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Abstract 

Site productivity, an important measure of the capacity of land to produce wood biomass, is 

traditionally estimated by applying species-specific, locally designed models that describe the 

relation between stand age and dominant height. In this paper we present an approach to derive 

chronosequences of stand age and height estimates from remotely sensed data to develop site 

productivity estimates. We first utilised an annual Landsat time series to identify areas of stand 

replacing disturbances and to estimate the time-since-disturbance, a proxy for stand age. 

Airborne Laser Scanning data were used to provide estimates of dominant height for these 

stands. Non-linear regression was used to fit a site productivity guide curve for stands aged 7 to 

32 years. Existing and developed productivity models, together with remote sensing and 

inventory data as inputs, were used to validate the site productivity model in three different 

comparisons. Site productivity was overestimated by 0.70 m (RMSE = 5.55 m) relative to 

existing forest inventory estimates; further, 89% of remote sensing estimates were within ±1 

derived site class of the forest inventory estimates. We conclude that the presented approach is 

suitable for estimating site productivity for young stands in areas that lack wall-to-wall forest 

inventory data.  

 

Introduction 

Sustainable forest management requires accurate information on a range of forest stand 

attributes. This information, collected during forest inventories, is crucial for evaluating current 

and projected conditions of a forest, as well as being critical for assessing the consequences of 

management decisions. Among all possible forest attributes, the potential of a site to produce 

biomass remains one the most important as this information is fundamental for decisions 
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regarding optimal species composition, rotation age, allowable cut and most importantly, to 

forecast future timber yield (Bontemps and Bouriaud, 2014). However, in countries such as 

Canada, which practice extensive forestry and which have vast tracts of unmanaged forests (i.e., 

areas are not managed and not protected from natural disturbance such as wildfire) (Stinson et 

al., 2011), wall-to-wall forest inventories do not exist for all forested areas (Wulder et al., 2004). 

Knowledge of site productivity in these areas is important for projecting biomass accumulation 

over time, estimating recovery post-disturbance, understanding the impacts of climate change, 

and for spatially explicit carbon budget modelling.  

The most common approach for measuring forest site productivity is site index (SI), which 

describes a forest stand as a relation between tree age and height (Skovsgaard and Vanclay, 

2008). Site index or height age curves have conventionally been constructed by modelling the 

height growth of a subset of the largest trees at a given location and for a given species, 

according to the concept that stand dominant height is correlated with stand volume (Green et al., 

1989; West, 2004). The projected height of the stand at 50 years is then used as an index of 

potential site productivity allowing estimates to be compared across sites and across stands of 

different ages. Traditionally, site index curves have been developed for major commercial tree 

species in managed forests (e.g. Mitchell and Polsson, 1988), on a regional basis (i.e., coastal 

versus interior), with different approaches for estimating site index often used for different stages 

of stand development (British Columbia Ministry of Forests, 1999). As the data required to 

support conventional estimates of site productivity typically do not exist in unmanaged forest 

areas, alternative data sources and measures of productivity are needed to support the 

aforementioned information needs.  



4 

 

Remotely sensed data can be used to estimate both stand age and dominant height, the two 

attributes most commonly used to characterize site productivity. The available archive of 

Landsat data represents more than 40 years of observations, and since 1984, has been acquired at 

30 m spatial resolution with consistent spectral resolutions across multiple sensors (White and 

Wulder, 2014) all systematically calibrated to promote interoperability (Chander et al., 2009). 

Time series analyses of annual Landsat imagery enables detection and mapping of stand 

replacing disturbances and their attributes such as spatial location, extent, and date (Schroeder et 

al., 2011), which is often based on analyzing the spectral trajectories (Hermosilla et al., 2015; 

Huang et al., 2010; Kennedy et al., 2010). Time since disturbance can then be used as a proxy for 

estimating stand age (Lefsky et al., 2005; Pan et al., 2010). 

Three-dimensional point clouds acquired with Airborne Laser Scanning (ALS) have become a 

common tool used in forest inventories (Wulder et al., 2013), by providing the capability to 

generate accurate estimates of stand height, volume and basal area (Evans et al., 2006; Popescu 

et al., 2004; Reutebuch et al., 2005). Most of the methods that allow for the estimation of stand 

biomass or volume are based on the distribution of point height values, described by descriptive 

statistics such as maximum, mean, standard deviation, percentiles, or proportions (Gobakken and 

Næsset, 2005; Hollaus et al., 2007; Magnussen and Boudewyn, 1998). The ability of the laser 

beam to pass through small openings in the forest canopy allows for a three-dimensional 

assessment of forest structure (Coops et al., 2007; Falkowski et al., 2009), including height 

measurements (Andersen et al., 2006; Hollaus et al., 2006; Næsset and Økland, 2002) which 

allow for the accurate estimation of the dominant tree height (Næsset, 1997; Wulder et al., 2010).  

