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Abstract 

Land cover characteristics remain of particular interest to the monitoring and reporting 

communities, and approaches for generating annual maps of land cover informed by change 

information derived from long time series are critically needed. In this study, we demonstrate and 

verify the utility of disturbance and recovery metrics derived from annual Landsat time series to 

inform the classification of annual land cover over a >1.2 million hectare forest management area in 

the Boreal Mixedwood Region of northern Ontario, Canada. Annual land cover maps were generated, 

producing temporally-informed products and compared to the established approach of using single-

date spectral variables and indices. The Random Forest (RF) classification algorithm was used to 

classify land cover annually between 1990 and 2010, followed by the application of an annual 

temporal filter to remove illogical land cover transitions. Change detection in the study area had an 

overall accuracy of 92.47%. The use of time series metrics in the classification of land cover improved 

overall accuracy by 6.38% compared to single-date results. Using a separate independent reference 

sample, the RF classification approach combined with post-classification transition filtering, resulted 

in an overall classification accuracy of 87.98%. The use of annual change and trend information to 

guide land cover, which is further informed by logical land cover transition rules, points to the creation 

of efficient, robust, and reliable land cover products in a transparent and operational fashion. 
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1.0 Introduction 

The interpretation of annual land cover dynamics based on the analysis of remote sensing change 

detection and land cover classification maps across large areas and long time periods is an important 

natural resource management requirement (Lambin et al., 2003; Wulder and Franklin 2007, Roy et al., 

2014). These activities are now feasible and facilitated by the free and open access to the entirety of 

the United States Geological Survey Landsat archive (Woodcock et al., 2008) in a readily accessible 

form (Wulder et al. 2012). Access to this tremendously rich archive creates new opportunities to detect 

vegetation changes at higher temporal frequency and at more detailed spatial scales than was 

previously possible in many areas (e.g., Huang et al., 2010; Kennedy et al., 2010; Zhu and Woodcock 

2014), with Canada especially well represented with imagery (White and Wulder 2013). In actively 

managed forested areas, the annual assessment of Landsat time series data can be used to interpret 

detailed disturbance history and land cover changes (Sexton et al., 2013). Such an interpretation is also 

particularly useful in carbon modelling (e.g., Turner et al., 2004; Goward et al., 2008), and in 

characterizing forest change in a manner that is more consistent with detection of natural and human 

influences on ecological condition and processes (e.g., Kennedy et al., 2014). Carbon balance, whether 

based on models or inventory, is highly dependent on the land cover since it affects several directly 

relevant characteristics such as albedo, emissivity, photosynthetic potential, and transpiration (Zhu and 

Woodcock 2014). Unique information produced from time series detection of change includes spectral 

clues on succession (Pflugmacher et al. 2012) and post-disturbance recovery (Hermosilla et al. 2015). 

Additionally, annual land cover derived from Landsat can be used to produce a series of carbon model 

relevant variables such as pre-disturbance and post-disturbance land cover which are also of general 

interest to monitoring, inventory, and reporting programs. This type of information is important to 

inform carbon models but conventionally difficult to derive when applying standard two-date change 

detection and single date land cover classification methods. 

Annual land cover classification maps produced from dense Landsat time series data in specific 

areas enhance the interpretation of forest and land cover dynamics when used together with more 
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spatially comprehensive, but often less frequently produced, Landsat-based single-image date land 

cover products and compilations of multiple imagery (such as those used to create national or regional 

vegetation inventory data). For example, in Canada, among the most widely used national land cover 

maps is the Earth Observation for Sustainable Development of Forests product (typically referred to as 

EOSD LC 2000). This Landsat-based map provides a national land cover database of the forested area 

of Canada with 23 land cover classes for the year circa 2000. Annual land cover classification products 

are an ideal addition to the established EOSD LC 2000 maps which have, in Canada and in similar 

large area coverages in other jurisdictions, been used to inform reporting programs (Wulder et al. 

2004; Kangas and Maltamo 2006) and allow for the implementation of unique science activities (e.g., 

Wulder et al. 2011; Yemshanov et al. 2011).  

Annual land cover classification using Landsat time series data has fostered the use of specific 

disturbance- or recovery-based metrics in the classification procedure (Hansen and Loveland 2012). 

Vegetation dynamics and forest cover changes identified using the ‘greatest change metric’, or similar 

disturbance- or recovery-based metrics, attempt to identify vegetation dynamics that occur prior to the 

date of the image classification (e.g., Roy et al., 2014). The composition of land cover at any point in 

time is linked to its disturbance history. Therefore, inclusion of the disturbance-related variables is 

expected to increase the land cover classification accuracy over that which can be obtained using 

single-date spectral variables. In addition, by using the change metrics to inform the classification, it is 

possible to provide a single land cover class for a given pixel for the entire period when change is not 

specifically identified and there is no spectral evidence to indicate otherwise.  

The use of these disturbance- or recovery-based metrics also implies an increment in the 

dimensionality of the data sets being used in image classification. This increase in dimensionality can 

compromise the capability of traditional multispectral classifiers, but can be addressed by the selection 

of a robust classifier or an ensemble of machine-learning algorithms, such as the Random Forest (RF) 

package (Dietterich 2000). The RF approach, in particular, has received notable attention because it 

has flexibility with regards to the nature and distribution of input variables and has been found to be 
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robust in situations problematic to traditional classifiers (Liaw and Wiener 2002). Recently, this been 

buttressed in the use of disturbance- and recovery-based metrics extracted by time series trajectory-

based methods to characterize forest change and estimate (via modelling) forest biophysical properties 

(Ahmed et al., 2015; Pflugmacher et al., 2012). The basic approach is based upon detection of change 

in surface reflectance and classification of such changes in terms of land cover change or by 

characterizing trends (for more subtle discontinuous phenomena, such as partial land cover change or 

re-growth, see Meigs et al. (2011)). 

