMbuf only) and on the right LRLiDAR+NFI (model of combination of 

DTMmean. CHMbuf. VOLpine. and VOLspruce). 