This potential of remote sensing data to produce both wall-to-wall estimates of forest stand age 

and dominant height provides the opportunity to examine how these two data types can be used 
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together to map forest site productivity. Such an approach would have considerable applicability 

to unmanaged forests where forest inventories are not regularly conducted (i.e., in northern 

Canada) (Falkowski et al., 2009; Wulder et al., 2007).  

The objective of this paper is to demonstrate how ALS point clouds and an annual time series of 

Landsat imagery can be combined to provide an indicator of potential site productivity. To do so 

we develop a forest site productivity chronosequence using a series of stands in an area of coastal 

temperate rainforest in British Columbia, Canada. Landsat time series data are used to detect 

landscape disturbances, delineate stand boundaries, and infer stand age (at 30 m resolution), 

whilst ALS data are used derive a canopy height model (CHM) which is used to estimate 

dominant tree heights within these stands. We estimate potential site productivity using the 

height-age sequences as the input growth reference data and apply the resulting model to 

estimate potential site productivity within the study area. We validate the model in managed 

forest areas, using site index values available from forest inventory data. We conclude by 

discussing the strengths and weaknesses of the presented methodology, and discuss the 

applicability of this method for estimating site productivity in young stands. 

 

Methods 

Study area 

The study area is located on northern Vancouver Island, British Columbia, Canada (Figure 1), 

within the Coastal Western Hemlock biogeoclimatic zone (CWH) (Meidinger and Pojar, 1991). 

The climate in this region can be characterized by high annual precipitation (μ = 2228 mm), mild 

winters, and cool summers. Highly productive, temperate rainforests in this area are dominated by 



6 

 

western hemlock (Tsuga heterophylla). According to the forest inventory data, the average age of 

stands was 144 years (σ = 127 years). The average rotation age in the study area is 80 years.  

Forest inventory data 

Forest inventory data were used to provide reference information for forest stand age, dominant 

height, and site productivity (site index). This data was compiled according to standard 

provincial forest inventory procedures in Canada (Gillis and Leckie, 1993), using a two-phase 

approach whereby in the first phase, forest stands are delineated using aerial photography and 

then stand attributes such as age, height, and species composition are interpreted from the air 

photos (Ministry of Forest Lands and Natural Resource Operations, 2014). In the second phase, 

ground plot measurements are used to model and validate attributes such as diameter at breast 

height, volume, species, age, and site index. Depending on stand age, site index was derived 

using one of the three methods officially used in British Columbia (Mah and Nigh, 2003; Watts 

and Tolland, 2005). Height-age models or site index curves were used to estimate site index for 

stands that have 30 to 140 years of growth above breast height. For stands outside this age range, 

growth intercept models or SIBEC (Site Index – Biogeoclimatic Ecosystem Classification) 

method were used (British Columbia Ministry of Forests, 1999). These models, developed from 

field samples of a limited number of sample trees, require species, age, and dominant height as 

input information. 

Landsat time series 

We compiled a times series (1984–2011) of satellite images acquired by both Landsat TM and 

ETM+ sensors over the study area (WRS Path 51, Row 25). For each year, a single image was 

selected based on its acquisition date (i.e., between June and September) and amount of cloud 

cover (i.e., as minimal as possible). In total, 28 images were downloaded from the United States 
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Geological Survey (USGS) Landsat archive (Table 1) in standard terrain corrected (Level 1T) 

format. Surface reflectance was generated using the Landsat Ecosystem Disturbance Adaptive 

Processing System (LEDAPS, Masek et al., 2006).  

ALS point clouds 

ALS point clouds were acquired in 2012 using Optech ALTM3100EA scanning system (Table 

2). The average first return point density was 11.6 points/m2. The “ground” class was derived 

with the standard processing routines (Axelsson, 2000) and was used to normalize the point 

elevations to height above ground level. A Canopy Height Model (CHM) was then generated, 

representing maximum height above ground for each 5 x 5 m pixel. The data were processed 

using a combination of tools available in FUSION (McGaughey, 2014) and LAStools (Isenburg, 

2014) software packages. 

Detecting disturbances using Landsat time series 

An approach based on the Vegetation Change Tracker (VCT) algorithm (Huang et al., 2010) was 

used to detect stand-replacing disturbance events and attribute these events to the correct 

disturbance year. The approach is based on spectral trend analysis of annual Landsat time series 

and involves two major steps. First a forest training mask is created annually from each Landsat 

scene by visually inspecting dense vegetation cover during the year 2000 from the version 5 

MODIS vegetation continuous field (VCF) product collected in 2000 (Dimiceli et al., 2011), the 

Landsat normalized differenced vegetation index (NDVI), and a true colour composite (used 

instead of dark image substraction). The NDVI and VCF values for dense forest identified in the 

year 2000 images were then used to define thresholds for creating the forest mask for each image 

in the time series. The year 2000 was chosen as it was closest to the median year in the time 

series for the VCF. In the second step, disturbances are mapped from a time series analysis of the 
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disturbance index (DI; Healey et al., 2005, used instead of the integreated forest z-score) using 

trend rules and logic. The DI is a linear combination of the brightness, wetness, and greenness 

components of the tasseled cap transformation (Crist, 1985; Healey et al., 2005). Pixels with DI 

values that exceed an upper and lower threshold for three consecutive years are classified as 

disturbed. The upper and lower thresholds of the DI used for mapping stand-replacing 

disturbance were 600 and -200, respectively based on Pickell et al., (2014).  

