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Abstract

Land cover characteristics remain of particulareiest to the monitoring and reporting
communities, and approaches for generating annugbsnof land cover informed by change
information derived from long time series are catly needed. In this study, we demonstrate and
verify the utility of disturbance and recovery nietrderived from annual Landsat time series to
inform the classification of annual land cover oger1.2 million hectare forest management area in
the Boreal Mixedwood Region of northern Ontarion@@a. Annual land cover maps were generated,
producing temporally-informed products and comparedhe established approach of using single-
date spectral variables and indices. The RandoresedRF) classification algorithm was used to
classify land cover annually between 1990 and 2Galowed by the application of an annual
temporal filter to remove illogical land cover trdaimms. Change detection in the study area had an
overall accuracy of 92.47%. The use of time sariefrics in the classification of land cover imprdve
overall accuracy by 6.38% compared to single-dasellts. Using a separate independent reference
sample, the RF classification approach combinetl witst-classification transition filtering, resulte
in an overall classification accuracy of 87.98%eTuse of annual change and trend information to
guide land cover, which is further informed by leajiland cover transition rules, points to the tioea

of efficient, robust, and reliable land cover protdun a transparent and operational fashion.



1.0 Introduction

The interpretation of annual land cover dynamicseldaon the analysis of remote sensing change
detection and land cover classification maps aclage areas and long time periods is an important
natural resource management requirement (Lamkah,e2003; Wulder and Franklin 2007, Roy et al.,
2014). These activities are now feasible and tatdd by the free and open access to the entifety o
the United States Geological Survey Landsat arcfiiveodcock et al., 2008) in a readily accessible
form (Wulder et al. 2012). Access to this tremersipuich archive creates new opportunities to detec
vegetation changes at higher temporal frequency andnore detailed spatial scales than was
previously possible in many areas (e.g., Huand.e2@10; Kennedy et al., 2010; Zhu and Woodcock
2014), with Canada especially well represented withgery (White and Wulder 2013). In actively
managed forested areas, the annual assessmenhdddtaime series data can be used to interpret
detailed disturbance history and land cover chaf@eston et al., 2013). Such an interpretatiorigs a
particularly useful in carbon modelling (e.g., Ternet al., 2004; Goward et al., 2008), and in
characterizing forest change in a manner that issmonsistent with detection of natural and human
influences on ecological condition and processgs, (Kennedy et al., 2014). Carbon balance, whether
based on models or inventory, is highly dependenthe land cover since it affects several directly
relevant characteristics such as albedo, emisspitgtosynthetic potential, and transpiration (Zimal
Woodcock 2014). Unique information produced fromdiseries detection of change includes spectral
clues on succession (Pflugmacher et al. 2012) asttigisturbance recovery (Hermosilla et al. 2015).
Additionally, annual land cover derived from Landsan be used to produce a series of carbon model
relevant variables such as pre-disturbance anddistsirbance land cover which are also of general
interest to monitoring, inventory, and reportingpgnams. This type of information is important to
inform carbon models but conventionally difficult derive when applying standard two-date change
detection and single date land cover classificatiethods.

Annual land cover classification maps produced faense Landsat time series data in specific

areas enhance the interpretation of forest and tawver dynamics when used together with more



spatially comprehensive, but often less frequeptiyduced, Landsat-based single-image date land
cover products and compilations of multiple imagenych as those used to create national or regional
vegetation inventory data). For example, in Canadang the most widely used national land cover
maps is the Earth Observation for Sustainable gweént of Forests product (typically referred to as
EOSD LC 2000). This Landsat-based map providedianad land cover database of the forested area
of Canada with 23 land cover classes for the yeea @000. Annual land cover classification proguct
are an ideal addition to the established EOSD L@02®aps which have, in Canada and in similar
large area coverages in other jurisdictions, bessd o inform reporting programs (Wulder et al.
2004; Kangas and Maltamo 2006) and allow for thplementation of unique science activities (e.g.,
Wulder et al. 2011; Yemshanov et al. 2011).

Annual land cover classification using Landsat tisegies data has fostered the use of specific
disturbance- or recovery-based metrics in the ifleagon procedure (Hansen and Loveland 2012).
Vegetation dynamics and forest cover changes ifiemtising the ‘greatest change metric’, or similar
disturbance- or recovery-based metrics, attemptentify vegetation dynamics that occur prior te th
date of the image classification (e.g., Roy et2014). The composition of land cover at any paint
time is linked to its disturbance history. Therefomclusion of the disturbance-related variabkes i
expected to increase the land cover classificaticturacy over that which can be obtained using
single-date spectral variables. In addition, byngghe change metrics to inform the classificatibis
possible to provide a single land cover class fgivan pixel for the entire period when changeas n
specifically identified and there is no spectral emick to indicate otherwise.

The use of these disturbance- or recovery-basedicsietlso implies an increment in the
dimensionality of the data sets being used in in@Aagssification. This increase in dimensionality ca
compromise the capability of traditional multispattlassifiers, but can be addressed by the satect
of a robust classifier or an ensemble of machiaenieg algorithms, such as the Random Forest (RF)
package (Dietterich 2000). The RF approach, ini@dar, has received notable attention because it

has flexibility with regards to the nature and wlmition of input variables and has been foundéo b



robust in situations problematic to traditionalsdéiers (Liaw and Wiener 2002). Recently, thisrbee
buttressed in the use of disturbance- and recdvased metrics extracted by time series trajectory-
based methods to characterize forest change angbést(via modelling) forest biophysical properties
(Ahmed et al., 2015; Pflugmacher et al., 2012). B&sic approach is based upon detection of change
in surface reflectance and classification of sutlanges in terms of land cover change or by
characterizing trends (for more subtle discontirmupbenomena, such as partial land cover change or
re-growth, see Meigs et al. (2011)).

