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Mapping dominant tree species over large forested areas using Landsat best-available-pixel 

image composites  

Abstract: Remotely sensed image composites that are pixel-, rather than, scene-based, are 

increasingly feasible over large areas and fine spatial resolutions. For large jurisdictions that 

utilize remotely sensed imagery for ecosystem mapping and monitoring, pixel-based composites 

enable a wider range of applications, at higher quality. The goal of this study was to model 

spatial distributions of six tree species over a large forested area of Saskatchewan, Canada (>39 

million ha) at 30 m spatial resolution using a multi-year Best-Available-Pixel (BAP) Landsat 

composite. We tested the influence of the BAP composite on the resultant maps by comparing 

species composition and configuration for areas where imagery was from a single sensor, year, 

and day of year, to areas with variable composite characteristics. Model error rates ranged from 

0.09% to 0.24%, Area-Under-the-Curve values approaching 1, and met ecological expectations. 

The BAP composite was found to have little effect on model outcomes, with composition and 

configuration values in non-reference areas being similar for all species but one, which had an 

unexpected configuration. Moreover, sensor, year, and day of year were similar for reference and 

non-reference blocks for all species. Results indicate Landsat BAP image composites are useful 

for generating large-area maps of tree species distributions. 

Keywords: forest, vegetation, modelling, composite, Canada, species, spatial  

Abbreviations: Best-Available Pixel (BAP), National Forest Inventory (NFI), Normalized Burn 
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INTRODUCTION  

Effective forest management requires knowledge of the spatial distribution of tree species 

composition and abundance. Species information is used to assess risks and impacts associated 

with a variety of natural or anthropogenic disturbances, including fires, insect and invasive plant 

infestations, and resource extraction. Species composition and abundance, together with other 

metrics such as species richness, species endemism, and rarity are also important metrics of 

biodiversity that can be used to guide conservation planning (Fleishman et al., 2006) and 

ecosystem service assessment (Kremen, 2005). In addition, climate change may alter the 

distribution of tree species in the future (Coops and Waring, 2010; Hamann and Wang, 2006; 

Pfeifer-Meister et al., 2013; Thuiller et al., 2005), and knowledge of the current distribution is 

the first step in attempting to understand, monitor, and as possible, manage those changes.  

Despite the importance and various needs for tree species distribution data, the 

availability of these data is limited. Some projects may benefit from the tree observations and 

vegetation plot data compiled and shared via online databases such as the Global Biodiversity 

Information Facility (gbif.org) and the Global Index of Vegetation-Plot Databases (givd.info). 

However, these data remain spatially incomplete and biased towards easily accessible or 

protected areas (García Márquez et al., 2012; Hortal et al., 2007). Expert range maps (e.g., Little 

1971) provide a general indication of where species occur, but overestimate the true distribution 

of a species (Jetz et al., 2007; McPherson and Jetz, 2007). Strategic-level forest inventories are 

typically undertaken in areas that have the capacity to support commercial timber production. 

Outside these areas, forest inventory data may be available, generally with less spatial and 

attributional detail, according to the forest monitoring needs in the area. In Canada, for example, 
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forest inventories are common in the more intensively managed southern forests (Falkowski et 

al., 2009), while only the sample-based National Forest Inventory aims to systematically 

characterize forest resources outside of managed forest areas (Gillis et al., 2005; Wulder et al., 

2004b).  

The paucity of detailed inventory data makes satellite remote sensing a necessary source 

of information from which species distributions can be mapped or modelled over large areas. 

High spatial resolution imagery can offer opportunities for mapping individual tree structure and 

composition (Wulder et al., 2004a), but the spatial image extents are limited (e.g., 10 by 10 km) 

requiring many images (with variable view angles and illumination conditions) to map a given 

area, leading to high cost. Imagery with larger extents are often of interest for mapping larger 

areas; however, these data come with pixel sizes that subsume many individual objects and 

landscape features, diminishing the variance between pixels, and limiting the capacity to map 

high levels of categorical detail, such as tree species composition. Issues such as atmospheric 

contamination (i.e., clouds, haze) further limit scene availability and confound mapping efforts. 

Several recent advances address some of these shortcomings and offer increased capacity to use 

remotely sensed data for predictive species mapping over large areas at higher spatial 

resolutions. Specifically, as of 2008, satellite imagery from the Landsat series of sensors, 

extending from 1972 to present, are freely available to the public (Woodcock et al., 2008; 

Wulder et al., 2012). Free and open access to analysis-ready Landsat data has enabled 

considerable innovative capacity (Wulder and Coops, 2014). Combined with improved 

computing power that facilitates large-area image compositing approaches (Roy et al., 2010) as 

well as the applications-focused best-available-pixel (BAP) approaches of Griffiths et al. (2013) 

and White et al. (2014), spatially exhaustive coverage of large areas at a spatial resolution of 30 

m in a systematic and transparent fashion is now possible. For instance, compositing approaches 

can be based upon use of the best available observation for each pixel, with "best" being defined 

according to a set of scores for characteristics such as year, day of year (DOY), distance to cloud 

and cloud shadow, and sensor (Griffiths et al., 2013). Regional composites of medium spatial 

resolution imagery can be expected to become increasingly common (Griffiths et al., 2014). 