The algorithm produces polygons that represent stand-replacing disturbance events (disturbance 

map, Figure 2A). These outputs typically require some post-processing to remove single-pixel 

polygons and create homogenous objects, considered analogous to forest stands (Wulder et al., 

2008). The outputs for our study area were first generalized by removing patches less than 5 

pixels in size (0.45 ha) (Figure 2B). Then, each polygon was refined using the ALS-derived 

CHM layer (Figure 2C). The finer spatial resolution of the CHM layer (5 x 5 m) allowed for the 

creation of homogenous stands, by grouping pixels into objects with standard deviation of 

canopy heights limited to less than 5 m. A 1 ha (100 x 100 m) grid was then imposed over the 

study area, representing the sampling frame. Sample units found completely within disturbed 

areas were then selected and subsequently used to develop the age-height site productivity model 

(Figure 2D). From the disturbance date, we calculated the time since disturbance (TSD) and used 

this as a proxy for stand age (Pan et al., 2010). To improve the disturbance mapping accuracy, 3 

consecutive years were required to establish a trend and detect a disturbance, therefore the 

maximum year of detected disturbance was 2009 and the TSD values ranged from 3 to 28 years. 

Adjusting stand age  

The Landsat time series enables an estimate of TSD, but does not account for the time it takes for 

new trees to be established at the site. From a silvicultural perspective, regeneration delay is the 
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period of time between harvesting and stand establishment. The regeneration delay in our study 

area is typically two years for planted stands and four years for naturally regenerated stands 

(Pedersen, 1996). Since we did not have any information concerning the method of stand 

establishment from the data available, we were conservative and used the maximum average 

regeneration delay for this area (4 years). Therefore, our estimate of stand ages was TSD plus 

four years, with this adjusted stand age used for subsequent model development.  The stands we 

analyzed had an adjusted stand age range of 7 to 32 years.  

Estimating stand dominant height using ALS data 

Dominant height was estimated for each sample unit following the method proposed by Næsset 

(1997) and modified by (Wulder et al., 2010). With this method, a stand or sample unit is divided 

into 10 x 10 m cells and maximum height is computed for each of the cells using the raw point 

cloud. The final dominant height estimate is calculated as the weighted mean of all the maximum 

heights, with the number of non-ground returns within each cell used as the weight. This method 

is similar to the official definition of dominant height used in British Columbia (Watts and 

Tolland, 2005); however, given the nature of LiDAR measurements, the largest trees are selected 

based on height, rather than diameter at breast height. As demonstrated by Gatziolis (2007), there 

is no significant difference in plot site index values when estimated using site trees selected by 

DBH versus height. 

Chronosequence analysis and curve fitting 

The 1 ha sample units had a TSD value from the disturbance map, corrected for the regeneration 

lag, and a value for dominant height from the ALS data. We used this information to develop a 

chronosequence of height estimates. To develop the potential site productivity model we applied 

the guide curve method, following the methodology presented by Mathiasen et al. (2006) and 
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Edminster et al. (1991). In this approach, a curve is first fit to the height-age measurements and 

confidence intervals are calculated. The site productivity model is derived by calculating the 

proportional distance between the given height and age values and the modelled guide curve. 

A Chapman-Richards model was used based on Fekedulegn et al. (1999), which has the 

following form:  

 ℎ = 𝛽1 ∗ (1 − 𝑒𝛽2∗𝑎𝑔𝑒)
𝛽3
+ 𝜀 (1) 

where h is dominant height [m], age is an estimated age of a sample unit [years] and βs are 

regression model parameters. The model was fit to height-age measurements using the 

Levenberg-Marquart nonlinear least squares algorithm (Elzhov et al., 2013) in two stages. After 

the initial fit, variance was calculated for each year and its reciprocal values used as weights 

during the second model fit. This additional step produces a lower residual standard error by 

decreasing the impact of years containing many highly variable samples versus years that have 

fewer, but less variable observations. The 95% confidence intervals of the individual predictions 

were calculated and a separate curve was fit into lower confidence interval values for each year.  

To derive the final model curves for given height and age values, we again followed the method 

presented by Mathiasen et al. (2006). The distance proportion (p) for given age was calculated as 

the difference between the guide curve height value and given height value, divided by the 

difference between the guide curve and modelled lower 95% confidence interval: 

 𝑝 =
ℎ𝐺 − ℎ𝑇
ℎ𝐺 − ℎ𝐿

 (2) 
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where p is the distance proportion, hG is the height value derived from the guide curve for given 

age [m], hL is the height value derived from the modelled lower 95% confidence interval for 

given age [m] and hT is the height of a sample tree [m].  