In this study, we present an approach for intedgrateange detection and land cover mapping with
the aim of informing forest inventory and carbor@mting programs. Our method is novel in that it
integrates: 1) annual large-area composites thaagono spatial or temporal data gaps; 2) predicto
variables that correspond with disturbance andwegoconditions; 3) output as medium resolution
annual land cover maps; and 4) a Random Forestifidaisthat is robust in case of heterogeneous
classes and reference data error. Finally, we geoan indication of future improvements in the
methods based on an analysis of both i) land colwange over time, and ii) other changes that are
captured in the Landsat time series in relatedurhaince- or recovery-based metrics. This latter
improvement will facilitate an interpretation of neosubtle changes within a specific land coverhsuc
as a pattern of smaller though still significantuepes, or through analysis of repeated land cover

transitions (e.g., cyclical change).

2.0 Data and Methods

In this study, we created and interpreted annuablkat time-series land cover classification and
change detection maps that cover the period 1990-20 the Hearst Forest in northern Ontario,
Canada. We incorporated various forest disturbaanéd- recovery-based metrics available from the
image time series into the land cover classificafiwocess, and create land cover change detection
maps based on an analysis of the ‘greatest chamg@ieé time series. We then developed a land cover
transition matrix to relate the observed ‘greatésinge’ locations to specific land cover changesh s

as a change in conifer or mixedwood forest landec@ubsequent to clearcut harvesting activities. To
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assess accuracy of the change detection, we cothfhereesults of these land cover change outcomes
to an independent reference dataset created \@goistation of the Landsat time series imagery. We
evaluated the accuracy of the land cover classibicaising visual interpretation of both the Lartdsa
time series and aerial photography. The samplirgigdefor selection of reference samples was a
probability-based design such that the probabdftgelecting each land cover class is known aimsl it
sensitive to rare classes (Olofsson et al., 20IhAg flowchart in Figure 1 summarizes the overall

approach of this study described in the following-sections.

2.1 Study area

The study area is the Hearst Forest Managementlécagéed in northern Ontario (see Figure 2).
This area is an actively managed, commercial fotleast is found within the Boreal Mixedwood
ecozone, and covers approximately 1.23 million b& which, approximately 1 million ha are
productive forest (Hearst Forest Management Incl1P0 The Hearst Forest is dominated by
coniferous tree species, with black spriiPecea mariana Mill. B.S.P.) representing 67% of gross
volume in the area. Jack pingifus banksiana Lamb.), white spruceP{cea glauca Moench Voss),
balsam fir Abies balsamea L. Mill.) and tamarack Larix laricina Du Roi K. Koch) are also
represented. Deciduous species in this region dieclwhite birch Betula papyrifera Marsh.),
trembling aspen Ropulus tremuloides Michx.) and balsam poplarPépulus balsamifera L.).
Approximately 60,000-70,000 ha of forest is hameésannually from this area using a variety of
methods, including clearcutting (Hearst Forest Mgmaent Inc. 2007). With an active fire suppression
program successfully controlling or limiting thefesfts of wildfire, timber harvesting is the most
common form of disturbance in the Hearst Forestydwer, large fires were recorded in 1995 and
1996. Insect outbreaks have also occurred in tka;dor example, a spruce budworm outbreak
occurred in 1999. Recent harvesting, fire histarng other disturbance events (e.g., insect outbjeak
in the area are described in the Hearst Forest §amant Plan (2007-2017) published by Hearst

Forest Management Inc. (2011).



2.2 Best-available pixel (BAP) image composites and change metrics

The Landsat imagery for the study area was obtaired the United States Geological Survey
(USGS) Landsat archive. The study area intersexttadsat WRS-2 path / rows. A total of 706
Landsat images acquired between 1988-2012, togeprd 990-2010 conditions, were used to create
multi-temporal pixel-based image composites using best-available-pixel (BAP) approach
(implementing the methods described by White e{2014)), and is briefly summarized here: First,
atmospheric correction was applied to all imagesguthe Landsat Ecosystem Disturbance Adaptive
Processing System (LEDAPS) algorithm (Masek et 2006; Schmidt et al., 2013) transforming
digital numbers into surface reflectance values.os@c clouds, cloud shadows and water were
detected and masked using the Function of mask gknadgorithm (Zhu & Woodcock, 2012). Once
pre-processing was complete, candidate pixel obfens were scored according to sensor,
acquisition day of year (DOY), distance to cloudsl &loud shadows, and atmospheric opacity. A
target day of year DOY of August 1 (Julian day 2@k selected within the growing season, and the
date range for candidate images was restricted 80 tlays. In the final step, the pixels with the
highest score were used to populate the final intageposite, and the surface reflectance values for
these best observations were then written in theu@nBAP composite. This method allows the
production of spatially contiguous, cloud-and h&ee, spatially consistent temporal series of @rfa
reflectance composites of Landsat data. Based thgorules applied, instances of no valid pixels for
inclusion in the composite occurred. For exampiegldocations in the annual BAP composites with
observations from images acquired outside +30 ddythe target DOY were assigned a “no data”
value. Similarly, noisy or anomalous pixel valuapikes in the temporal pixel series) were also
identified and assigned a “no data” value as desdrib Hermosilla et al. (2015). In our study,
infilling of data gaps (pixels with “no data” vakslewas performed using the proxy value composite
approach (Hermosilla et al., 2015). Briefly, thigpeoach detects spectral change and derives & serie
of metrics characterizing these spectral changes,tl@en uses these change metrics to aid in proxy