Detailed, efficient (large-area) maps of species distributions are a likely product of these 

compositing approaches, so long as the models are robust to some composite-imposed spectral 

variability. The goal of this research is to generate spatially detailed (30 m) distribution maps for 

six tree species over a large forested area of Canada using a multi-year Best-Available-Pixel 

(BAP) Landsat composite. A specific objective was to evaluated the impact of composite 

characteristics (i.e.,  DOY, year, and sensor) on model outcomes, which was assessed by the 

spatial pattern (composition and configuration) of the predictions.  

METHODS 

Study area 

The study area is approximately 39 million ha, and comprises the three forested ecozones of 

Saskatchewan, Canada. From North to South, these are the Taiga Shield, the Boreal Shield, and 

the Boreal Plains (Ecological Stratification Working Group, 1996) (Figure 1). The Boreal Plains 

is adjacent to the Prairie ecozone further south, and consists of rolling uplands and plains with a 

mixture of deciduous and coniferous vegetation species (McLaughlan et al., 2010). The Boreal 

Shield and Taiga Shield are characterized by a harsh climate and poorer soils, a greater 

proportion of coniferous tree species, and a lower diversity of plant species (McLaughlan et al., 
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2010; Pastor et al., 1996). A variety of provincial forest inventory data exist in the managed 

forest area of the province (Figure 1), with varying spatial scales, levels of attribution, and 

temporal frequencies (Gillis et al., 2005; Saskatchewan Environment - Forest Service, 2004; 

Saskatchewan Ministry of Environment, 2009).  

Tree species distribution data 

Tree species distribution data were acquired from Canada’s National Forest Inventory (NFI). The 

NFI consists of a grid of permanent sample plots distributed across the country, the majority of 

which are 2 km x 2 km “photo plots” (i.e., derived from air photo interpretations), within which 

multiple polygons are delineated indicating species composition and relative abundance. To 

reduce uncertainty at polygon edges, we removed 30 m (one pixel) from the inner edge of each 

polygon to ensure agreement between the inventory data and our predictor data (Verbyla and 

Hammond, 1995). To ensure adequate sample size and quality, we did not model species that 

occurred relatively infrequently or that occurred exclusively in polygons of heterogeneous 

composition (≤90% of one species). In addition, polygons that were observed to have burned or 

been harvested since they were inventoried were removed, as were polygons that were very 

small in size (less than one pixel). Thus of the eleven tree species identified in the NFI photo plot 

data, we modelled the six most common (Table 1): black spruce (Picea mariana), trembling 

aspen (Populus tremuloides), jack pine (Pinus banksiana), white birch (Betula papyrifera), 

tamarack (Larix laricina), and white spruce (Picea glauca). Species that were present in 

insufficient numbers for modeling were Abies balsamea, Acer negundo, Fraxinus pennsylvanica, 

Pinus contorta, and Populus balsamifera. Our six target species may be found across all three 

forested ecozones in the province (McLaughlan et al., 2010).  

Image composite data 

We used a multi-year BAP surface reflectance composite as the source of spectral information in 

our distribution models. A detailed description of this and other compositing methods is provided 

in White et al. (2014). Briefly, candidate pixel observations were scored according to sensor 

(Landsat TM or ETM+), year, DOY, distance to clouds or cloud shadows, and haze, and the 

pixels with the highest score used to populate the final image composite. Our target was Landsat 

5 TM imagery from August 1, 2010; however, candidate pixels included all observations 

acquired ± 30 days of August 1, 2009, 2010, and 2011, from Landsat 5 TM or 7 ETM+, as 

required to provide complete, cloud-free coverage of the study area. In Table 2 we show the 

number of unique images considered and selected for the final BAP composite for Saskatchewan 

as a whole (encompassing our study area as well as the Prairie Ecoregion). After scoring, 5% of 

pixel observations in the final composite of our study area were acquired from 2009 imagery, 

69% from 2010 imagery, and 2% from 2011 imagery. The remaining 24% of pixels had BAP 

observations for both 2009 and 2011, and a proxy value was generated by taking the average of 

the 2009 and 2011 observations (see White et al., 2014). Pixels with proxy values were excluded 

from the analyses because there were no logical corresponding DOY or sensor values with which 

to assess relationships. In total, 95% of pixel observations were from Landsat 5 TM, and 5% 

from Landsat 7 ETM+. Almost 30% of pixel observations came within 7 days of the target DOY 

(August 1), with the remaining pixels acquired within 30 days of August 1. In the context of this 

study, which was designed to model tree species distributions, it is important to note that the 

majority of pixels (by area) in the composite came from imagery acquired in the 2010 target year 

and, furthermore that tree species distributions tend to change slowly over longer time horizons. 
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As such, the multi-year image composite used in this study is appropriate for modelling species 

distributions. 