The reference age was set to the maximum year in the chronosequence (i.e. 32 years). The site 

productivity equation was then constructed in the following form: 

 𝑆𝑃 = ℎ𝐺_𝑟𝑒𝑓 − (ℎ𝐺_𝑟𝑒𝑓 − ℎ𝐿_𝑟𝑒𝑓) ∗ 𝑝 (3) 

where SP is the estimated site productivity [m], hG_ref is the value of the guide curve at the 

reference age [m] and hL_ref is the value of the modelled lower 95% confidence interval for the 

reference age [m]. 

Site productivity classes and model validation 

To validate our site productivity model, we first derived site productivity classes from the 

inventory site index values using standard conversion tables developed by the Province of British 

Columbia (British Columbia Ministry of Forests, 1981; 1994). The productivity classes were 

derived by dividing the difference between the upper and lower confidence intervals at reference 

age into 4 equal parts (i.e., good, medium, poor, and low). These productivity classes were then 

used as strata, from which we randomly selected 30 validation plots (10 x 10 m in size) from 

each stratum, for a total of 120 validation plots. For each plot, we extracted the reference age, 

dominant height, and site index value from the forest inventory data, and dominant height and 

age as estimated from the ALS and Landsat disturbance map, respectively. We then compared 

the reference and predicted values by calculating the bias (absolute and relative), RMSE 

(absolute and relative), and correlation coefficient. A Wilcoxon signed rank test was used to test 
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the null hypothesis that the median difference between the compared values was zero. Bias and 

RMSE were calculated as follows: 

 𝑏𝑖𝑎𝑠 =
1

𝑛
∑(𝑦̂𝑖 − 𝑦𝑖)

𝑛

𝑖=1

 (4) 

  𝑏𝑖𝑎𝑠% =
𝑏𝑖𝑎𝑠

𝑦̅
∗ 100 (5) 

 𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦̂𝑖 − 𝑦𝑖)2
𝑛

𝑖=1

 (6) 

 𝑅𝑀𝑆𝐸% =
𝑅𝑀𝑆𝐸

𝑦̅
∗ 100 (7) 

where: n is the number of validation plots, yi is the reference value for plot i, ŷi is the predicted 

value for plot i, and ȳ is the mean of the reference variable. 

We initially compared age and dominant height estimates from the forest inventory and the 

remotely sensed chronosequence for the 120 validation plots. We then compared productivity 

estimates generated from the remotely sensed chronosequence data to estimates derived from the 

forest inventory data (British Columbia Ministry of Forests and Range, 2004), using the latter as 

the reference. In order to understand and differentiate between errors resulting from the use of 

different models and errors resulting from different input data, we performed three different 

comparisons. The first two comparisons evaluated the use of different input data for the same 

model, whereas the third compared different models and different input data. First, utilizing the 

site index models used in British Columbia (Mitchell and Polsson, 1988), we calculated site 

index for each of the 120 validation plots using forest inventory (SIINV) and remotely sensed 
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chronosequence (SICS) data as inputs. Second, we used the site productivity model we developed 

in this study, and calculated site productivity for the validation plots using forest inventory 

(SPINV) and remotely sensed chronosequence (SPCS, Figure 5, Table 3) input data. Our third and 

final analysis compared productivity estimates from the site index and our own developed 

productivity model (SPCS), using forest inventory data and remotely sensed chronosequence data, 

respectively. It should be noted that for this final comparison, site index values were calculated 

for a base age of 32 years (SIINV32) to enable comparison with our model outcomes (which are 

also calculated for the base age of 32 years). Recall that site index is typically calculated using 

base 50 years. The three aforementioned comparisons enabled robust validation of model 

outcomes and provided insights into potential sources of errors in our approach. 

Apart from direct comparison of the site productivity estimates, for the third comparison we also 

compared site productivity classes. These classes were first derived for the inventory site index, 

again for the same base age used in the modelling (i.e. 32 years). The range of site productivity 

estimates (dominant heights) at the reference age was divided into 4 equal classes: low, poor, 

medium and good, which follows methods used in British Columbia (British Columbia Ministry 

of Forests, 1981; 1994) and other regions (Huang et al., 1994). We then applied the derived 

break values to the site productivity estimates for the validation plots and compared them by 

calculating the number of times the class differences were less than or equal to one. 

Results 

Detecting disturbances using Landsat time series 

The disturbance mapping algorithm detected 3133 stand-replacing disturbances within our study 

area, dating from 1984 to 2009 and representing a total area of 15,787 ha (or approximately 13% 

of the total study area). The average area of the disturbed stands, after refinement, was 5.03 ha. A 
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total of 2006 one ha sample units were used to build a chronosequence (Figure 3). On average, 

each disturbed stand contained 3.6 sample units. The distribution of TSD values for the sample 

units was not uniform across the chronosequence, with the maximum number of samples 

associated with TSD = 10, and several years having less than 10 sample units. Only one year 

(TSD = 25), had no samples in the chronosequence. The minimum and maximum dominant 

height values for the sample units were 2.18 m and 21.52 m respectively, with an average 

dominant height of 6.87 m and standard deviation of 3.38 m (Figure 4).  