value assignment. Here the “greatest change” mefi used to flag disturbance events. Then, data



gaps were filled by considering the full spectrdbrmation of the pixel time series; proxy values a
informed by those from preceding and/or followirgtes, and these no-data pixels are replaced with
values that are most spectrally similar in time apdce. Replacement of these values is desired to
enable production of gap-free spatially exhaussimaual proxy value composites that are spectrally
consistent in order to support the production afiuah land cover products. Our annual land cover
classification was based on these proxy BAP cong®sind a series of disturbance- and recovery-
based change metrics that are derived using a fooedkdetection process performed informed by the
Normalized Burn Ratio (NBR) on a temporal pixeliser(as per Hermosilla et al., 2015). The
breakpoint detection process, in this study, isquered over the Normalized Burn Ratio (NBR) pixel
series, which has been demonstrated as sensitiveasistent for the retrieval of disturbance esent
over forest environments (Kennedy et al., 2010 fbnds that can be computed after implementation
of the breakpoint detection process are of distiyyoés. In this study, we used the ‘greatest negati
change’ in the time series, to derive a set of methee change metrics. This “greatest change” moetr
allowed us to characterize the change events alsasetonditions pre- and post-the change. The
metrics relay information on change year, magnitaael duration are grouped into pre-change, at the
time of change, and post-change categories. ThHesgge metrics characterize the negative breakpoint
segments using: year, magnitude, and duration.eTalpprovides a complete listing, categorized by
type, of all the spectral inputs derived from th&FBcomposites that were used as inputs for the land
cover classification. Elevation information, dedvefom a DEM, was the only non-composite input

data used for the classification.

2.3 Ancillary data

There are several approaches for incorporatinglancidata in the image classification process
based on earlier studies that incorporated DEM ohataland cover classification (e.g., Janssenl.et a
1990) to approximate differing ecosite conditiomsthis study, several tiles of the Canadian Digita
Elevation Data (CDED) DEM were downloaded from tG@eoBase online spatial data portal

(www.geobase.ca) to be used in the land coveritizgson.



High spatial resolution colour-infrared leaf orriakorthophotography was acquired in 2007 at
approximately 1:20000 scale with 40cm resolutionecimg most of the Hearst forest. This aerial
orthophotography was used to collect calibratiod eeference data for each land cover class. An
existing land cover product was used to providatatfor selection of calibration and reference
samples. The Earth Observation for Sustainable IDpreent of Forests product (EOSD LC 2000) is a
land cover product representing the forested afgaanoada circa 2000, with 23 land cover classes.
Details on the land cover map can be found in Wuédeal. (2008). A stratified random sample was
used with the EOSD LC 2000 map providing an ingitaatification to estimate the proportions of each
land cover class over the entire area of the Hdawstst to guide the proportion of training and
reference samples (Wulder et al., 2006). Eightselasn the EOSD LC 2000 land cover map product
were selected to characterize land cover in therdldsorest (mixedwood forest, coniferous forest,
herb, wetland treed, broadleaf forest, wetland,ewand exposed land). These classes dominate the
area as per the EOSD land cover classification praguct (note that these classes are derived from
EOSD LC 2000 Level 4, which does not include fordshsity classes). Sampling strata were
generated from the EOSD LC 2000 map, which enaétichation of proportions of each land cover

class over the entire area of the Hearst Foregtitde the sample composition and selection.

2.4 Change detection validation

The accuracy assessment of the change detectionaaprelied on independent reference data
collected through visual interpretation of the Lsatdtime series imagery and the 2007 1:20000 scale
colour-infrared aerial photography (see StehmanG@raplewski, 1998, Cohen et al., 2010; Cohen et
al., 1998; Kennedy et al., 2007; Masek et al., 2008ang et al., 2009). A stratified random sample
design was used to select 100 samples (pixels) frenchange and no change strata for a total of 200
reference pixels used to evaluate the accuracyhahge detection. For each sample, the BAP
composites were visually examined for the years édliately preceding and following the greatest
change year. In addition, the 2007 aerial photdgrapas also examined, and the accuracy assessment

results were recorded.



2.5 Land cover calibration and validation

A stratified random sampling approach was used quise land cover classification calibration
and reference data for each of the land coverustrgienerated from the EOSD LC 2000 data. Sample
size determination for reference purposes invayiablolves tradeoffs between the requirements of
statistical rigour and logistical realities (Czap$ki & Patterson, 2003; Wulder, et. al., 2007). The
number of samples required for reference was d@tedrusing a 95% confidence interval for p with a
margin of error of 5%, and an assumption of 80% &acuracy (Cochran, 1977; Wulder, et al., 2007),
resulting in a sample size of 174. Half of thesm@as were allocated proportional to the area ef th
classes (from EOSD LC 2000), whilst the other nadf used to improve estimates for rare classes.
For each sample, the land cover class in 2007 mtagpreted from the aerial photography according to
the same classification hierarchy as the EOSD mto@Mulder et al., 2008). An additional 406 photo-
interpreted samples were selected for model caidraand were allocated in the same manner (half
proportional to area of each EOSD class; half foe rclasses) (Table 2). All of the calibration and
reference samples were selected in areas wherectased was unchanged throughout the time period
of the analysis (1990-2010).

In this study, for accuracy assessment of changgctien and land cover outputs the approach
which adjusts class area estimates for misclaasihic error was adopted as described by Card (1982)
since it fits with recommended good practice fa& #tcuracy assessment and use of land cover maps
derived from remote sensing (Olofsson et al., 2@0D34). In this approach the misclassification erro
adjusted estimates of area are derived from thdusmm matrix which forms the basis for the

estimation of map accuracy.