In this study, we present an approach for integrated change detection and land cover mapping with 

the aim of informing forest inventory and carbon accounting programs. Our method is novel in that it 

integrates: 1) annual large-area composites that contain no spatial or temporal data gaps; 2) predictor 

variables that correspond with disturbance and recovery conditions; 3) output as medium resolution 

annual land cover maps; and 4) a Random Forest classifier that is robust in case of heterogeneous 

classes and reference data error. Finally, we provide an indication of future improvements in the 

methods based on an analysis of both i) land cover change over time, and ii) other changes that are 

captured in the Landsat time series in related disturbance- or recovery-based metrics. This latter 

improvement will facilitate an interpretation of more subtle changes within a specific land cover, such 

as a pattern of smaller though still significant changes, or through analysis of repeated land cover 

transitions (e.g., cyclical change). 

2.0 Data and Methods 

In this study, we created and interpreted annual Landsat time-series land cover classification and 

change detection maps that cover the period 1990-2010 in the Hearst Forest in northern Ontario, 

Canada. We incorporated various forest disturbance- and recovery-based metrics available from the 

image time series into the land cover classification process, and create land cover change detection 

maps based on an analysis of the ‘greatest change’ in the time series. We then developed a land cover 

transition matrix to relate the observed ‘greatest change’ locations to specific land cover changes, such 

as a change in conifer or mixedwood forest land cover subsequent to clearcut harvesting activities. To 
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assess accuracy of the change detection, we compared the results of these land cover change outcomes 

to an independent reference dataset created via interpretation of the Landsat time series imagery. We 

evaluated the accuracy of the land cover classification using visual interpretation of both the Landsat 

time series and aerial photography. The sampling design for selection of reference samples was a 

probability-based design such that the probability of selecting each land cover class is known and it is 

sensitive to rare classes (Olofsson et al., 2014). The flowchart in Figure 1 summarizes the overall 

approach of this study described in the following sub-sections.  

2.1 Study area  

The study area is the Hearst Forest Management Area located in northern Ontario (see Figure 2). 

This area is an actively managed, commercial forest that is found within the Boreal Mixedwood 

ecozone, and covers approximately 1.23 million ha (of which, approximately 1 million ha are 

productive forest (Hearst Forest Management Inc. 2011)). The Hearst Forest is dominated by 

coniferous tree species, with black spruce (Picea mariana Mill. B.S.P.) representing 67% of gross 

volume in the area. Jack pine (Pinus banksiana Lamb.), white spruce (Picea glauca Moench Voss), 

balsam fir (Abies balsamea L. Mill.) and tamarack (Larix laricina Du Roi K. Koch) are also 

represented. Deciduous species in this region include white birch (Betula papyrifera Marsh.), 

trembling aspen (Populus tremuloides Michx.) and balsam poplar (Populus balsamifera L.). 

Approximately 60,000–70,000 ha of forest is harvested annually from this area using a variety of 

methods, including clearcutting (Hearst Forest Management Inc. 2007). With an active fire suppression 

program successfully controlling or limiting the effects of wildfire, timber harvesting is the most 

common form of disturbance in the Hearst Forest; however, large fires were recorded in 1995 and 

1996. Insect outbreaks have also occurred in the area; for example, a spruce budworm outbreak 

occurred in 1999. Recent harvesting, fire history, and other disturbance events (e.g., insect outbreaks) 

in the area are described in the Hearst Forest Management Plan (2007-2017) published by Hearst 

Forest Management Inc. (2011). 
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2.2 Best-available pixel (BAP) image composites and change metrics  

The Landsat imagery for the study area was obtained from the United States Geological Survey 

(USGS) Landsat archive. The study area intersects six Landsat WRS-2 path / rows. A total of 706 

Landsat images acquired between 1988-2012, to represent 1990-2010 conditions, were used to create 

multi-temporal pixel-based image composites using a best-available-pixel (BAP) approach 

(implementing the methods described by White et al. (2014)), and is briefly summarized here: First, 

atmospheric correction was applied to all images using the Landsat Ecosystem Disturbance Adaptive 

Processing System (LEDAPS) algorithm (Masek et al., 2006; Schmidt et al., 2013) transforming 

digital numbers into surface reflectance values. Second, clouds, cloud shadows and water were 

detected and masked using the Function of mask (Fmask) algorithm (Zhu & Woodcock, 2012). Once 

pre-processing was complete, candidate pixel observations were scored according to sensor, 

acquisition day of year (DOY), distance to clouds and cloud shadows, and atmospheric opacity. A 

target day of year DOY of August 1 (Julian day 213) was selected within the growing season, and the 

date range for candidate images was restricted to ± 30 days. In the final step, the pixels with the 

highest score were used to populate the final image composite, and the surface reflectance values for 

these best observations were then written in the annual BAP composite. This method allows the 

production of spatially contiguous, cloud-and haze-free, spatially consistent temporal series of surface 

reflectance composites of Landsat data. Based upon the rules applied, instances of no valid pixels for 

inclusion in the composite occurred. For example, pixel locations in the annual BAP composites with 

observations from images acquired outside ±30 days of the target DOY were assigned a “no data” 

value. Similarly, noisy or anomalous pixel values (spikes in the temporal pixel series) were also 

identified and assigned a “no data” value as described in Hermosilla et al. (2015). In our study, 

infilling of data gaps (pixels with “no data” values) was performed using the proxy value composite 

approach (Hermosilla et al., 2015). Briefly, this approach detects spectral change and derives a series 

of metrics characterizing these spectral changes, and then uses these change metrics to aid in proxy 

value assignment. Here the “greatest change” metric was used to flag disturbance events. Then, data 
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gaps were filled by considering the full spectral information of the pixel time series; proxy values are 

informed by those from preceding and/or following dates, and these no-data pixels are replaced with 

values that are most spectrally similar in time and space. Replacement of these values is desired to 

enable production of gap-free spatially exhaustive annual proxy value composites that are spectrally 

consistent in order to support the production of annual land cover products. Our annual land cover 

classification was based on these proxy BAP composites and a series of disturbance- and recovery-

based change metrics that are derived using a breakpoint detection process performed informed by the 