Chronosequence analysis and curve fitting 

Our site productivity model, with the Chapman-Richard curve fitted to the height-age estimates, 

had a residual standard error of 2.76 m. We checked for homoscedasticity by plotting the model 

residuals against age and observed homogeneity of variance. The distribution of the residuals 

was accepted as normal, with mean value of -0.03 and standard deviation of 2.02 m. The 

regression coefficients for both the final guide curve model and the lower 95% confidence 

interval model are presented in Table 3. 

At the base age of 32 years the value of the guide curve was 11.53 m, whereas the value of the 

lower 95% confidence interval was 4.73 m. Using these values and the distance proportion 

formula (p) we constructed the final form of the site productivity equation as follows (Figure 5): 

 𝑆𝑃 = 11.53 − 6.81 ∗
ℎ𝐺 − ℎ𝑇
ℎ𝐺 − ℎ𝐿

 (8) 

 ℎ𝐺 = 109.06 ∗ (1 − 𝑒−0.0041∗𝑎𝑔𝑒)1.0705 (9) 

 ℎ𝐿 = 44.72 ∗ (1 − 𝑒−0.0041∗𝑎𝑔𝑒)1.0705 (10) 
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Site productivity classes  

The difference, in metres, between the upper and lower confidence intervals (18.34 and 4.73 m at 

reference age, respectively) was divided into four equal site productivity classes (i.e., good, 

medium, poor, and low), with each class having a width of 3.40 m at reference age (Figure 6). 

We applied our productivity model to all disturbed stands detected with Landsat time series and 

assigned the stand to the appropriate productivity class, as described above (Figure 7). The input 

values for the site productivity model—dominant height and stand age—were estimated using 

the same methods as for the sample units, although entire disturbed stands rather than sample 

units were used. The "Good" site class was most prevalent, representing 39.4% of the disturbed 

area.  

Model validation 

We compared our model outcomes to reference values obtained from forest inventory data using 

120 validation plots (10 x 10 m). We compared age and dominant height estimates, as well as 

productivity estimates for three scenarios: site index model used in British Columbia (Mitchell 

and Polsson, 1988) using inputs from forest inventory and remotely sensed data; our model 

developed using Chapman-Richards curve-fitting with inputs from forest inventory and remotely 

sensed data (Table 3, Figure 5); and lastly, the two different models with the different input data. 

Comparison of dominant height estimates indicated that bias was on average 1.13 m (27.0%), 

with an RMSE of 4.32 m (62.9%). A comparison of plot age estimates indicated that Landsat 

disturbance map had a bias of 2.2 years (10.5%) and an RMSE of 3.8 years (18.6%). For both 

dominant height and age comparisons, p-values from the Wilcoxon test indicated that there is 

significant difference between the medians of the compared variables. 
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Generally, comparisons between model and reference estimates of productivity yielded similar 

results (Table 4, Figure 8). For all comparisons, estimates of site index or site productivity 

generated from the remotely sensed chronosequence data were greater than the reference values 

generated from the forest inventory data. For comparison 1, which evaluated different data inputs 

to the official site index model for western hemlock, use of the remotely sensed chronosequence 

data as input resulted in an average overestimation of dominant height by 0.79 m or 6.54%. 

Likewise for comparison 2, which evaluated different data inputs into the productivity model 

developed in this study, use of the remotely sensed chronosequence data as input resulted in an 

overestimation of 1.15 m or 16.47%, which was the greatest difference with the reference data 

amongst all comparisons. The third comparison, which compared estimates generated from the 

two different models (each with different input data), indicated that when the remotely sensed 

chronosequence data was used, an overestimate of 0.70 m or 10.1% resulted. For all 

comparisons, the results of the Wilcoxon test indicated that for all 3 comparisons the remote 

sensing-based estimates of site productivity were significantly different than those derived with 

the forest inventory reference data. The difference in site productivity class (Figure 9) generated 

from the values in the third comparison, showed that 47.0% of samples were labeled as the same 

class while 88.9% were within ±1 class value of the reference data. 