2.6 Classification algorithm
The Random Forest (RF) algorithm was selected lsecad its relatively high accuracy and
computational efficiency (Brieman 2001). The depenhd@riable — one of the eight classes — was

predicted using the independent variables of Lansisectral variables and indices, DEM and time-
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series metrics. The RF classifier consists of asemible of tree-based classifiers, it uses bootstrap
samples with replacement to grow a large colleatibclassification trees, which assign each piged t
class based on the maximum number of votes thk&isa ceceives from the collection of trees. Each
tree is grown from a randomly and independentleceld subspace (i.e., a certain proportion of
pixels) of the measurement space (training pixéla) is used to train the RF classifier; the renmgn
samples (called out-of-bag cases) are used tosasesccuracy of the classification. Two paranseter
must be specified: (i) the number of trees to greamd (ii) the number of randomly selected split
variables at each node (mtry). The default numibérees (500) was used since values larger than the
default are known to have little influence on thesmall classification accuracy (Breiman and Cutler,
2007). The other adjustable RF tuning parameterpttry parameter, controls the number of variables
randomly considered at each split in the tree mglgrocess, and is believed to have a “somewhat

sensitive” influence on the performance of the R§o@thm (Breiman and Cutler, 2007). For

categorical classifications based on the RF algarijtthe default value for the mtry paramete@is

where p equals the number of predictor variablegkiwia data set (Liaw and Wiener, 2002). Model
building and tuning were performed using versiod.3.0f the 64-bit version of R (R Development
Core Team, 2014). Several add-on packages were wigkith R to create the final classification,
which relied on the “RandomForest” package (Liavd &diener, 2002, Breiman and Cutler, 2007,

Breiman, 2001).

2.7 Reference year land cover classification

RF and the aforementioned calibration samples weegl to produce a land cover classification
for 2007. The 2007 reference date was selectedilmaséhe availability of near-coincident land cover
validation data in the form of colour-infrared akmrthophotography at 1:20000 scale. Two different
classification scenarios were explored (Tableri}hk first classification scenario, we used sirdgee
spectral variables and derived spectral indicas@sds to RF. In the second classification scenave
used the same set of single date inputs as wedeiniseenario 1, with the addition of change mstric

derived from trajectory analysis of our stack ofiaal BAP proxy image composites (Tables 2 and 3).
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2.8 Temporal transition filtering

The RF model with the greatest overall classifaratiaccuracy, as evaluated following the
approach outlined in Section 2.5, was applied thgear of the BAP proxy composite imagery. Post-
classification, the annual land cover classifiqagiovere evaluated to identify and remediate illagic
land cover transitions using a temporal filter (€Sgxton et al. 2013). We defined illogical land/eo
transitions as those transitions that make no gamb sense in the context of the study area. An
example of an illogical transition would be fromndferous land cover to exposed land cover to
coniferous land cover in the span of only threayeahe temporal filter was a 3-year moving window
applied to each pixel through the time series, fo@gg in 1990 and proceeding annually to 2010. The
filter was advanced year by year in the temporalesece, and when an illogical transition was
encountered, the land cover class from the preweas was automatically used to replace the current
year's land cover. We then evaluated the impactthipost-classification temporal transition fikbey

had on the accuracy of the reference year landraassification.

3.0 Results and Discussion

3.1 Change detection validation

The accuracy of land cover change detection isrtegon Table 3. Overall accuracy was 92.47%
with a margin of error ot 3.66%. Commission and omission errors for changmts were 12.00%
and 7.37% respectively. Figure 3 shows all of thenge events detected in the Hearst Forest for the
period 1990-2010. Of the approximately 24 millioxegbs in the Hearst Forest, approximately 2
million (or 10%) experienced a land cover changenéwduring the two decades represented in the
Landsat time series. The accuracy result indicatese omission errors than commission errors in
detected changes. There is no noticeable trentenspatial pattern of errors. The omission errors
could result from partially changed pixels. Suckejs are usually difficult to detect, as the magietu

of change is mostly reliant on the proportion chiee within that pixel.
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3.2 Land cover validation

Two different land cover classification scenariasrevexplored for the 2007 reference year, using
two different sets of input variables for modelliibable 1). The 2007 classifications were validated
using high resolution colour aerial photographyuey in 2007 (Section 2.3) and 174 reference
samples (Section 2.5). The accuracy assessmefisriEsuthe first 2007 classification scenario, otni
used single-date inputs, are summarized in Tablehilst the results for the second scenario, which
incorporated single date inputs and time seriesngdametrics are summarized in Table 5.
Incorporation of the change metrics improved ovedaksification accuracy for 2007 from 79.38% to
85.77% and reduced the margin of error by 0.82%is€8ion errors for scenario 2 were lower for all
classes except water, and wetland, which were dheedor both scenarios. The greatest decrease in
omission error in scenario 2 relative to scenariwete for the broadleaf and exposed land classes.
Similarly, commission errors were lower for sceaa?i particularly for the exposed land, wetland
treed, and mixedwood classes. The mixedwood falass, which represents approximately 41% of
the Hearst Forest area, had an estimated userigaagcof 84.75% for scenario 2, compared to

71.88% for scenario-1.