In order to reduce undesirable variability in the spectral reflectance values of the predictor 

variables used in our models (see Loveland & Merchant 1991), we calculated several spectral 

indices from the image composite data, and used these to exclude non-vegetated areas, and to the 

extent possible, non-forested areas from our analyses (Figure 2). Specifically, the Normalized 

Difference Vegetation Index (NDVI), and the Tasseled Cap (Crist and Cicone, 1984; Kauth and 

Thomas, 1976) Greenness (TCG), Brightness (TCB), and Wetness (TCW) indices were used to 

remove water, bare ground, urban areas, and sparsely vegetated areas. As well, the Normalized 

Burn Ratio (NBR) (Key and Benson, 2006), was used to identify and remove areas that had 

experienced fire in recent years, with the threshold NBR value chosen for this analysis (0.15) 

validated by data from the Canadian National Fire Database (Natural Resources Canada, 2010). 

An unsupervised classification of the Landsat spectral bands for the remaining pixels served to 

remove additional areas subsequently identified as cultivated land.  

Topographic data 

Topographic data were acquired from the freely available Canadian Digital Elevation Data 

(http://www.geobase.ca/geobase/en/data/cded/). These elevation data are derived from provincial 

and national topographic data sources, and are provided as a 1:50,000 digital elevation model 

(DEM). The DEM, which has a native spatial resolution of approximately 23 m (0.75 arc 

seconds), was resampled to match the 30 m spatial resolution of our image composite using 

bilinear resampling. From the 30 m DEM we calculated slope (in degrees), the Topographic 

Solar Radiation Index (TRASP; a transformed measure of aspect), and the Topographic Wetness 

Index (TWI) (Table 3). 

Species distribution modeling 

Species distribution modelling was conducted using  Random Forests™ (RF) in R 3.1 (Breiman, 

2001). We chose RF, a type of decision tree, because  it can accommodate non-normal responses 

and non-linear relationships, and automatically account for interactions among predictors 

(De’ath and Fabricus, 2000; Elith et al., 2008; Hawkins, 2012). Decision trees involve a 

sequence of binary splits at values of the predictor variables that result in the maximum 

differentiation of values of the response variable (in this case, species dominance or non-

dominance at a given location). In RF, many (500 to 2000) single trees are developed, each 

constructed from a different bootstrapped sample of the training data and a randomly selected 

subset of the predictor variables (Prasad et al., 2006). The predictions are averaged over all trees 

to generate an overall probability while minimizing the chances of over-fitting to the training 

data (Franklin, 2009; Prasad et al., 2006). Ensemble tree methods have been found to perform 

well relative to most other predictive methods across many regions, and species, including plants 

(Elith et al., 2006; Guisan et al., 2007b; Prasad et al., 2006).  

The use of RF for species distribution modeling involved both fitting and prediction 

stages. First, each model was fit using the species observation data from Table 1 and the mean of 

each predictor variable. The predictor variables used in the modelling were selected from among 

the multiple, aforementioned topographic and spectral variables after conducting a Spearman’s 

rank correlation analysis and assessing variable utility through boxplots for each predictor 

variable across all species. Specifically, we selected the following three spectral and two 
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topographic indices for use as inputs, all with correlations less than ±0.15: the Tasseled Cap 

TCG, TCB, and TCW, the TRASP and the TWI (Table 3). We used 500 decision trees, with a 

random subset of two of the explanatory variables chosen for input for each of these individual 

trees. Because of the unbalanced number of observations of dominance and non-dominance) in 

the training data for a given species (Table 1), we used a “down-sampling” approach, specifying 

that each model should use all samples from the least common class (dominance), and an equal 

number of samples from the more common class (non-dominance) (Chen et al., 2004). A 

separate RF model was generated for each species, and thus the number of samples varied across 

models.  

Each output RF model contained probabilities of dominance ranging from 0 to 1, which 

are classified by default into the binary classes dominance or non-dominance, if probabilities are 

≥0.5 or <0.5, respectively. However, often a threshold probability other than 0.5 is preferred 

(Nenzén and Araújo, 2011), particularly for rare species (Freeman and Moisen, 2008). To choose 

appropriate threshold probabilities for our models, we generated a Receiver Operating 

Characteristic (ROC) plot for each species using the auc.roc.plot() function in the 

PresenceAbsence library in R (v3.1.2). An ROC plot shows how the rate of true positives (y-

axis) versus false positives (x-axis) of a model vary for all threshold probabilities between 0 and 

1. A perfect classification would pass through the upper left corner of the plot (100% true 

positives and 0% false positives). A threshold value that achieves the minimal distance between 

this place of perfect classification and the curve, is an appropriate value to transform continuous 

outputs to binary classifications (Liu et al., 2005).  