Normalized Burn Ratio (NBR) on a temporal pixel series (as per Hermosilla et al., 2015). The 

breakpoint detection process, in this study, is performed over the Normalized Burn Ratio (NBR) pixel 

series, which has been demonstrated as sensitive and consistent for the retrieval of disturbance events 

over forest environments (Kennedy et al., 2010). The trends that can be computed after implementation 

of the breakpoint detection process are of distinct types. In this study, we used the ‘greatest negative 

change’ in the time series, to derive a set of descriptive change metrics. This “greatest change” metric 

allowed us to characterize the change events as well as conditions pre- and post-the change. The 

metrics relay information on change year, magnitude, and duration are grouped into pre-change, at the 

time of change, and post-change categories. These change metrics characterize the negative breakpoint 

segments using: year, magnitude, and duration. Table 1 provides a complete listing, categorized by 

type, of all the spectral inputs derived from the BAP composites that were used as inputs for the land 

cover classification. Elevation information, derived from a DEM, was the only non-composite input 

data used for the classification. 

2.3 Ancillary data 

There are several approaches for incorporating ancillary data in the image classification process 

based on earlier studies that incorporated DEM data into land cover classification (e.g., Janssen et al., 

1990) to approximate differing ecosite conditions. In this study, several tiles of the Canadian Digital 

Elevation Data (CDED) DEM were downloaded from the GeoBase online spatial data portal 

(www.geobase.ca) to be used in the land cover classification. 
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 High spatial resolution colour-infrared leaf on aerial orthophotography was acquired in 2007 at 

approximately 1:20000 scale with 40cm resolution covering most of the Hearst forest. This aerial 

orthophotography was used to collect calibration and reference data for each land cover class. An 

existing land cover product was used to provide strata for selection of calibration and reference 

samples. The Earth Observation for Sustainable Development of Forests product (EOSD LC 2000) is a 

land cover product representing the forested area of Canada circa 2000, with 23 land cover classes. 

Details on the land cover map can be found in Wulder et al. (2008). A stratified random sample was 

used with the EOSD LC 2000 map providing an initial stratification to estimate the proportions of each 

land cover class over the entire area of the Hearst Forest to guide the proportion of training and 

reference samples (Wulder et al., 2006). Eight classes in the EOSD LC 2000 land cover map product 

were selected to characterize land cover in the Hearst Forest (mixedwood forest, coniferous forest, 

herb, wetland treed, broadleaf forest, wetland, water and exposed land). These classes dominate the 

area as per the EOSD land cover classification map product (note that these classes are derived from 

EOSD LC 2000 Level 4, which does not include forest density classes). Sampling strata were 

generated from the EOSD LC 2000 map, which enabled estimation of proportions of each land cover 

class over the entire area of the Hearst Forest to guide the sample composition and selection. 

2.4 Change detection validation 

The accuracy assessment of the change detection approach relied on independent reference data 

collected through visual interpretation of the Landsat time series imagery and the 2007 1:20000 scale 

colour-infrared aerial photography (see Stehman and Czaplewski, 1998, Cohen et al., 2010; Cohen et 

al., 1998; Kennedy et al., 2007; Masek et al., 2008; Huang et al., 2009). A stratified random sample 

design was used to select 100 samples (pixels) from the change and no change strata for a total of 200 

reference pixels used to evaluate the accuracy of change detection. For each sample, the BAP 

composites were visually examined for the years immediately preceding and following the greatest 

change year. In addition, the 2007 aerial photography was also examined, and the accuracy assessment 

results were recorded.  
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2.5 Land cover calibration and validation 

A stratified random sampling approach was used to acquire land cover classification calibration 

and reference data for each of the land cover stratum generated from the EOSD LC 2000 data. Sample 

size determination for reference purposes invariably involves tradeoffs between the requirements of 

statistical rigour and logistical realities (Czaplewski & Patterson, 2003; Wulder, et. al., 2007). The 

number of samples required for reference was determined using a 95% confidence interval for p with a 

margin of error of 5%, and an assumption of 80% true accuracy (Cochran, 1977; Wulder, et al., 2007), 

resulting in a sample size of 174. Half of these samples were allocated proportional to the area of the 

classes (from EOSD LC 2000), whilst the other half was used to improve estimates for rare classes. 

For each sample, the land cover class in 2007 was interpreted from the aerial photography according to 

the same classification hierarchy as the EOSD product (Wulder et al., 2008). An additional 406 photo-

interpreted samples were selected for model calibration and were allocated in the same manner (half 

proportional to area of each EOSD class; half for rare classes) (Table 2). All of the calibration and 

reference samples were selected in areas where land cover was unchanged throughout the time period 

of the analysis (1990–2010).  

In this study, for accuracy assessment of change detection and land cover outputs the approach 

which adjusts class area estimates for misclassification error was adopted as described by Card (1982) 

since it fits with recommended good practice for the accuracy assessment and use of land cover maps 

derived from remote sensing (Olofsson et al., 2013, 2014). In this approach the misclassification error 

adjusted estimates of area are derived from the confusion matrix which forms the basis for the 

estimation of map accuracy. 