Based on these results, the scenario 2 classticatiodel was selected for application to all other
years in the time series (1990-2010). Figure 4 shibv 2007 reference land cover classification map
(scenario 2) for the Hearst Forest with the eightllcover classes. An estimate of variable impogan
(V1), as provided by the Random Forest algorithenshown in Figure 5. VI is estimated by randomly
permuting the variable in the out-of-bag (OOB) sk®pan increased out-of-bag error is an indication
of the importance of that variable to the modegvating indication how influential an input variable
is on the overall accuracy (Genuer et al.,, 2010)isVmeasured with mean decrease in accuracy
(MDA), to calculate the MDA of a variable, the vaiof the variable are randomly permuted for the
OOB data, while keeping the values of the otherabdes constant. The importance of the variable is
obtained by comparing the resulting misclassifaratrate with the rate achieved without randomly
permuting the values of the variable. This procedsirepeated for each variable (Breiman, 2001).

12



The top five most important variables were sing#te Landsat spectral variables and spectral
indices, with the next most important three vaesbselected from among the Landsat-based time-

series change metrics (trend magnitude, greatssirdance duration, and post-disturbance duration).

3.3 Final classification and land cover transitions

The annual land cover classifications were produamgdapplying the RF model developed in
scenario 2 for the reference year to all other y@arthe time series. Then, we examined all of the
annual land cover classifications and assessedclavet transitions. Temporal transition filteringusv
performed to remove illogical class transitions] #me transitions that were considered illogicaihie
context of the study area are summarized in Tabldé application of the filtering process allowesl
to estimate the gain in classification accuracynfrour post-classification transition-rule filterinche
accuracy assessment results for the 2007 filtetaskification are summarized in Table 7. When
compared to the results for the scenario 2 referestassification for 2007 (Table 5), the overall
accuracy was improved 2.2% as a result of the teahp@nsition filtering, whilst the margin of erro
was reduced by 0.36%. With the exception of thelamet treed and mixedwood classes, omission
errors were the same or lower for the transititieried classification, particularly for the wetladidss.
Commission errors were likewise reduced or the siEméhe filtered classification for most classes,
but increased for wetland treed.

The time series of filtered annual land cover c¢fasgions were then used to characterize general
land cover transformations in the Hearst Forest tlwe past 20 years. Figure 6, 7 and 8 illustrate
examples of land cover transitions identified ire tetudy; shown are the colour-infrared aerial
photography, normalized burn ratio (NBR), land goslganges over the 1990-2010 time period, eight
class land cover classification for 2007, and areany change transition map. Also shown in Figure 6
are four smaller sample sites (numbered 1-4), whrehused in Figure 7 and 8 to illustrate different
land cover change transitions in the study area.

Sites 2 and 4 were disturbed early in the timeesetP91 and 1997, respectively; sites 1 and 3 are

more recent disturbances (2006 and 2005, respBgtilidese sites were selected to show typical land
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cover transition characteristics that are founthastudy area. It can be seen from the summady la
cover transition map (Figure 6) that many of theefs that were disturbed early in the time serad h
recovered by the end of the time series. Of theamately 10% of the study area that was iderdifie
as experiencing land cover change, more than 9@4dwvered by 2010. The remaining areas show
as herb or exposed land class in 2010 (See FigurExamples of land cover transitions in areas
shown in Figure 7a and 7b show site 2 from Figune greater detail. Site 2 contains an area that wa
harvested at the beginning of the available timesgthe dominant land cover class at the stattef
time series was coniferous, as a result of hamvgsthe majority of the area was converted to exgos
land and then transitioned to herb, and eventub#ysite recovered to mixedwood. The graph in 7b
shows a pixel located near the edge of this hatesk (labelled as # 1 in 7a) that transitioneahir
coniferous to exposed land then to herb and fintalynixedwood. Figure 8a and 8b show site 3,
which displays also a complex series of land cdrkamsitions: the area was harvested in 2004 and
2005, and most of this area transitioned from eggo&nd (post-harvest) to different land cover
classes by the end of the time series in 2010.gfaeh (Figure 8b) shows an example of a pixel that
was labelled as conifer at the beginning of thestgaries, was later classified as exposed land, and
then experienced a transition over the next fewsygam herb to mixed wood.

Table 8 summarizes the land cover transitions énHbarst forest, by 5-year epochs, from 1990 to
2010. These five year epochs were selected tdrafiesbroad land cover change patterns within the 2
year time interval examined for this study. Notattonly pixels that changed land cover at sometpoin
— not necessarily from the beginning to the entheftime period, but at least once during the epoch
were tabulated in each epoch. Most land cover ahaingls experienced only one land cover change
in the 20 year time period. However, some pixetstst a given epoch in one land cover class,
changed to a different class, and then returnagbdemriginal class by the end of that five yearapo
The percentage of these pixels are counted in Tabke having changed from one class and returning

to that class.
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Approximately 10% of the study area (about 6000tdre¢ are represented in these tables (i.e.
areas that have experienced land cover changt#)esé, many of the land cover transitions were made
to the herb land cover class from one of the fockstses. This occurred in each five year epoch. Fo
example, of the 408 hectare mixedwood identifiethasng changed in the first epoch (in Table 8a),
approximately 28.61% remained as mixedwood at tite & the epoch (despite having undergone a
change in land cover class typically during thdieapart of the epoch). Another approximately 34.6
of this area originally classified as mixedwood rifpad to herb in the first epoch. Similarly, of the
areas that began the first five year epoch as egrahd experienced a land cover transition duthig
epoch, approximately 23.9% returned to conifer liy énd of the time epoch in 1995. In the same
epoch, approximately 10.19% and 56.53% of theséfezoland cover change pixels changed land
cover to the mixedwood and herb classes, respéctiVee exposed land cover pixels also show a
reasonable land cover change trend over the fiostle of the 25.8 hectare that began the first five
year epoch classified as exposed land, approxign&él23% experienced a land cover change
(typically to the herb class) but remained or netuar to the exposed land class by the end of theab y
epoch. Approximately 16.2% and 35.99% of the exp@daead pixels were classified as mixedwood
and herb by the end of the first epoch.