Discussion 

In this research, we demonstrated a method of using a chronosequence of height and age 

estimates to develop an indicator of forest site productivity exclusively from remotely sensed 

data sources. The method utilizes Landsat imagery to detect areas of forest disturbance and 

estimate time since disturbance as a proxy for age, as well as ALS point clouds to estimate stand 

dominant height. By integrating information extracted from these two sources of spatial data we 
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established a chronosequence of sample units from which we obtained a good approximation of 

stand growth. We used the chronosequence to develop a model of site productivity, 

demonstrating that remotely sensed data sources have potential to provide such information in 

areas that may be lacking detailed forest inventory information. The accuracy of age and 

dominant height estimates is crucial for the proper development of forest productivity models 

such as site productivity curves (Ni and Nigh, 2011). Conventionally, site productivity curves are 

derived via field measures and destructive sampling, enabling very accurate estimates of both 

tree age (via core samples), and tree height (via direct measurement). Stand dominant height, or 

top height, is commonly estimated in the field as the average height of the largest 100 trees (by 

diameter) per ha (Hägglund, 1981) or by an analogous definition of the largest diameter site tree 

(tree selected for the dominant height measurement) in a 0.01 ha plot (Forest Productivity 

Council of British Columbia, 1998). This method for estimating dominant height has been shown 

to produce less biased estimates than approaches that merely average the heights of a random 

sample of co-dominant and dominant trees in the stand (Mailly et al., 2004). Our process for 

estimating dominant height from the ALS data seeks to emulate this approach, and has been 

shown to produce heights that more closely correspond to field measurements (Næsset, 1997) 

and operational definitions of top height (Wulder et al., 2010). There should be no doubt that the 

conventional approach for generating estimates of site index from field measurements will have 

a greater level of absolute accuracy for any given site; however, because this approach is time 

consuming, labour intensive, and expensive, sample sizes used to estimate site index curves are 

typically very small, particularly given the broad geographic conditions over which these curves 

are often applied (e.g. Mitchell and Polsson, 1988). Using the chronosequence approach 

presented herein, enabled by ALS and Landsat data, it is possible to derive a much larger sample 
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of stands across a broader range of stand conditions. These factors, combined with the very 

accurate estimates of height provided by the ALS data, provide a robust approach for estimating 

potential site productivity that is in keeping with methods used in a conventional approach. 

Moreover, the fact that it is possible to measure the dominant stand height for any location 

covered during ALS data acquisition, is critical for creating a model that covers a range of site 

productivity over large areas. ALS point cloud-based height estimates are accurate at the single 

tree-, plot- and stand-level in mature (Andersen et al., 2006; Brandtberg et al., 2003; Means et 

al., 2000; Næsset and Økland, 2002; Persson et al., 2002) as well as in young stands (Næsset and 

Bjerknes, 2001). 

The presented approach is useful for assessing forest site productivity in any location with 

available ALS point clouds and a record of Landsat images. The developed model is based on a 

large number of sample units that cover a broad range of site productivity, which is the main 

advantage of the approach presented, particularly when compared to conventional methods, 

whereby models are often developed from a limited number of samples and, more importantly, 

are often not suitable for use in young stands (hence separate site index models for young stands 

in British Columbia, e.g. Nigh, 1999). As an example, the site productivity model for western 

hemlock, the most common species in the study area, is dated (Wiley, 1978) and was developed 

on 90 plots with heights ranging from 18 to 40 m and ages ranging from 60 to 130 years (breast 

height age). Growth intercept models designed specifically for stands below the age of 30 are 

problematic to apply for species such as western hemlock, which lack distinct branch whorls 

(Nigh, 1996). 

In general, the validation of the developed model with existing site productivity estimates from 

forest inventory data showed relatively good agreement with low bias. Performing the three 
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comparisons allowed us to assess how differences in the input data influence model output, and 

gain a greater understanding of the potential sources of error. The initial comparison of the age 

and dominant height estimates indicated that both these variables were overestimated by the RS 

data relative to the inventory estimates. Consistent with these findings, our modelled site 

productivity (using RS data only) was also overestimated relative to the inventory data. Similar 

values for bias, RMSE, and correlation coefficients for all three comparisons we conducted, 

indicate general agreement between the input data and, what is of greater importance, between 

the two compared site productivity models. All comparisons demonstrate that the estimates are in 

most cases (88.9% of validation plots) within ± 1 productivity class of the reference (inventory) 

data, and the mean difference between the two is not exceeding typical differences between 

existing site productivity models for different species or regions (e.g., Mitchell and Polsson, 

1988). These findings are in keeping with those of previous research in similar forest 

environments, which also indicated an underestimation of SI derived from forest inventory data 

(Tompalski et al., 2015; Wulder et al., 2010). 

Wulder et al. (2010) demonstrated the capacity of ALS data to augment existing estimates of site 

productivity. In that study, 42% of stands analyzed had an ALS-derived site class that was 

greater than the inventory site class, whilst 77% of stands were within ± 1 site class of their 

inventory SI class. In recent work by Tompalski et al. (2015), stand dominant height was 

consistently underestimated in the inventory by an average of 3.68 m (compared to ALS-derived 

estimates), whilst 73.1% of stands had an ALS-derived site class that was within ± 1 site class of 

their original SI class.  