 

2.6 Classification algorithm 

The Random Forest (RF) algorithm was selected because of its relatively high accuracy and 

computational efficiency (Brieman 2001). The dependent variable – one of the eight classes – was 

predicted using the independent variables of Landsat spectral variables and indices, DEM and time-
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series metrics. The RF classifier consists of an ensemble of tree-based classifiers, it uses bootstrap 

samples with replacement to grow a large collection of classification trees, which assign each pixel to a 

class based on the maximum number of votes that a class receives from the collection of trees. Each 

tree is grown from a randomly and independently selected subspace (i.e., a certain proportion of 

pixels) of the measurement space (training pixels) that is used to train the RF classifier; the remaining 

samples (called out-of-bag cases) are used to assess the accuracy of the classification. Two parameters 

must be specified: (i) the number of trees to grow, and (ii) the number of randomly selected split 

variables at each node (mtry). The default number of trees (500) was used since values larger than the 

default are known to have little influence on the overall classification accuracy (Breiman and Cutler, 

2007). The other adjustable RF tuning parameter, the mtry parameter, controls the number of variables 

randomly considered at each split in the tree building process, and is believed to have a “somewhat 

sensitive” influence on the performance of the RF algorithm (Breiman and Cutler, 2007). For 

categorical classifications based on the RF algorithm, the default value for the mtry parameter isp  , 

where p equals the number of predictor variables within a data set (Liaw and Wiener, 2002). Model 

building and tuning were performed using version 3.0.3 of the 64-bit version of R (R Development 

Core Team, 2014). Several add-on packages were used within R to create the final classification, 

which relied on the “RandomForest” package (Liaw and Wiener, 2002, Breiman and Cutler, 2007, 

Breiman, 2001). 

2.7 Reference year land cover classification 

RF and the aforementioned calibration samples were used to produce a land cover classification 

for 2007. The 2007 reference date was selected based on the availability of near-coincident land cover 

validation data in the form of colour-infrared aerial orthophotography at 1:20000 scale. Two different 

classification scenarios were explored (Table 1). In the first classification scenario, we used single-date 

spectral variables and derived spectral indices as inputs to RF. In the second classification scenario, we 

used the same set of single date inputs as were used in scenario 1, with the addition of change metrics 

derived from trajectory analysis of our stack of annual BAP proxy image composites (Tables 2 and 3).  
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2.8 Temporal transition filtering  

The RF model with the greatest overall classification accuracy, as evaluated following the 

approach outlined in Section 2.5, was applied to each year of the BAP proxy composite imagery. Post-

classification, the annual land cover classifications were evaluated to identify and remediate illogical 

land cover transitions using a temporal filter (e.g., Sexton et al. 2013). We defined illogical land cover 

transitions as those transitions that make no ecological sense in the context of the study area. An 

example of an illogical transition would be from coniferous land cover to exposed land cover to 

coniferous land cover in the span of only three years. The temporal filter was a 3-year moving window 

applied to each pixel through the time series, beginning in 1990 and proceeding annually to 2010. The 

filter was advanced year by year in the temporal sequence, and when an illogical transition was 

encountered, the land cover class from the previous year was automatically used to replace the current 

year's land cover. We then evaluated the impact that this post-classification temporal transition filtering 

had on the accuracy of the reference year land cover classification.  

3.0 Results and Discussion 

3.1 Change detection validation 

The accuracy of land cover change detection is reported in Table 3. Overall accuracy was 92.47% 

with a margin of error of ± 3.66%. Commission and omission errors for change events were 12.00% 

and 7.37% respectively. Figure 3 shows all of the change events detected in the Hearst Forest for the 

period 1990–2010. Of the approximately 24 million pixels in the Hearst Forest, approximately 2 

million (or 10%) experienced a land cover change event during the two decades represented in the 

Landsat time series. The accuracy result indicates more omission errors than commission errors in 

detected changes. There is no noticeable trend in the spatial pattern of errors. The omission errors 

could result from partially changed pixels. Such pixels are usually difficult to detect, as the magnitude 

of change is mostly reliant on the proportion of change within that pixel. 
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3.2 Land cover validation 

Two different land cover classification scenarios were explored for the 2007 reference year, using 

two different sets of input variables for modelling (Table 1). The 2007 classifications were validated 

using high resolution colour aerial photography acquired in 2007 (Section 2.3) and 174 reference 

samples (Section 2.5). The accuracy assessment results for the first 2007 classification scenario, which 

used single-date inputs, are summarized in Table 4, whilst the results for the second scenario, which 

incorporated single date inputs and time series change metrics are summarized in Table 5. 

Incorporation of the change metrics improved overall classification accuracy for 2007 from 79.38% to 

85.77% and reduced the margin of error by 0.82%. Omission errors for scenario 2 were lower for all 

classes except water, and wetland, which were the same for both scenarios. The greatest decrease in 

omission error in scenario 2 relative to scenario 1 were for the broadleaf and exposed land classes. 

Similarly, commission errors were lower for scenario 2, particularly for the exposed land, wetland 

treed, and mixedwood classes. The mixedwood forest class, which represents approximately 41% of 

the Hearst Forest area, had an estimated user’s accuracy of 84.75% for scenario 2, compared to 

71.88% for scenario-1.  

Based on these results, the scenario 2 classification model was selected for application to all other 

years in the time series (1990–2010). Figure 4 shows the 2007 reference land cover classification map 

(scenario 2) for the Hearst Forest with the eight land cover classes. An estimate of variable importance 

(VI), as provided by the Random Forest algorithm, is shown in Figure 5. VI is estimated by randomly 

permuting the variable in the out-of-bag (OOB) samples; an increased out-of-bag error is an indication 

of the importance of that variable to the model, providing indication how influential an input variable 

is on the overall accuracy (Genuer et al., 2010). VI is measured with mean decrease in accuracy 

(MDA), to calculate the MDA of a variable, the values of the variable are randomly permuted for the 

OOB data, while keeping the values of the other variables constant.  The importance of the variable is 

obtained by comparing the resulting misclassification rate with the rate achieved without randomly 

permuting the values of the variable. This procedure is repeated for each variable (Breiman, 2001).  
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 The top five most important variables were single date Landsat spectral variables and spectral 

indices, with the next most important three variables selected from among the Landsat-based time-

series change metrics (trend magnitude, greatest disturbance duration, and post-disturbance duration).   