There are clear patterns of change between mixedivoammiferous and herb land cover classes in
each epoch and over the 20 year time period. fHmsitions between these classes appear to represen
land cover change and dynamics associated withebtang activities (e.g., clearcutting conifer to
exposed to herb) and forest regeneration (e.g.b her mixedwood). The annual land cover
classification helps to confirm interpretationstioé kind of land cover change occurring on an ahnua
basis and over time for the entire study area. wptation of the annual percentage of differentdlan
cover classes throughout the time series is caglain Figure 9. This classification method can be
applied to other areas to produce spatially angteaily consistent information on annual land cover
providing sufficient archived Landsat data is aafalié. The approach allows the use of spatially

contiguous, cloud-and haze-free, spatially consisemporal series of Landsat data for large aaed |
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cover mapping. The resulting information on langleradynamics is important for the study of carbon
modeling. Spatially explicit carbon modeling methaften require information on annual land cover
and land cover changes, especially such that cqoofteayed in a change matrix. The pre-disturbance
land cover, the year of disturbance, and the pesintbance land cover class information, can be
joined with data on carbon dynamics to estimatdaarstocks, stock changes, and the associated
emissions and removals over time. Future researcéhténded towards the implementation of land
cover classification approaches using all availdlaledsat imagery to assess intra-annual phenologica
change and to test this approach for other regiatis different environments. Further, knowing the
variable yield of imagery that can be expected with given year or growing season, opportunities
such as implemented by Senf et al. (2015) usingti+scéhle applications also merit additional

investigation.

4.0 Conclusions

In this study, annual land cover maps were gengrétem a time series of Landsat image
composites for the period 1990-2010 in the Heaoses$t in northern Ontario. Time series trajectory
analysis identified areas that had changed lanércat/least once during the 1990-2010 time period
based on the ‘greatest change metric’; such areas then filtered for illogical transitions, exameh
for land cover change patterns, and interpretetbmtext of known forest management practices and
land cover transitions. Incorporation of changericgtderived from the time series into the landerov
classification approach improved overall accuragy6l88% compared to single image date results.
Subsequent post-classification filtering of thediseries of annual land cover classifications irth
improved overall accuracy by an additional 2.2%e Tapacity to characterize land cover transitions
through time is a unique contribution of this stubipr example, mixedwood forest that experienced
change early in the time series showed a typicgétation transition pattern: mixedwood transitioned
to exposed land following harvest, then transitibte herb, and subsequently returned to mixedwood
by the end of the time series. An area that wasemecently disturbed changed from conifer to

exposed land and then to herb. Such charactenmzatd land cover transitions rely on both the
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accurate detection of change events, as well aadberate classification of land cover. Future work
will examine conversion of these transitions intputs relevant for carbon budget modelling, such as
pre-disturbance and post-disturbance land covlesé interpretations of land cover dynamics am@ als
of general interest to monitoring, inventory, amgbarting programs, as well as characterizing post-

disturbance recovery trajectories.
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Table 1. Variables derived from the BAP compositethat were used as inputs for the land cover
classification; the first layer is elevation from he DEM, followed by four Landsat spectral bands, tw
proxy composite vegetation indices, and 14 NBR baseisturbance metrics derived from the Landsat

time-series.
Type Variable Description

%\ Topography DEM Digital Elevation Model

o

g Landsat spectral data  Red Landsat Band 3

é NIR Landsat Near Infrared (Band 4)

Em SWIR Landsat Shortwave Infrared (Band 5)

t% SWIR Landsat Shortwave Infrared (Band 7)

—

-% Vegetation indices NDVI Normalized Difference Vegetation Index

g NBR Normalized Burn Ratio
Time series (NBR- Trend type Characterize the type of trends accgrdin
based) disturbance to: Monotonic trends (no change or
metrics breakpoint), single breakpoint or disturbed.

NBR RSME Root square mean error of fitting the trend

Scenario 2: Single date inputs plus trajectory-baskchange metrics

Trend magnitude

Greatest disturbance

year

Greatest disturbance

magnitude

Greatest disturbance

duration

Pre-disturbance
magnitude

Post-disturbance
magnitude

Pre-disturbance
duration

Post-disturbance
duration

Pre-disturbance
monotonic trend
duration

Post-disturbance
monotonic trend
duration

Pre-disturbance
monotonic trend
magnitude

Post-disturbance
monotonic trend
magnitude

to the observed pixel-series values

Difference between tlieahd the last
value of the fitted trends

The year for the greatest disturbances
NBR variation during the disturbance
segment

Persistence of the disturbance event
Variation of the NBR from the initial date
to the disturbance

Variation of the NBR from the disturbance
to end date

Duration of the pre disturbance

Duration of the post disturbance

Continual trends before the disturbance
segment

Continual trends after the disturbance
segment
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Table 2. Number of calibration and reverence pixel$or different land-cover classes based on the EOSD
LC 2000 land cover classification legend; samplesene selected randomly and interpreted in the availae
colour-infrared aerial orthophotography acquired in 2007.

Class name Class area (ha) ~ Cabration Reference
sample size sample size
Mixedwood 5991 138 59
Coniferous 21292 102 44
Herb 6424 40 17
Wetland treed 6220 39 17
Broadleaf 4778 33 14
water 2671 24 10
Wetland 1008 17 7
Exposed land 596 14 6
Total 406 174
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Table 3. Accuracy assessment of change detectioridified by the trajectory analysis for years betwen
1990 and 2010 based on 200 sample pixels examinethie image data and available colour-infrared
aerial orthophotography. Cell entries are expresseds the estimated area proportion of the cells ohe
error matrix.

