POPULATION aND PaRËSITE STUDIES OF THE SPRUCE BUDWORM IN THE LAKE NIPIGON AND LAC
 SEUL INFESTATION AREAS OF NORTHWESTERN ONTARIO, 1955

 by

 by
 K. R. ELLIOTT, G. R. STAIRS, E. P. SAEREKA

INTERIM REPORT 1955-4
FOREST INSECT LaBORATORY
SAULT STE. MARIE, ONTARIO

CANADA
DEPARTIIENT OF AGRICULTURE
SCIENCE SERVICE
FORUST BIOLOGY DIVISION

March, 1956
(This report may not be published in whole or in part without the written consent of the Chief, Forest Biology Division, Science Service $\boldsymbol{x}_{\boldsymbol{x}}$ Department of Agriculture, Ottawa, Canada.)

Page

1. INTRODUCTION 1
2. PERMANENT SAiPLP PLOTS. 1
2.1 Lake Nipigon Area. 1
Lac Seul Area. 1
3.

METHODS 1
3.1 Larval and Pupal Population Studies. 2
3.23.3
Egg Mass and Defoliation Survey. 2
Parasite Rearing Program. 2
4.4.14.2
4.3
RESULTS 4
Larval and Pupal Population Studies. 4
Egg Mass and Defoliation Survey 4
Parasite Rearing Program. 4
5. DISCUSSION 4
6. REFERENCES 18

1. INTRODUCTION

Population and parasite studies of the spruce budworm have been carried out by various investigators in the Lake Wipigon infestation area since 1944 and in the Lac Seul infestation area since 1950, and continuous records are available for both areas (2, 3, 4, 5, 6, 9, 10,11,13). These studies were continued in 1955 by G. R. Stairs from the Black Sturgeon Lake Field Station in the Lake Nipigon area and by E. P. Smereka from the Cedar Lake Field Station in the Lac Seul area. The work at both field stations was coordinated by K. R. Elliott to ensure the use of identical methods.

2. PERMANENT SAMPIE PLOTS

2.1 Lake Nipigon Area

Plot 6. Located near Joe Lake on the Silver Island road on Sibley peninsula, this plot was established in 1050. The infestation here is active but about 40% of the host trees have been killed by budworm feeding.
Plot 10. Located at Marie Louise Lake on the Silver Island road on Sibley peninsula, it was established in 1953. The infestation at this location is not as old as that at Plot 6, but about 10\% of the host trees are dead.
Plot 9. This plot was established in 1952, on the Little Sturge Lake road, three miles east of Great Lakes Paper Co. Camp 32, in a remnant of the original Lake Nipigon infestation area that has persisted even though the great rajority of the balsam fir and much of the white spruce has been killed (7).

2.2 Lac Seul Area

Plot 6. This plot is located on the south shore of Spadina Lake which is accessible from the northeast end of Perrault Lake by tributary streams and it was first used for parasite studies in 1950. The infestation here is well advanced; the great majority of the host trees have been killed.
Plot 8. Located on the Fied Lake road (Highway 105), one mile north of the Cedar Lake Field Station, this plot was first used for parasite studies in 1950. The majority of the host trees are dead but the infestation is not quite as advanced as that at Plot 6.
Plot D. This plot was established in 1955 at the Ontario Department of Highways Aaron Park, 6 miles east of Dryden on Highway 11. The host trees have been heavily defoliated for several years but mortality has not begun.

3. METHODS

The field and analytical methods used were those described by Fettes (8), McGugan (11), and Morris (12). The following brief descriptions are included because the last had not previously been used in Ontario and the first two have not.been described in recent reports.

3.1 Larval and Pupal Population Studies

The method developed by Fettes (8) was adapted to this work. The sampling unit consisted of two $18^{\prime \prime}$ branch-tips from the mid-crown of each of 10 co-dominant or dominant balsam fir trees from each plot and collections were made when the budworm populations were in: (a) the late 4 th instar (25% 5th's), (b) the late 6 th instar (25% pupae) and (c) the late pupal stage (25% adults). The branches were put into separate paper bags at the plots and taken to the field station for examination. Tallies were made of the number of current shoots and the number of budworm by instar per branch.

The data were analyzed to determine:-

1. The Population Index $=\frac{\text { Number of larvae (and/or pupae) }}{\text { Number of current shoots }}$
2. The Development Index (D.I.) =
$\frac{\text { sum of (Instar value } x \% \text { of total number in sample) }}{100}$
where the instar values are $20,36,50,75$, and 100 for the Brd, 4 th, 5 th and 6th instars and pupae respectively. (These abstract values represent the cumulative per cent of total time required for development).