3.3 Final classification and land cover transitions 

The annual land cover classifications were produced by applying the RF model developed in 

scenario 2 for the reference year to all other years in the time series. Then, we examined all of the 

annual land cover classifications and assessed land cover transitions. Temporal transition filtering was 

performed to remove illogical class transitions, and the transitions that were considered illogical in the 

context of the study area are summarized in Table 6. The application of the filtering process allowed us 

to estimate the gain in classification accuracy from our post-classification transition-rule filtering. The 

accuracy assessment results for the 2007 filtered classification are summarized in Table 7. When 

compared to the results for the scenario 2 reference classification for 2007 (Table 5), the overall 

accuracy was improved 2.2% as a result of the temporal transition filtering, whilst the margin of error 

was reduced by 0.36%. With the exception of the wetland treed and mixedwood classes, omission 

errors were the same or lower for the transition filtered classification, particularly for the wetland class. 

Commission errors were likewise reduced or the same for the filtered classification for most classes, 

but increased for wetland treed.  

The time series of filtered annual land cover classifications were then used to characterize general 

land cover transformations in the Hearst Forest over the past 20 years. Figure 6, 7 and 8 illustrate  

examples of land cover transitions identified in the study; shown are the colour-infrared aerial 

photography, normalized burn ratio (NBR), land cover changes over the 1990-2010 time period, eight 

class land cover classification for 2007, and a summary change transition map. Also shown in Figure 6 

are four smaller sample sites (numbered 1-4), which are used in Figure 7 and 8 to illustrate different 

land cover change transitions in the study area.  

Sites 2 and 4 were disturbed early in the time series 1991 and 1997, respectively; sites 1 and 3 are 

more recent disturbances (2006 and 2005, respectively). These sites were selected to show typical land 



 

 14

cover transition characteristics that are found in the study area.  It can be seen from the summary land 

cover transition map (Figure 6) that many of the pixels that were disturbed early in the time series had 

recovered by the end of the time series. Of the approximately 10% of the study area that was identified 

as experiencing land cover change, more than 90% had recovered by 2010. The remaining areas show 

as herb or exposed land class in 2010 (See Figure 7). Examples of land cover transitions in areas 

shown in Figure 7a and 7b show site 2 from Figure 6 in greater detail. Site 2 contains an area that was 

harvested at the beginning of the available time series; the dominant land cover class at the start of the 

time series was coniferous, as a result of harvesting, the majority of the area was converted to exposed 

land and then transitioned to herb, and eventually the site recovered to mixedwood. The graph in 7b 

shows a pixel located near the edge of this harvest block (labelled as # 1 in 7a) that transitioned from 

coniferous to exposed land then to herb and finally to mixedwood.  Figure 8a and 8b show site 3, 

which displays also a complex series of land cover transitions: the area was harvested in 2004 and 

2005, and most of this area transitioned from exposed land (post-harvest) to different land cover 

classes by the end of the time series in 2010. The graph (Figure 8b) shows an example of a pixel that 

was labelled as conifer at the beginning of the time series, was later classified as exposed land, and 

then experienced a transition over the next few years from herb to mixed wood.  

Table 8 summarizes the land cover transitions in the Hearst forest, by 5-year epochs, from 1990 to 

2010. These five year epochs were selected to illustrate broad land cover change patterns within the 20 

year time interval examined for this study. Note that only pixels that changed land cover at some point 

– not necessarily from the beginning to the end of the time period, but at least once during the epoch - 

were tabulated in each epoch. Most land cover change pixels experienced only one land cover change 

in the 20 year time period. However, some pixels started a given epoch in one land cover class, 

changed to a different class, and then returned to the original class by the end of that five year epoch. 

The percentage of these pixels are counted in Table 8 as having changed from one class and returning 

to that class.  
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Approximately 10% of the study area (about 6000 hectare) are represented in these tables (i.e. 

areas that have experienced land cover change); of these, many of the land cover transitions were made 

to the herb land cover class from one of the forest classes. This occurred in each five year epoch. For 

example, of the 408 hectare mixedwood identified as having changed in the first epoch (in Table 8a), 

approximately 28.61% remained as mixedwood at the end of the epoch (despite having undergone a 

change in land cover class typically during the earlier part of the epoch). Another approximately 51.6% 

of this area originally classified as mixedwood changed to herb in the first epoch. Similarly, of the 

areas that began the first five year epoch as conifer, and experienced a land cover transition during this 

epoch, approximately 23.9% returned to conifer by the end of the time epoch in 1995. In the same 

epoch, approximately 10.19% and 56.53% of these conifer land cover change pixels changed land 

cover to the mixedwood and herb classes, respectively. The exposed land cover pixels also show a 

reasonable land cover change trend over the first epoch; of the 25.8 hectare that began the first five 

year epoch classified as exposed land, approximately 34.23% experienced a land cover change 

(typically to the herb class) but remained or returned to the exposed land class by the end of the 5 year 

epoch. Approximately 16.2% and 35.99% of the exposed land pixels were classified as mixedwood 

and herb by the end of the first epoch.  