REFERENCE
Change No Change Total User's Commission
Accuracy Error

a Change 0.093 0.013 0.105  88.00% 12.00%
s No change 0.063 0.832 0.895 93.00% 7.00%
2 Total 0.155 0.845 1

o Producer's Accuracy 59.71% 98.50% Overall Accuracy 92.47%
e Omission error 40.29% 1.50% Margin of Error + 3.66%
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Table 4.Error matrix of estimated area proportions for eight EOSD LC 2000 land cover classes using single daeectral variables and
indices with 174 reference samples (interpreted ithe available 1:20000 scale aerial orthophotographsCell entries are expressed as the

estimated area proportion of the cells of the erromatrix. Accuracy measures are presented with a 95%onfidence interval.

REFERENCE
Wetland Exposed User's Commission
Class name Mixedwood  Coniferous Herb Broadleaf Water Wetland P Total  Accuracy
(]
Treed Land (%) Error (%)
0
Mixedwood 0.285 0.025 0.031 0.031 0.019 0 0 0006 0397  71.88% 28.13%
Coniferous 0.042 0.278 0 0 0 0 0 0 0320  86.96% 13.04%
Herb 0.018 0 0.072 0 0 0 0 0 0.090  80.00% 20.00%
‘#::':"d 0.018 0 0 0.050 0 0 0.005 0 0073  68.75% 31.25%
Q  Broadleaf 0.005 0 0 0 0.050 0 0 0 0.055  90.91% 9.09%
G water 0 0 0 0 0 0.039 0 0 0.039  100.00% 0.00%
S wetland 0 0 0 0.002 0 0 0.014 0 0016  85.71% 14.29%
&  Exposed Land 0 0 0.004 0 0.001 0 0 0.005  0.009  50.00% 50.00%
Total 0.368 0.303 0.107 0.083 0.070 0.039 0.018 0.011 1
Producer’s 77.43% 91.83% 67.55% 60.08% 71.97%  100.00% 75.05%  43.27%  Overall accuracy 79.38%
accuracy (%)
Omission .
22.57% 8.17% 32.45% 39.92% 28.03% 0.00%  24.95%  56.73% Margin of Error +  6.01%

error (%)
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Table 5. Error matrix of estimated area proportionsfor eight EOSD LC 2000 land cover classes usingrobination of single date spectral
variables and time series disturbance metrics witl74 reference samples (interpreted in the availabli&20000 scale aerial
orthophotographs). Cell entries are expressed asdtestimated area proportion of the cells of the ear matrix.

REFERENCE
User's ..
Class name Mixedwood Coniferous Herb Wetland Broadleaf Water  Wetland Exposed Total Accuracy Commission
Treed Land (%) Error (%)
(1]
Mixedwood 0.336 0.020 0.013 0.020 0.007 0 0 0 0397 84.75% 15.25%
Coniferous 0.027 0.274 0.020 0 0 0 0 0 0320  85.42% 14.58%
Herb 0.014 0 0.077 0 0 0 0 0 0.090  84.62% 15.38%
Wetland 0.009 0 0 0.059 0 0 0.005 0 0073  81.25% 18.75%
Treed
o Broadleaf 0.004 0 0 0 0.051 0 0 0 0.055  92.86% 7.14%
G water 0 0 0 0 0 0.039 0 0 0.039  100.00% 0.00%
g Wetland 0 0 0 0.002 0 0 0.014 0 0.016  85.71% 14.29%
&  Exposed Land 0 0 0.001 0 0 0 0 0.008 0009 85.71% 14.29%
Total 0.390 0.294 0.111 0.082 0.058 0039  0.018 0.008 1
Producer’s 86.24% 93.13%  68.74%  72.50% 88.40%  100.00% 75.05% 100.00% Overall accuracy 85.77%
accuracy (%)
Omission .
13.76% 6.87%  31.26%  27.50% 11.60% 000%  24.95%  0.00%  Margin of error 5.19%

error (%)
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Table 6. lllogical class transitions used in the &nsition-rule filter. Acceptable class transition inthe center year between the start and end
year class is indicated with ¥, while lllogical transitions are indicated with “ %”.

Middle (second) year

Class Mixedwood  Coniferous Herb Wetland Broadleaf Water Wetland Exposed
Treed Land
Mixedwood v x v x x x x x
Coniferous x v x x x x x x
Herb v x v x x x x v
Stadrt (f:;St) Wetland
an . en x x x v x x x x
(third) Treed
year Broadleaf x x x x v x x x
Water x x v x x v v v
Wetland x x v x x v v v
Exposed
x x v x x v v v
Land
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Table 7. Error matrix of estimated area proportionsfor the transition-rule filtered land cover map for the reference year 2007. The

classification for this map was performed using aambination of single date spectral variables and e series disturbance metrics (Table

1). Cell entries are expressed as the estimated jpartion of area.