The Population Index indicates the density of the population per feeding site and the Development Index indicates the seasonal development.

3.2 Egg Mass and Defoliation Survey

For this work, the methods described by Morris (12) and by Fettes (8) were used to determine the egg mass density and the degree of defoliation, respectively. The sampling unit consisted of one entire branch (except for the non-foliated basal stem) from the mid-crown of six co-dominant balsam fir trees and the length and the width at mid-length of the foliated part of each branch were measured for the calculation of branch area in square feet. The branches were cut into segments and placed in paper bags at the plot and then taken to the field station for examination.

For the egg mass tally, the foliage was examined branch by branch and the figures converted to number of egg masses per 100 square feet of foliage. By the use of Morris' sequential table, sampling was stopped when the cumulative number of egg masses per 100 square feet of foliage fell outside the light to moderate or the moderate to severe bands, into the light, moderate or severe zones.

For the defoliation tally, all six branches of the sample were examined. The defoliation of each current shoot.was determined with the aid of Fettes! visual chart and entered under one of the 11 defoliation classes. The per cent defoliation (of current foliage) was determined by dividing the total number of shoots into the sum of the products obtained by multiplying the number of shoots in each class by the mid-value for the class.

3.3 Parasite Rearing Program

Collections for this work were made concurrent with collections for larval and pupal population sampling at the times listed in Section 3.1 above.

The sampling unit consisted of approximately 250 budworms collected from mid-crown branches of co-dominant balsam fir trees. Each sample branch was cleaned of all budworm material before additional branches were selected and the insects were placed, complete with feeding sites, into 8-0z. rearing jars (10 per jar) at the plot. This procedure was followed so that an unbiased sample was obtained and to disturb the insects as little as possible, respectively. Rearing was carried out in insectaries at the field stations. Food was changed every 3 or 4 days, at which time records were made of the number of living budworms by instar, the number of dead or diseased, and the number killed by parasites. Emerged parasites were placed in individual vials ($10 \times 60 \mathrm{~mm}$) plugged with cotton wool, along with an identification slip. In the case of Dipterous parasites, some moist moss was placed in the bottom of the vial and kept moist until the maggots pupated and emerged. All adult parasites were pinned, tentatively identified and sent to the Systematic Unit, Division of ${ }^{\text {ntomology, Ottawa, for final identifi- }}$ cation.

Upon the completion of the rearing program, the data were treated by the method described by McGugan (11). Here, Bess' (I) method of mortality survival ratios (M / S) were adapted to spruce budworm sampling. This method allows the determination of per cent control due to parasites without knowledge of the size of the initial population. The determination is made by first grouping the parasites recovered as follows:-

1. Early larval (EL) - those which overwinter within the host and emerge from the early instar larvae.
2. Late larval (LL) - those that attack late instar larvae and emerge from them or from pupae.
3. Pupal (Pup.) - those that attack and emerge from pupae.

The second step is to convert the parasite incidence in each of the above groups to per cent control so that all estimates are placed on the same basis and the final results are influenced only if the samples were not of adequate size. (When incidence for any one parasite appears in more than one group, one is chosen as being representative of the species on the basis that earlier collections were taken before the completion of attack and later collections were taken after the parasite began to emerge. This selection depends upon the habits of the parasite). Before conversion to per cent control, it is necessary to:-

1. Reduce the original number of budworm collected by the number that were accidently killed, lost or died of natural causes or diseases, on the assumption that they would have contained the same proportion of parasites as those which survived.
2. Reduce the original number collected in the late larval stage by the number of budworms killed by early larval parasites, on the assumption that multiple parasitism in the spruce budworm is a rarety and, therefore, previously parasitized hosts are unsuitable for oviposition by other parasites.
3. Dissect all dead pupae to determine the presence or absence of parasites so that no reduction of the original number collected is necessary.

The third step is to change the per cent control figures to M / S ratio. As M / S is the number of individuals killed during any stage, divided by the number of individuals that survived, the per cent control for each parasite is divided by 100 minus the per cent figure.