There are clear patterns of change between mixedwood, coniferous and herb land cover classes in 

each epoch and over the 20 year time period.  The transitions between these classes appear to represent 

land cover change and dynamics associated with harvesting activities (e.g., clearcutting conifer to 

exposed to herb) and forest regeneration (e.g., herb to mixedwood). The annual land cover 

classification helps to confirm interpretations of the kind of land cover change occurring on an annual 

basis and over time for the entire study area. A compilation of the annual percentage of different land 

cover classes throughout the time series is contained in Figure 9. This classification method can be 

applied to other areas to produce spatially and temporally consistent information on annual land cover, 

providing sufficient archived Landsat data is available. The approach allows the use of spatially 

contiguous, cloud-and haze-free, spatially consistent temporal series of Landsat data for large area land 
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cover mapping. The resulting information on land cover dynamics is important for the study of carbon 

modeling. Spatially explicit carbon modeling methods often require information on annual land cover 

and land cover changes, especially such that can be portrayed in a change matrix. The pre-disturbance 

land cover, the year of disturbance, and the post-disturbance land cover class information, can be 

joined with data on carbon dynamics to estimate carbon stocks, stock changes, and the associated 

emissions and removals over time. Future research is intended towards the implementation of land 

cover classification approaches using all available Landsat imagery to assess intra-annual phenological 

change and to test this approach for other regions with different environments. Further, knowing the 

variable yield of imagery that can be expected within a given year or growing season, opportunities 

such as implemented by Senf et al. (2015) using multi-scale applications also merit additional 

investigation. 

4.0 Conclusions 

In this study, annual land cover maps were generated from a time series of Landsat image 

composites for the period 1990-2010 in the Hearst Forest in northern Ontario. Time series trajectory 

analysis identified areas that had changed land cover at least once during the 1990–2010 time period 

based on the ‘greatest change metric’; such areas were then filtered for illogical transitions, examined 

for land cover change patterns, and interpreted in context of known forest management practices and 

land cover transitions. Incorporation of change metrics derived from the time series into the land cover 

classification approach improved overall accuracy by 6.38% compared to single image date results. 

Subsequent post-classification filtering of the time series of annual land cover classifications further 

improved overall accuracy by an additional 2.2%. The capacity to characterize land cover transitions 

through time is a unique contribution of this study. For example, mixedwood forest that experienced 

change early in the time series showed a typical vegetation transition pattern: mixedwood transitioned 

to exposed land following harvest, then transitioned to herb, and subsequently returned to mixedwood 

by the end of the time series. An area that was more recently disturbed changed from conifer to 

exposed land and then to herb. Such characterizations of land cover transitions rely on both the 
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accurate detection of change events, as well as the accurate classification of land cover. Future work 

will examine conversion of these transitions into inputs relevant for carbon budget modelling, such as 

pre-disturbance and post-disturbance land cover.  These interpretations of land cover dynamics are also 

of general interest to monitoring, inventory, and reporting programs, as well as characterizing post-

disturbance recovery trajectories.  
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Table 1. Variables derived from the BAP composites that were used as inputs for the land cover 
classification; the first layer is elevation from the DEM, followed by four Landsat spectral bands, two 
proxy composite vegetation indices, and 14 NBR based disturbance metrics derived from the Landsat 
time-series.  
 

  Type Variable Description 
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Topography DEM Digital Elevation Model 

Landsat spectral data 

 

Red Landsat Band 3 

NIR Landsat Near Infrared (Band 4) 

SWIR Landsat Shortwave Infrared (Band 5) 

SWIR Landsat Shortwave Infrared (Band 7) 

Vegetation indices 

 

NDVI Normalized Difference Vegetation Index 

NBR Normalized Burn Ratio 

 Time series (NBR- 
based) disturbance 
metrics 

 

 

 

 

 

 

Trend type  Characterize the type of trends according 
to: Monotonic trends (no change or 
breakpoint), single breakpoint or disturbed. 

 NBR RSME Root square mean error of fitting the trend 
to the observed pixel-series values 

 Trend magnitude Difference between the 1st and the last 
value of the fitted trends 

 Greatest disturbance 
year 

The year for the greatest disturbances 

 Greatest disturbance 
magnitude 

NBR variation during the disturbance 
segment 

 Greatest disturbance 
duration 

Persistence of the disturbance event 

 Pre-disturbance 
magnitude 

Variation of the NBR from the initial date 
to the disturbance 

 Post-disturbance 
magnitude 

Variation of the NBR from the disturbance 
to end date 

 Pre-disturbance 
duration 

Duration of the pre disturbance  

 Post-disturbance 
duration 

Duration of the post disturbance  

 Pre-disturbance 
monotonic trend 
duration 

Continual  trends before the disturbance 
segment 

 Post-disturbance 
monotonic trend 
duration 

Continual trends after the disturbance 
segment 

   Pre-disturbance 
monotonic trend 
magnitude 

 

   Post-disturbance 
monotonic trend 
magnitude 
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Table 2. Number of calibration and reverence pixels for different land-cover classes based on the EOSD 
LC 2000 land cover classification legend; samples were selected randomly and interpreted in the available 
colour-infrared aerial orthophotography acquired in 2007. 
 

Class name Class area (ha) Calibration 
sample size 

      Reference       
      sample size 

Mixedwood 
29919 138 59 

Coniferous 
21292 102 44 

Herb 
6424 40 17 

Wetland treed 
6220 39 17 

Broadleaf 
4778 33 14 

Water 
2671 24 10 

Wetland 
1008 17 7 

Exposed land 
296 14 6 

Total  406 174 
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Table 3. Accuracy assessment of change detection identified by the trajectory analysis for years between 
1990 and 2010 based on 200 sample pixels examined in the image data and available colour-infrared 
aerial orthophotography. Cell entries are expressed as the estimated area proportion of the cells of the 
error matrix.  

 REFERENCE 

 

  
Change No Change Total 

User's 

Accuracy 

Commission  

Error 

P
R

E
D

IC
T

E
D

 Change 0.093 0.013 0.105 88.00% 12.00% 

No change 0.063 0.832 0.895 93.00% 7.00% 

Total  0.155 0.845 1 

 
 

Producer's Accuracy 59.71% 98.50% Overall Accuracy 92.47% 

Omission error 40.29% 1.50%  Margin of Error ±  3.66%  
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Table 4. Error matrix of estimated area proportions for eight EOSD LC 2000 land cover classes using single date spectral variables and 
indices with 174 reference samples (interpreted in the available 1:20000 scale aerial orthophotographs). Cell entries are expressed as the 
estimated area proportion of the cells of the error matrix. Accuracy measures are presented with a 95% confidence interval.  
 