Finally, each of the six models were re-run using values of the predictor variables for 

locations (pixels) where species observations were absent, and the predictions of dominance and 

non-dominance output as continuous raster surfaces using the determined thresholds. A 

secondary goal was to create a forest composition map with all species combined. A composite 

species map was generated by evaluating the individual probabilities of dominance resulting 

from each of the six RF models were compared at each location (pixel) and that species with the 

highest overall probability was selected as the appropriate classification value for that location.  

Model evaluation 

Model performance was assessed using the out-of-bag (OOB) error generated internally by the 

RF method eliminating the need for a separate cross-validation (Breiman, 2001). Specifically, 

the ability of the classifier to correctly predict observed values was assessed, where discrete class 

predictions were based on species-specific probability thresholds determined through the ROC 

analysis described above. We also examined the Area Under the Curve (AUC) associated with 

an ROC plot, as calculated by back-predicting on our observed data (essentially but not exactly 

the same data used for training because of the subsampling and consensus approach used in 

RandomForests). The AUC ranges from 0.5 to 1, and indicates the proportion of times that the 

model discriminates between our two outcomes better than random (Jiménez-Valverde, 2012), or 

more specifically, the proportion of times a randomly chosen instance of dominance has a value 

larger than that for a randomly chosen instance of non-dominance (Fielding and Bell, 1997). 

Thus higher AUC values indicate better models.  

Finally, we compared our resultant tree distribution models with previous studies, general 

knowledge of the species’ ranges, and trends of dominance per ecozone and ecoregion. In 

particular, we calculated the areal extent of each dominant species as predicted in our overall 

forest composition map per ecozone and ecoregion and ranked these in descending order. We 
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repeated this calculation using homogenous polygons from NFI photo plot data to assess 

agreement between model outputs and the training data over a broader scale. Similarly, we 

generated regional summaries of species dominance by combining predictions of relative basal 

area for the same species from a recent study by Beaudoin et al. (2014).  

Assessing the effects of the image composite on spatial patterns of the models 

To assess the impact that compositing had on predicting species distributions, we tested the 

hypothesis that the spatial pattern of predictions was similar for reference sample blocks and 

non-reference sample blocks. Reference blocks had pixel observations derived from a single 

year, a single DOY, and a single sensor, while non-reference blocks had pixel observations from 

multiple years, DOYs, and sensors. Spatial patterns can be quantified by a combination of 

composition and configuration. Whereas composition is aspatial and refers to the variety and 

(relative) abundance of different features (e.g., tree species), configuration refers both to the 

spatial characteristics of individual patches such as size and shape, as well as spatial 

relationships among neighbouring patches or neighbouring cells (Gustafson, 1998). While 

composition indicates what is present at any given location, configuration metrics provide a 

context to local conditions, and permits study of how spatial patterns are an expression of 

process (Fahrig, 2005; Turner, 1989).  

The analysis was undertaken within sample blocks measuring 1020 m x 1020 m, distributed 

over a random 10% of the study area (for a total of 31,840 samples). An extent of 1020 m x 1020 

m was chosen to ensure coverage of the data gaps (of 1 to 14 pixels in size, see Goward et al., 

2010; Storey et al., 2005) resulting from Landsat 7 ETM+ Scan-Line Correction failure, while 

also being a number within which 30 m Landsat pixels could be equally divided. Three image 

composite characteristics were evaluated: acquisition year (2009, 2010, or 2011), sensor (TM or 

ETM+), and the number of days from the target DOY of August 1 (ranging from 0 to 30). 

 For each species, composition was quantified within each 1020 m x 1020 m block as the 

sum of pixels with predicted dominance for that species. All blocks had dominance of at least 

one species. Configuration was measured for each species using join counts within each 1020 m 

x 1020 m area. A join count test can be used to assess spatial autocorrelation in categorical, 

especially binary, variables, such as dominance/non-dominance (Boots, 2006). Using a join 

count, the spatial configuration of a species can be quantified as clustered or dispersed, relative 

to complete spatial randomness (O’Sullivan and Unwin, 2010). For binary data, the two 

categories are normally referred to as either “Black” (B) or “White” (W) (here, dominance or 

non-dominance, respectively). For this analysis, we were interested only in the JBB (dominance-

dominance) join-count statistic:  

JBB =  

where i and j are the two sampling units being compared, xi is the value of the sampling unit (1 or 

0), and δij is the adjacency of i and j (1 when they are adjacent, 0 when they are not). The 

expected values of joins are then calculated based on the proportion of each category and  

number of total joins in the study (which depends on how connectivity is defined), and the 

observed and expected values are then compared to assess the null hypothesis of complete spatial 

randomness (Fortin and Dale, 2005). We computed a join count for each species, using the 
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Rook’s case definition of contiguity (four neighbours). Each species had to be predicted within at 

least two 30 m cells within each 1020 m x 1020 m block to be included in the analysis. Missing 

data within each 1020 m x 1020 m block were reclassified as zeroes to allow calculation of the 

join-counts, while remaining statistically conservative.  