REFERENCE
User's ..
Class name Mixedwood Coniferous Herb Wetland Broadleaf Water Wetland Exposed Total Accuracy Commission
Treed Land (%) Error (%)
(1]
Mixedwood 0.343 0.013 0.013 0.020 0.007 0 0 0 0397  86.44% 13.56%
Coniferous 0.020 0.294 0.007 0 0 0 0 0 0320 91.67% 8.33%
Herb 0.014 0 0.077 0 0 0 0 0 0.090  84.62% 15.38%
ﬁ::':"d 0.018 0 0 0.055 0 0 0 0 0.073  75.00% 25.00%
o Broadleaf 0.004 0 0 0 0.051 0 0 0 0.055  92.86% 7.14%
G Water 0 0 0 0 0 0.039 0 0 0.039  100.00% 0.00%
g Wetland 0 0 0 0.002 0 0 0.014 0 0.016  85.71% 14.29%
&  Exposed Land 0 0 0.001 0 0 0 0 0008  0.009 8571% 14.29%
Total 0.399 0.307 0.098 0.077 0.058 0.039 0.014 0.008 1
Producer’s 85.94% 95.62% 78.10% 70.87% 88.40% 100.00% 100.00%  100.00%  Overall accuracy 87.98%
accuracy (%)
Omission .
14.06% 4.38% 21.90% 29.13% 11.60% 0.00% 0.00% 0.00%  Margin of error £ 4.83%

error (%)
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Table 8. Land cover class transitions (%) by 5-yeaepochs in the Hearst Forest.

Epoch 1 (1990-1995), Epoch 2 (1995-2000), Epoch 3 (2000-2005), Epoch 4 (2005-2010)

To
From Mixedwood Coniferous Herb Wetland Broadleaf Wetland Exposed
Treed Land

Mixedwood

Epoch 1 28.61 0.66 51.56 3.91 5.68 4.49 5.10
2 8.65 0.47 71.30 1.69 0.42 2.21 15.26
3 10.19 1.17 56.74 2.13 0.38 9.12 20.26
4 21.53 4.05 38.55 11.45 1.90 9.25 13.28

Coniferous

Epoch 1 10.19 23.90 56.53 2.36 0.26 4.13 2.63
2 1.90 10.58 70.40 1.61 0.02 4.65 10.83
3 4.28 4.52 56.94 2.31 0.07 13.65 18.23
4 7.76 8.33 34.62 10.67 0.75 16.48 21.40

Herb

Epoch 1 16.59 0.42 80.04 0.92 0.53 0.47 1.03
2 3.19 1.32 88.04 1.16 0.61 1.53 4.16
3 3.44 0.50 80.46 0.95 0.08 2.87 11.70
4 13.50 3.78 65.59 4.85 0.72 5.84 5.72

Wetland Treed

Epoch 1 24.50 0.43 60.28 3.21 1.48 5.77 4.32
2 6.31 1.17 71.81 3.11 0.10 4.52 12.97
3 5.57 1.86 63.83 4.95 0.09 10.99 12.71
4 9.49 4.02 32.92 23.36 1.74 18.72 9.74

Broadleaf

Epoch 1 28.16 0.17 49.55 0.73 6.16 5.94 9.29
2 5.33 0.18 73.62 0.24 3.46 2.39 14.77
3 7.52 0.26 51.47 1.38 32.54 1.89 4.92
4 10.62 6.06 56.31 3.44 4.67 6.08 12.81

Wetland

Epoch 1 31.70 0.64 29.90 1.85 4.61 26.33 4.97
2 7.80 6.84 43.33 5.48 0.41 20.88 15.28
3 7.20 2.93 39.20 4.20 0.70 30.08 15.70
4 12.81 8.85 16.32 16.29 1.94 33.11 10.69

Exposed Land

Epoch 1 16.20 0.27 35.99 1.09 3.21 9.01 34.23
2 2.21 1.38 19.75 0.71 3.59 1.12 71.24
3 2.20 0.37 29.45 0.89 0.21 2.13 64.76
4 6.88 1.12 46.89 4.57 0.87 431 35.36
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based on Landsat spectral data and time series disbance metrics. Overall land cover classification
accuracy was approximately 86% based on 174 referea sites. The small window outlined at the center
of the map is the area shown in more detail in Figes 6, 7 and 8.
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Figure 5. Training data variable importance (V1) asestimated in the RF classifier; VI is the averagef
the squared classification error when the variablén the classification is replaced (permuted) witha
random one, andis an indication of the vaables’ contribution to the classification accurag.
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Figure 6. A sub-area of the Hearst Forest datasehewing exemplars of the various land cover transitins
in the study area. Shown are the colour-infrared agal photography, normalized burn ratio (NBR), land
cover changes over the 1990-2010 time period, eighiass land cover classification for 2010, and arary
recovery no-recovery mask. Sites 2 and 4 were dished early in the time series 1991 and 1997,
respectively; sites 1 and 3 are more recent distudmces (2006 and 2005, respectively). Sites 2 anar8

shown in greater detail in Figures 7 and 8 respectély.
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Figure 7. Examples of land cover transitions in args shown in Figure 6: a) and b) show site 2, thiges
contains an area that was clearcut at the beginningf the available time series; at that time, the dainant
land cover class was coniferous, and the majorityféhe area was converted to mixedwood at the end of
the time period. The graph in 7b) shows the land a@r transitions for a pixel located near the edgefdahis
cutover in site 2 where the land cover has transitned from coniferous to exposed land and then to He

and finally to mixedwood.
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Figure 8. Site 3 in Figure 6. Site 3 has experiemtéand cover change in 2004 and 2005, and many dieise
cutover pixels transitioned to different land coverclasses by the end of the time series. The graph8b)
shows a pixel that began as conifer, transitionedtexposed land following harvesting, and subsequéynt

transitioned from herb to mixedwood.

37



—4— Mixedwood ~{i— Coniferous == Herb ~Wetland Treed =#=Broadleaf

a5

40 0”“**“‘“h*__*__tﬁH*-_*—_*__*#_,__4ﬁ_*__*#_*H_*__*ﬂﬂ*_ﬂ*af‘H\‘
35

30

25

20

% Cover

15

0 m

1950 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010
YEAR

Figure 9. Areal percentage of the five major land-gaver classes mixedwood, coniferous, herb, wetland
treed, and broadleaf for years 1990 to 2010.
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