  
  REFERENCE 

 Class name Mixedwood Coniferous Herb 
Wetland 

Treed 
Broadleaf Water Wetland  

Exposed 

Land 
Total  

User's 

Accuracy 

(%) 

Commission 

Error (%)   

P
R

E
D

IC
T

E
D

 

Mixedwood 0.285 0.025 0.031 0.031 0.019 0 0 0.006 0.397 71.88% 28.13% 

Coniferous 0.042 0.278 0 0 0 0 0 0 0.320 86.96% 13.04% 

Herb 0.018 0 0.072 0 0 0 0 0 0.090 80.00% 20.00% 

Wetland 

Treed 
0.018 0 0 0.050 0 0 0.005 0 0.073 68.75% 31.25% 

Broadleaf 0.005 0 0 0 0.050 0 0 0 0.055 90.91% 9.09% 

Water 0 0 0 0 0 0.039 0 0 0.039 100.00% 0.00% 

Wetland  0 0 0 0.002 0 0 0.014 0 0.016 85.71% 14.29% 

Exposed Land 0 0 0.004 0 0.001 0 0 0.005 0.009 50.00% 50.00% 

Total  0.368 0.303 0.107 0.083 0.070 0.039 0.018 0.011 1 
  

Producer's 

accuracy (%) 
77.43% 91.83% 67.55% 60.08% 71.97% 100.00% 75.05% 43.27% Overall accuracy 79.38% 

Omission 

error (%) 
22.57% 8.17% 32.45% 39.92% 28.03% 0.00% 24.95% 56.73% Margin of Error ± 6.01%  
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Table 5. Error matrix of estimated area proportions for eight EOSD LC 2000 land cover classes using combination of single date spectral 
variables and time series disturbance metrics with 174 reference samples (interpreted in the available 1:20000 scale aerial 
orthophotographs). Cell entries are expressed as the estimated area proportion of the cells of the error matrix.  
 

    REFERENCE 

 
Class name Mixedwood Coniferous Herb 

Wetland 

Treed 
Broadleaf Water Wetland  

Exposed 

Land 
Total  

User's 

Accuracy 

(%) 

Commission 

Error (%)   

P
R

E
D

IC
T

E
D

 

Mixedwood 0.336 0.020 0.013 0.020 0.007 0 0 0 0.397 84.75% 15.25% 

Coniferous 0.027 0.274 0.020 0 0 0 0 0 0.320 85.42% 14.58% 

Herb 0.014 0 0.077 0 0 0 0 0 0.090 84.62% 15.38% 

Wetland 

Treed 
0.009 0 0 0.059 0 0 0.005 0 0.073 81.25% 18.75% 

Broadleaf 0.004 0 0 0 0.051 0 0 0 0.055 92.86% 7.14% 

Water 0 0 0 0 0 0.039 0 0 0.039 100.00% 0.00% 

Wetland  0 0 0 0.002 0 0 0.014 0 0.016 85.71% 14.29% 

Exposed Land 0 0 0.001 0 0 0 0 0.008 0.009 85.71% 14.29% 

Total  0.390 0.294 0.111 0.082 0.058 0.039 0.018 0.008 1 
  

Producer's 

accuracy (%) 
86.24% 93.13% 68.74% 72.50% 88.40% 100.00% 75.05% 100.00% Overall accuracy 85.77% 

Omission 

error (%) 
13.76% 6.87% 31.26% 27.50% 11.60% 0.00% 24.95% 0.00% Margin of error ± 5.19%  
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Table 6. Illogical class transitions used in the transition-rule filter. Acceptable class transition in the center year between the start and end 
year class is indicated with “�”, while Illogical transitions are indicated with “ �”. 

 
  Middle (second) year 

 Class Mixedwood Coniferous Herb Wetland 

Treed 

Broadleaf Water Wetland Exposed 

Land 

                             

 

 

 

Start (first) 

and end 

(third) 

year 

Mixedwood � � � � � � � � 

Coniferous � � � � � � � � 

Herb � � � � � � � � 

Wetland 

Treed 
� � � � � � � � 

Broadleaf � � � � � � � � 

Water � � � � � � � � 

Wetland � � � � � � � � 

Exposed 

Land 
� � � � � � � � 
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Table 7. Error matrix of estimated area proportions for the transition-rule filtered land cover map for the reference year 2007. The 
classification for this map was performed using a combination of single date spectral variables and time series disturbance metrics (Table 
1). Cell entries are expressed as the estimated proportion of area. 

 
    REFERENCE 

 Class name Mixedwood Coniferous Herb 
Wetland 

Treed 
Broadleaf Water Wetland  

Exposed 

Land 
Total  

User's 

Accuracy 

(%) 

Commission 

Error (%)   

P
R

E
D

IC
T

E
D

 

Mixedwood 0.343 0.013 0.013 0.020 0.007 0 0 0 0.397 86.44% 13.56% 

Coniferous 0.020 0.294 0.007 0 0 0 0 0 0.320 91.67% 8.33% 

Herb 0.014 0 0.077 0 0 0 0 0 0.090 84.62% 15.38% 

Wetland 

Treed 
0.018 0 0 0.055 0 0 0 0 0.073 75.00% 25.00% 

Broadleaf 0.004 0 0 0 0.051 0 0 0 0.055 92.86% 7.14% 

Water 0 0 0 0 0 0.039 0 0 0.039 100.00% 0.00% 

Wetland  0 0 0 0.002 0 0 0.014 0 0.016 85.71% 14.29% 

Exposed Land 0 0 0.001 0 0 0 0 0.008 0.009 85.71% 14.29% 

Total  0.399 0.307 0.098 0.077 0.058 0.039 0.014 0.008 1 
  

Producer's 

accuracy (%) 
85.94% 95.62% 78.10% 70.87% 88.40% 100.00% 100.00% 100.00% Overall accuracy 87.98% 

Omission 

error (%) 
14.06% 4.38% 21.90% 29.13% 11.60% 0.00% 0.00% 0.00% Margin of error ± 4.83%  
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Table 8. Land cover class transitions (%) by 5-year epochs in the Hearst Forest. 