Véga and St-Onge (2009) presented an approach to map forest site productivity using 

chronosequences derived from remotely sensed data. Height-age sequences were derived for jack 
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pine (Pinus banksiana Lamb.) dominated forest stands in Quebec, Canada, using a time series of 

canopy height models derived from scanned historical aerial photographs and an ALS-derived 

terrain model. In this study, the authors applied an existing height-age model to estimate site 

index, with the remotely sensed data providing alternate inputs to forest inventory data. The 

authors obtained an average bias of 0.76 m, very similar to the 0.79 m bias reported here for 

comparison 1 (Table 4). However, the authors also report an RMSE of 2.41 m, which is about 

one-third of our RMSE for comparison 1 (7.92 m). The larger RMSE in our case may result from 

our estimate of stand age. A time series of historical aerial photography (with repeated measures 

for the same stands over time) can provide a precise estimate of stand age and height, albeit over 

a much smaller area. Véga and St-Onge (2009) identify the importance of multiple repeat 

measures to improve the reliability of age and SI estimates. Other studies have likewise 

substituted remotely sensed measures of height in existing height-age models to derived 

estimates of site productivity (Holopainen et al., 2010; Wulder et al., 2010). Holopainen et al. 

(2010) estimated forest site types (5 classes) with ALS-based dominant height estimates in Scots 

pine (Pinus sylvestris L.) and Norway spruce (Picea abies L. Karst.) dominated stands. The 

authors report an overall classification accuracy of 70.9%, with overestimation observed for the 

lower productivity classes. 

Unique to our study is not just the application, but the actual development of a height-age model 

based solely on remotely sensed data sources. As height-age models are often regionally 

developed, their portability across a range of environmental conditions cannot be assumed (Chen 

et al., 1998). There are however certain limitations associated with the approach presented 

herein. For example, an adjustment must be made to the time since disturbance estimates 

provided by the Landsat time series to account for regeneration delay and the temporal difference 
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between disturbance date and stand age (Bradford et al., 2008). In our study area, information on 

the typical length of this regeneration delay was available to us and could be used to adjust our 

estimates of stand age. In unmanaged forest area, heuristics based on environmental conditions 

and natural regeneration rates can similarly be used to enable this type of adjustment. We also 

assumed that any treatment related to forest management did not significantly influence the site 

productivity reflected by the relation of dominant height and age. This assumption may not hold 

in areas where stands are actively managed. 

Although the detected disturbances provide a reliable source of information about the time when 

a disturbance occurred (Pickell et al., 2014), these estimates are still prone to errors, resulting 

from cloud cover, terrain shadowing, or haze (Thomas et al., 2011). Moreover, applying a 

constant adjustment to TSD for all stands in order to more accurately represent stand age (i.e., 

the actual time of stand establishment post-harvest) undoubtedly lead to either overestimates or 

underestimates of true stand age, because in reality, regeneration delay is highly variable. As 

new stands are rarely established in the same year as harvesting occurs, it is necessary to 

somehow account for discrepancies between TSD and stand age. It is also worth noting that 

conventional sources of stand age information (e.g., forest inventories) can have errors (Bradford 

et al., 2008), and that the impact of the error on derived height-age models is somewhat variable 

(Ni and Nigh, 2011). Furthermore, a chronosequence built on stand-replacing disturbances 

detected with Landsat TM and ETM+ sensors will be limited to 1984. In our study, we were not 

able to model stand growth after the age of 32 years. As Landsat data acquisition continues into 

the future, it will become possible to extend the chronosequence, however, at present, the 

approach demonstrated herein will be applicable only in younger stands.  
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Our model includes no information on tree species. It is widely accepted that different tree 

species have different growth patterns and species-specific models are constructed to increase the 

accuracy of site productivity estimates (Bontemps and Bouriaud, 2014; Skovsgaard and Vanclay, 

2008). There have been a proliferation of species-specific models in the literature, sometimes 

providing conflicting results, and there have been efforts in the forest management community to 

reduce the number of models and move toward more species-independent approaches (Nigh, 

2001). In locations dominated by single tree species or species with similar growth patterns, 

species-independent approaches based on age and dominant height are plausible and may 

provide an estimate of site productivity that is suited to the information need. 

Conclusions 

In this study, we integrated a time series of Landsat imagery and ALS point clouds to provide an 

indicator of forest site productivity. The disturbance detection algorithm was used to map forest 

disturbances and estimate time-since-disturbance, and ALS point clouds were used thereafter to 

estimate dominant height on 1 ha sample units. A chronosequence of height estimates was 

developed from these data and was used to develop a site productivity model. We validated the 

model by comparing the productivity estimates with estimates from forest inventory data on 120 

independent validation plots, which resulted in a bias of 0.70 m and an RMSE of 5.55 m 

(comparison 3). The results of our research suggests there is utility in combining Landsat time 

series and ALS data to develop indicators of productivity in areas that lack forest inventory 

information. Such information is required in these areas to support a range of information needs, 

such as increasing our understanding of climate change impacts, aiding in the estimation of post-

disturbance recovery, and enabling spatially explicit carbon budget models.  
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Tables 

Table 1. List of Landsat scenes used in the study. 