To assess whether the use of an image composite affected our modelled species 

distributions, we compared values of composition and configuration between reference (n = 

23,581) and non-reference (n=8259) sample blocks. We calculated the frequency distribution of 

the composition and configuration values for each of the six species from the reference sample 

blocks, and extracted the 5
th

 and 95
th

 percentiles for each. The number of composition and 

configuration values in the non-reference sample blocks that fell below the 5
th

 or above the 95
th

 

percentiles was then calculated. Blocks with these unexpected values were then mapped and a 

summary of their sensor type, year and DOY characteristics were extracted.  

RESULTS 

Species distribution modelling 

The ROC threshold optimization method resulted in a threshold of 0.7 for all species except for 

Picea mariana and Populus tremuloides, for which the optimum threshold was 0.6 (Table 4). 

These thresholds were used to map the distribution of each individual tree species (Figure 3). 

Combining the individual species maps creates an overall map of forest composition (Figure 4). 

Pinus banksiana was predicted to dominate over the largest spatial extent (8.9 million hectares in 

total), particularly at mid-to-high latitudes (Figure 4). Populus tremuloides was predicted to 

dominate in the southern extreme of the Boreal Plain ecozone, in the Aspen Parkland ecoregion, 

but is also found across the province even in the far north, with predicted dominance covering 

7.3 million ha in total. Picea mariana was predicted to be the next most widespread species, 

dominating over 6.6 million ha, particularly at mid-latitudes, but being also widespread in the 

north. Larix laricina was predicted to be dominant at low to mid latitudes in the Boreal transition 

ecoregion and in lowland areas and known wet areas such as the Saskatchewan River delta, 

straddling the eastern border of Saskatchewan, covering 3.4 million ha in total. Picea glauca and 

Betula papyrifera were predicted to dominate with considerably less extent (approximately 1.3 

million ha and 824,000 ha respectively). 

Model evaluation 

The ability of our models to correctly classify the dominance or non-dominance of individual 

species varied from species to species (Table 4). Overall, OOB error rates were less than 25%, 

indicating reasonable model fit to the training data. Error rates were much lower for species with 

sufficient sample sizes. Specifically, at the selected thresholds, Populus tremuloides (with one of 

the highest sample sizes) had the lowest OOB error at 9%. Betula papyrifera and Picea glauca 

(with the two lowest sample sizes) had the highest OOB error rates at 24% each. AUC values 

were very high for all models (0.99 to 1), indicating good model performance.  

Trends in the relative areal extent of species dominance for the province’s forested 

ecozones and ecoregions predicted in this study are generally comparable to those in the NFI 

photo plot database, as well as to those of species occurrence from Beaudoin et al. (2014) (Table 

5). For example, all three studies/datasets indicated that both the Boreal Plain Ecozone, and 

Boreal Transition Ecoregion, are dominated by Populus tremuloides. All three datasets also 
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suggest Pinus banksiana is dominant in the Athabasca Plain ecoregion. Some differences are 

also apparent. For instance, the current study predicts Pinus banksiana to be dominant across the 

largest proportion of the Taiga Shield, whereas the other datasets indicate Picea mariana is most 

dominant.  

Assessing the effects of the image composite on spatial patterns of the models 

The proportion of composition and configuration values within the non-reference sample blocks 

falling outside the expected distribution (5
th

 to 95
th

 percentiles of values of the reference blocks) 

was fairly low. Depending on the species, 3.7% to 9.6% of the blocks had unexpected 

composition values, while 7.1% to 16.5% had unexpected configuration values (Table 6). Given 

that we set the critical value of the statistical comparison to 0.10, we would expect around 10% 

of blocks to have unexpected composition and configuration. Only the configuration of Populus 

tremuloides had a higher than statistically expected number of unexpected blocks (16.5%). The 

spatial distribution of the sample blocks with unexpected composition and configuration values 

appears random (Figure 5). Further, the DOY, year and sensor characteristics in these expected 

and unexpected regions were found to be very similar. For instance, all of these non-reference 

sample blocks, regardless of whether they had expected or unexpected values of species 

composition and configuration, were comprised primarily of imagery from 2010, with the 

difference in proportions of 2010 imagery between expected and unexpected blocks ranging 

from ~2% to 9%, depending on the species. Likewise, all blocks contained imagery primarily 

from Landsat 5; blocks with unexpected values of composition and configuration differed in 

terms of sensor composition by no more than 9% from blocks with expected values. Mean DOY 

differed by no more than two days for blocks with expected and unexpected samples of species 

composition and configuration.  