Epoch 1 (1990-1995),  Epoch 2 (1995-2000),  Epoch 3 (2000-2005),  Epoch 4 (2005-2010)     

To 

From Mixedwood Coniferous Herb Wetland 

Treed  

Broadleaf Wetland  Exposed 

Land 

Mixedwood        

Epoch 1 28.61 0.66 51.56 3.91 5.68 4.49 5.10 

            2 8.65 0.47 71.30 1.69 0.42 2.21 15.26 

            3  10.19 1.17 56.74 2.13 0.38 9.12 20.26 

            4 21.53 4.05 38.55 11.45 1.90 9.25 13.28 

Coniferous        

Epoch 1 10.19 23.90 56.53 2.36 0.26 4.13 2.63 

            2 1.90 10.58 70.40 1.61 0.02 4.65 10.83 

            3  4.28 4.52 56.94 2.31 0.07 13.65 18.23 

            4 7.76 8.33 34.62 10.67 0.75 16.48 21.40 

Herb        

Epoch 1 16.59 0.42 80.04 0.92 0.53 0.47 1.03 

            2 3.19 1.32 88.04 1.16 0.61 1.53 4.16 

            3  3.44 0.50 80.46 0.95 0.08 2.87 11.70 

            4 13.50 3.78 65.59 4.85 0.72 5.84 5.72 

Wetland Treed        

Epoch 1 24.50 0.43 60.28 3.21 1.48 5.77 4.32 

            2 6.31 1.17 71.81 3.11 0.10 4.52 12.97 

            3  5.57 1.86 63.83 4.95 0.09 10.99 12.71 

            4 9.49 4.02 32.92 23.36 1.74 18.72 9.74 

Broadleaf        

Epoch 1 28.16 0.17 49.55 0.73 6.16 5.94 9.29 

            2 5.33 0.18 73.62 0.24 3.46 2.39 14.77 

            3  7.52 0.26 51.47 1.38 32.54 1.89 4.92 

            4 10.62 6.06 56.31 3.44 4.67 6.08 12.81 

Wetland         

Epoch 1 31.70 0.64 29.90 1.85 4.61 26.33 4.97 

            2 7.80 6.84 43.33 5.48 0.41 20.88 15.28 

            3  7.20 2.93 39.20 4.20 0.70 30.08 15.70 

            4 12.81 8.85 16.32 16.29 1.94 33.11 10.69 

Exposed Land        

Epoch 1 16.20 0.27 35.99 1.09 3.21 9.01 34.23 

            2 2.21 1.38 19.75 0.71 3.59 1.12 71.24 

            3  2.20 0.37 29.45 0.89 0.21 2.13 64.76 

            4 6.88 1.12 46.89 4.57 0.87 4.31 35.36 
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Figure 1. A flowchart of the overall approach for the annual land cover classification. 
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Figure 2. The location of the study area within the Hearst Forest Management Area in northern 
Ontario. 
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Figure 3. Hearst Forest land cover change map showing land cover changes detected through 
greatest change metric during the time period 1990-2010.



 
 
 
 

 

Figure 4. Eight-class land cover classification in 2007 of the Hearst Forest study area in northern Ontario 
based on Landsat spectral data and time series disturbance metrics. Overall land cover classification 
accuracy was approximately 86% based on 174 reference sites. The small window outlined at the center 
of the map is the area shown in more detail in Figures 6, 7 and 8. 
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Figure 5. Training data variable importance (VI) as estimated in the RF classifier; VI is the average of 
the squared classification error when the variable in the classification is replaced (permuted) with  a  
random  one,  and is  an  indication  of  the  variables’ contribution to  the classification  accuracy. 
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Figure 6. A sub-area of the Hearst Forest dataset showing exemplars of the various land cover transitions 
in the study area. Shown are the colour-infrared aerial photography, normalized burn ratio (NBR), land 
cover changes over the 1990-2010 time period, eight-class land cover classification for 2010, and a binary 
recovery no-recovery mask. Sites 2 and 4 were disturbed early in the time series 1991 and 1997, 
respectively; sites 1 and 3 are more recent disturbances (2006 and 2005, respectively). Sites 2 and 3 are 
shown in greater detail in Figures 7 and 8 respectively.  
 



 

 

 

Figure 7. Examples of land cover transitions in areas shown in Figure 6: a) and b) show site 2, this site 
contains an area that was clearcut at the beginning of the available time series; at that time, the dominant 
land cover class was coniferous, and the majority of the area was converted to mixedwood at the end of 
the time period. The graph in 7b) shows the land cover transitions for a pixel located near the edge of this 
cutover in site 2 where the land cover has transitioned from coniferous to exposed land and then to herb 
and finally to mixedwood. 
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Figure 8. Site 3 in Figure 6. Site 3 has experienced land cover change in 2004 and 2005, and many of these 
cutover pixels transitioned to different land cover classes by the end of the time series. The graph in 8b) 
shows a pixel that began as conifer, transitioned to exposed land following harvesting, and subsequently 
transitioned from herb to mixedwood.  
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Figure 9. Areal percentage of the five major land-cover classes mixedwood, coniferous, herb, wetland 
treed, and broadleaf for years 1990 to 2010. 
 

 

 

 