Scene id 
Acquisition 
date Cloud cover [%] 

LT50510251984172PAC00 20/06/1984 1 

LT50510251985222PAC00 10/08/1985 9 

LT50510251986273PAC00 30/09/1986 20 

LT50510251987180PAC00 29/06/1987 4 

LT50510251988199PAC00 17/07/1988 0 

LT50510251989249PAC00 06/09/1989 28 

LT50510251990268PAC00 25/09/1990 16 

LT50510251991271PAC00 28/09/1991 28 

LT50510251992258PAC00 14/09/1992 13 

LT50510251993260PAC00 17/09/1993 34 

LT50510251994263PAC00 20/09/1994 12 

LT50510251995266XXX04 23/09/1995 10 

LT50510251996253PAC00 09/09/1996 10 

LT50510251997223PAC00 11/08/1997 30 

LT50510251998162PAC00 11/06/1998 14 

LE70510251999253PAC00 10/09/1999 5 

LE70510252000240EDC00 27/08/2000 6 

LT50510252001250LGS01 07/09/2001 0 

LT50510252002157LGS01 06/06/2002 10 

LT50510252003224PAC02 12/08/2003 22 

LT50510252004195EDC00 13/07/2004 50 

LT50510252005245PAC02 02/09/2005 37 

LT50510252006248PAC02 05/09/2006 3 

LT50510252007251PAC02 08/09/2007 3 

LT50510252008206PAC04 24/07/2008 0 

LT50510252009208PAC01 27/07/2009 3 

LT50510252010227GLC02 15/08/2010 0 

LT50510252011230PAC00 18/08/2011 29 
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Table 2 ALS data characteristics 

Sensor  ALTM3100EA  

Aircraft Speed 240 km/h 

Data Acquisition Height 700 m AGL 

Swath width 323 m 

Scan angle  ±12.5° 

Beam divergence 0.3  mrad 

Wavelength 1064 nm 

Overlap 75% 

Pulse Repetition Rate 70 KHz 

Scan Frequency 65 Hz 

Number of Returns Per Pulse 4 

Point Density 11.6 pt./m2  

 

 

Table 3. Result of the model parameter estimates. 

parameter Estimate 

guide curve 

β1 109.07 

β2 -0.0041 

β3 1.0705 

lower 95% confidence interval 

β1 44.721 

β2 -0.0041 

β3 1.0705 
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Table 4. The results of the comparisons of site productivity estimates. In all sets n=120. SI – site index calculated 

with equations used in British Columbia and input data from forest inventory (SIINV) or from chronosequence of 

dominant height values (SICS); SP – site productivity calculated with the developed model and input data from forest 

inventory (SPINV) or from chronosequence of dominant height values (SPCS); SIINV32 – site index calculated with 

inventory data for the reduced based age (32 years). In all sets n=120. 

 

Validation set Bias [m] Bias [%] RMSE [m] RMSE [%] R p-value (Wilcoxon test) 

Comparison 1 (SICS - SIINV) 0.79 6.54 7.92 46.86 0.66 0.54 

Comparison 2 (SPCS - SPINV) 1.15 16.47 5.72 58.28 0.61 0.13 

Comparison 3 (SPCS - SIINV32) 0.70 10.07 5.55 53.02 0.63 0.52 
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Figures 

 

Figure 1. Study area location. The hatched areas indicate where ALS was acquired in 2012.  
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Figure 2. A representative subset of the study areas on which a method of finding sample units (100 x 100 m) in the 

detected stand-replacing disturbances is demonstrated. A – Disturbance areas (stands) detected with Landsat time 

series; B – stands are generalized; C – The borders of the stands are refined using CHM; D – 100 x 100 m sample 

units are placed inside the stands. 
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Figure 3. Distribution of time since disturbance (TSD) by area, for the sample units (n = 2006). 
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Figure 4. Histogram of dominant height calculated for the sample units (n = 2006). 
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Figure 5. Guide curve fitted in the height-age measurements. 95% confidence intervals presented as dashed lines. 
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Figure 6. Derived site productivity classes plotted together with the height-age data used to construct them. Dashed 

lines indicate 95% confidence intervals. 
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Figure 7. Site productivity map derived with the developed model. Three example areas (A, B and C) shown in 

larger scale to demonstrate the spatial variability of the site productivity classes.  
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Figure 8. Scatterplots presenting the comparison of the productivity estimates in three sets. SI – site index calculated 

with equations used in British Columbia and input data from forest inventory (SIINV) or from chronosequence of 

dominant height values (SICS); SP – site productivity calculated with the developed model and input data from forest 

inventory (SPINV) or from chronosequence of dominant height values (SPCS); SIINV32 – site index calculated with 

inventory data for the reduced based age (32 years). In all sets n=120. 
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Figure 9. Distribution of the productivity class difference values (model-derived class – reference site class).  

 

 

 

 

 

 