DISCUSSION 

The use of satellite imagery for vegetation mapping is a desirable supplement to ground or 

photo-based inventories because of the large spatial extents that can be covered by satellite 

imagery, as well as the associated automated, repeated acquisition. Tree species distribution 

mapping based on satellite imagery involves the detection or classification of separate spectral 

reflectance signatures for each species (Bradter et al., 2011); however, tree species classification 

is difficult, as many vegetation species have overlapping spectral reflectance characteristics in 

the wavebands collected by typical multispectral sensors (Immitzer et al., 2012; van Aardt and 

Wynne, 2001). Hyperspectral imagery, which collects reflectance in many, narrow wavebands, is 

often needed to map species composition to a high, or even modest, degree of accuracy (e.g., 

Buddenbaum et al., 2005; Ustin and Xiao, 2001). However, this type of imagery is not currently 

cost effective for inventorying large regions because, like high spatial resolution data, 

hyperspectral imagery are associated with small spatial extents, requiring multiple scenes or, 

more likely, airborne collections to represent a given area, thereby increasing data costs and 

processing overhead. In this study we mapped the probable distribution of dominance of six tree 

species across a large region using freely available moderate spatial resolution multispectral 

imagery. Our model error rates (~10-25%) were typical for forest species distribution modeling 

using this type of imagery (e.g., Evans and Cushman, 2009b).  

Some error and uncertainty in our distribution models can be attributed to limited sample 

size. Sample size of the species data has been shown to affect  the accuracy of predictive models 
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in previous research (Stockwell and Peterson, 2002; Wisz et al., 2008). Although machine 

learning and ensemble methods like Random Forests can perform relatively well with small to 

moderate sample sizes, especially when absence information is available in addition to presence 

information (Elith et al., 2006; Guisan et al., 2007a), estimates of error in this study were 

nonetheless highest for the species with the lowest sample sizes (Table 1). Model accuracies may 

have also been affected by characteristics of the individual species modelled. Specifically, wide-

ranging species are typically more challenging to model than species with more particular niches 

(Guisan et al., 2007b; McPherson et al., 2004). The six tree species modelled in this study are all 

wide-ranging species, and are generally tolerant of a range of soils and parent materials (Farrar, 

1995). That our training data indicated where a species was and was not dominant was therefore 

likely particularly important. Indeed, distribution models are particularly robust when reliable 

absence data are available in addition to presence data (Brotons et al., 2004). 

Another potential source of uncertainty in large area mapping and modelling relates to the 

remotely sensed data itself. In multi-temporal image analysis, differences in atmospheric 

conditions, and variability in phenology, sun angle and view angle of imagery (Song and 

Woodcock, 2003) can lead to some uncertainty. Moreover, relationships between species and 

image spectral reflectances will vary seasonally according to species phenology (Maeda et al., 

2014). In this study, we explored the use of a multi-year BAP composite to generate a series of 

distribution models for the six most common tree species in the forested area of Saskatchewan. 

We found that mean acquisition year, DOY, and sensor were similar regardless of the level of 

local complexity found in the composite. In other words, the variability of image characteristics 

across the BAP composite was actually very small, which was achievable due to the vast archive 

of open-source Landsat imagery (White and Wulder, 2013), the rules used for compositing, and 

the pre-processing applied that converted the data to surface reflectance (White et al., 2014).   

Composition and configuration of the predicted species are important characteristics to 

consider in species distribution modelling because spatial pattern is an expression of underlying 

spatial processes (Nelson and Boots, 2008). Spatial pattern analysis is used to assess model error 

as it allows patterns in error or uncertainty to be detected and enables departures from random 

noise to be determined (Wulder et al., 2007). The approach used in this study allows mapping 

and detection of statistical departures in patterns of species distributions generated from non-

reference imagery (Nelson and Boots, 2005). We found that in all but one instance (Populus 

tremuloides) the composition and configuration of species distributions was not different among 

sample blocks with variable composite characteristics. This species in particular may stand out 

from the rest simply due to its overall prominence across the study area. Nonetheless, as the 

majority of our models were unaffected by the compositing, we are confident that the 

compositing rules used relating to sensor type, target DOY and cloud contamination minimized 

illumination and phenological differences sufficiently across space. Overall, results indicate that 

the relation between predicted species distributions and important environmental processes are 

represented, rather than species spatial pattern being the result of data artifacts in the composite. 

Overall, our individual maps of the probable distribution of tree species dominance across 

Saskatchewan meet expected trends as captured through two other independent data sources. For 

instance, broad-leafed species Populus tremuloides and Betula papyrifera were predicted to be 

dominant over a greater spatial extent in the south, relative to the north. The species predicted to 

be most widespread were Picea mariana, Pinus banksiana, and Populus tremuloides. These 

three species are typically dominant over a large number of ecosites in the province 
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(McLaughlan et al., 2010). The primary difference among the three datasets is this study’s 

predicted dominance of Pinus banksiana in the Taiga Shield, versus the dominance of Picea 

mariana in this region in the other datasets. We note that there are very few NFI plots in this 

ecozone, however, and that the differences between our results and those of Beaudoin et al. 

(2014) likely stem from the use of different remotely sensed data (MODIS) with a different  

spatial resolution (250 m), and a different modelling approach (kNN).   

CONCLUSION 

Regional-scale, spatially comprehensive maps of forest composition have traditionally been 

limited by the mismatch between desired, versus available, spatial extent and spatial resolution 

of data. In this analysis, we have demonstrated the capacity to use 30 m Landsat data to map 

detailed tree species distributions over large areas, by capitalizing on archived, multi-temporal 

imagery composited using the BAP approach (White et al., 2014). The variability introduced by 

the BAP compositing was found to be minimal, and resulted in mostly insignificant differences 

in this large-area mapping application. Future applications will benefit from analyses of the 

effects of BAP compositing in other geographic regions and for features of interest other than 

tree species. The potential of the BAP approach to provide source data for developing species 

distribution maps over large areas will continue to increase with Landsat continuity and the 

launch of complementary satellites such as Sentinel-2 in 2015 (Drusch et al., 2012; Roy et al., 

2014). The constellations of these new satellites have been designed such that, taken together, 

the majority of the Earth will be able to be imaged twice weekly (Wulder and Coops, 2014) at a 

30 m spatial resolution. Spatially continuous maps of tree species distributions over large areas 

will be useful for a variety of information needs, including forest management, carbon modeling, 

ecosystem service assessment, and conservation planning. 
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Table 1. Species modelled, area and number of National Forest Inventory Photo Plot (NFI 

PP) polygons dominated by each 

English 

Name 

Latin Name Dominant (present at 

≥90% abundance)
a
 

Non-Dominant (present 

at ≤10% abundance)
a
 

  Number of 

polygons 

Area (km
2
) Number of polygons 

White birch Betula 

papyrifera 

 

29 0.71 5404 

Tamarack  Larix laricina 

 

 

459 27.11 4974 

White spruce Picea glauca 49 0.73 5348 

Black spruce Picea mariana 2057 55.81 3376 

Jack pine Pinus banksiana 856 38.63 
4577 

Trembling 

aspen 

Populus 

tremuloides 

1983 88.48 3450 

a 
Count follows exclusion of very small polygons (less than 900 m

2
) and those that were burned 

or harvested in the time since the polygon was delineated and attributed.  
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Table 2.  Number of Landsat images used in Best-Available-Pixel composite for 

Saskatchewan, Canada.  

 

 Candidate
*
 Composite 

Year TM ETM+ Total TM ETM+ Total 

2009 379 328 707 345 188 533 

2010 362 367 729 342 284 626 

2011 406 398 804 333 218 551 

*Candidate images are ± 30 days of August 1 with less than 70% cloud cover. 
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Table 3. Predictor variables used in the Random Forests models of individual tree species distributions. 

Name Description Rationale 

Brightness 

Tasseled Cap components (Crist and 

Cicone, 1984; Crist, 1985) 

TC brightness can differentiate between soil and vegetated surfaces 

(Crist et al., 1986) and can help differentiate among successional stages 

/ stand age (Song et al., 2007).  

 

Greenness 

Greenness in relates to biomass and vegetation vigor and is highly 

correlated to the Normalized Difference Vegetation Index (NDVI),  

which is useful for general land cover classification (Defries et al., 

1995; Running et al., 1994) 

 

Wetness 

TC Wetness correlated to structural complexity (Hansen et al., 2001), 

perhaps particularly for successional stages / stand age (Wulder et al., 

2004c). 

 

Topographic 

Wetness Index 

(TWI) 

 

Model of potential surface moisture, 

based on topographic position (Beven 

and Kirkby, 1979): 

Ln(specific catchment area / 

tan(slope in radians)) 

 

Soil moisture directly affects plant growth.  

Topographic Solar 

Radiation Aspect 

Index (TRASP) 

 

Values range from 0 to 1, with 0 

indicating cool, NE slopes, and 1 

indicating warm SW slopes (Roberts 

and Cooper, 1989). 

 

Solar radiation affects soil moisture and heat load, and directly affects 

plant growth.  
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Table 4. Threshold used to translate probabilities of species dominance to a binary 

dominant or non-dominant variable. The threshold selected minimized the distance on a 

plot of the ROC (Receiver Operating Characteristic) curve between the upper left corner 

of the plot and the curve.  

Species Threshold used to 

create binary map
a
 

OOB error rate
b
 

(for class “dominant”) 

Area Under the 

Curve (AUC)
c
 

Betula papyrifera 0.7 0.24 0.99 

Larix laricina 0.7 0.12 0.99 

Picea glauca 0.7 0.24 0.99 

Picea mariana 0.6 0.11 1 

Pinus banksiana 0.7 0.14 1 

Populus tremuloides 0.6 0.09 1 
a 

According to the criteria of minimizing the distance on a plot of the ROC (Receiver Operating 

Characteristic) curve between the upper left corner of the plot and the curve. 

b 
The Out of Bag (OOB) error indicates the total number of misclassified data points from within 

the out-of-bag sample (Breiman, 2001). 

c 
Values close to 1 indicate good model fit
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Table 5. Spatial Extent of Dominant Tree Species in Saskatchewan’s Forested Ecozones 

and Ecoregions.  

  Most Spatially Expansive Species 

Ecozone Ecoregion NFI photo plot data
1
 Beaudoin et al. 2014

2
  This study 

Taiga 

Shield 
  

Picea mariana  

(70% of ecoregion) 

Picea mariana  

(80% of ecoregion) 

Pinus banksiana 

 (61% of ecoregion)  

Tazin Lake 

Upland 

 

Picea mariana Picea mariana Pinus banksiana 

Selwyn Lake 

Upland 
Picea mariana Picea mariana Pinus banksiana 

Boreal 

Shield   

Pinus banksiana  

(48% of ecoregion) 

Picea mariana  

(49% of ecoregion) 

Pinus banksiana  

(46% of ecoregion) 

Athabasca 

Plain 

 

Pinus banksiana Pinus banksiana Pinus banksiana 

  

Churchill 

River Upland 
Picea mariana Picea mariana Pinus banksiana 

Boreal 

Plain   

Populus tremuloides 

(48% of ecoregion) 

Populus tremuloides 

(48% of ecoregion) 

Populus tremuloides 

(40% of ecoregion) 

  

Mid-Boreal 

Uplands 

 

Populus tremuloides Picea mariana Picea mariana 

Boreal 

Transition 

 

Populus tremuloides Populus tremuloides Populus tremuloides 

  

Mid-Boreal 

Lowlands 

 

Larix laricina  Picea mariana Larix laricina  

1 
Calculations included only homogenous polygons (those where ≥ 90% of the polygon is 

comprised of a single species).  
2 

As in the generation of our forest composition map, each individual species distribution map 

from Beaudoin et al. 2014 was combined and assigned the value of the species with the highest 

predicted relative basal area. Calculations in this table are based on the combined map.  
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Table 6. Proportion of composition and configuration values within non-reference sample 

blocks (n=8259)* that are <5
th

 or >95
th

 percentile of values within reference sample blocks 

(n=23,581).  

 

Betula 

papyrifera 

Larix 

laricina 

Picea 

glauca 

Picea 

mariana 

Pinus 

banksiana 

Populus 

tremuloides 

True sample size* 6177 7361 5588 7966 7446 7675 

% unexpected 

Composition 

 

3.71 9.96 5.71 9.63 7.13 8.33 

True sample size* 4469 6517 4274 7682 6677 7481 

% unexpected 

Configuration 

 

7.14 9.56 7.25 8.69 8.62 16.53 

*note that the non-reference sample size was less than 8259 for each species because for each 

species in turn, blocks had to contain at least one pixel of presence (dominance) for analysis of 

composition, and at least two pixels of presence (dominance) for analysis of configuration.  
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Figure 1. Study area. (a) The province of Saskatchewan (highlighted in black), in central Canada. (b) The forested ecozones and 

ecoregions of Saskatchewan. (c) The distribution of Canada’s National Forest Inventory 2 km × 2 km photo plots across 

Saskatchewan, including inside and outside of the Managed Forest Area. These inventory data were the source of the training 

data used to model tree species distributions. 
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Figure 2. Flowchart of the data and methods followed to model species distributions and asses the impact of BAP composites of 

the resultant maps. 
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Figure 3. Individual models of tree species dominance in Saskatchewan. 
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Figure 4. Forest composition map showing tree species with highest predicted probability of dominance at each location. 
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Figure 5. Nonreference sample blocks (1020 m × 1020 m) are those comprising a mixture of sensor types, image years, or image 

DOY. Blocks are highlighted where species composition and configuration values were outside the 5th–95th percentile of 

values. 