The fourth step is to calculate the total M / S ratio. The ratios in each of the three groups are added to obtain the combined M / S ratios and if these are designated as A, B and C, then:

Total $M / S=A+B+A B+C+(A+B+A B) C$
Finally, the total relative per cent mortality is:
$\frac{\operatorname{Total} \mathrm{M} / \mathrm{S}}{\text { Total } \mathrm{MS}+1.0} \times 100$
The total per cent mortality is a relative percentage because the method assumes that other control factors would have accounted for the same percentage of the population in the absence of the parasite factor as they did in its presence.
4. RESULIS

4.1 Larval and Pupal Population Studies

Summaries of the population counts by instar, together with Population Index and Development Index are presented in Table I for the Lake Nipigon Area and in Table II for the Lac Seul Area. Table III is a comparison of the seasonal development for each sample plot. The values shown were read from curves based on the D.I. values listed in Tables I and II.

4.2 Egg Mass and Defoliation Curvey

The results of this survey are shown in Table IV for the permanent sample plots in both infestation areas. In addition, an extensive survey was carried out at random sample points in the Lake Nipigon area as shown in Table V.

4.3 Parasite Rearing Program

The parasite incidence (by species) for both infestation areas is shown in Table VI. Summaries of the rearing records and calculation of M/S ratios for the 6 permanent sample plots are shown in Tables VII to XII. A comparison of the M / S ratios for the main species of parasites and the total relative per cent mortality for the 6 plots from 1953 to 1955 is presented in Table XIII.

5. DISCUSSION

In the Lake Nipigon area in 1955, the spruce budworm was active throughout most of the area affected in 1954, but population density was generally lower. There was a slight decrease in population density on Sibley peninsula and a marked decrease in the remnant of the main infestation south of Black Sturgeon Lake (Plot 9), but in both cases the host-tree mortality caused by budworm feeding increased considerably. White spruce was found to be harbouring medium to heavy populations in Hurkett township (Plot 5) and at J. B. Thomas' bark beetle plot on the Black Sturgeon River apposite Shillabeer Creek. The egg mass survey indicated that populations will be high in 1956 on Sibley peninsula, but very low in the area south of Black Sturgeon Lake. There was a marked increase in the mortality due to parasites in the spruce budworm
populations in the plots studied. The parasite species complex remained much as it was in 1954, but the effectiveness of Apanteles was lower in all the plots, that of Glyta, Epimasicera, Phryxe, and Psycophagus was about the same and that of Meteorus (especially in Plot 9), Apechthis and Sarcophagid Spp. was greater.

In the Lac Seul area, the extensions made by the infestation we:re considerable. However, the budworm population density was lower in plots 6 and 8 than it was in 1954, but both plots are near the centre of the infestation area where host-tree mortality has been heavy and this factor may have influenced the population density. The egg mass survey indicated that populations would be lower in 1956 than they were in 1955 but it is thought that the method used is not suitable in its present form for the Lac Seul infestation area. This was also indicated by surveys carried out by the Forest Biolosy rangers but as explained by Morris (12), the method was developed from information collected in New Brunswick and revision might be necessary in other areas. The method appears to be valid for the Lake Nipigon area but additional information will be required from the Lac Seul area so that the infestation classes can be altered on the basis of egg population in one year and defoliation in the following year. The relative mortality due to parasites in the budworm populations was slightly lower in Plot 6 and considerably higher in Plot 8, than in 1954, but the highest mortality (52%) was recorded in Plot D which was sampled for the first time in 1955. The parasite species complex was comparable to that found in Plots 6 and 8 in 1954, but Plot D recorded the fewest species. Compared to 1954, the effectiveness of Meteorus was lower in Plots 6 and 8, that of Apanteles, Glypta, Iypha and Psychophagus was about the same and that of Omatoma, Apechthis, Phaeogenes and Amblymerus was higher. The last species was the most effective one in Plot D, followed by Glypta, Apanteles, Meteorus and Phaeogenes.

The seasonal development of the budworm populations in the Lake Nipigon area began at a later date than in the Lac Seul area; but in both areas the period of development was longer than in 1954. The main differences in the parasite complex of the two areas were: (i) Meteorus was the most effective parasite in the Lake Nipigon area, but Apanteles, Glypta and Amblymerus all exceeded the effectiveness of this species in the Lac Seul area; (ii) the "early larval" parasite Haeogenes was present in all plots in the Lake Nipigon area but did not appear in the Lac Seul area; (iii) Phryxe was found commonly in the Lake Nipigon area, but was found in small numbers in only one plot (8) in the Lac Seul area; and (iv) the main Chalcid parasite in the Lake Nipigon area was Psychophagus but that in the Lac Seul area was Amblymerus.

Table I
Summary of Spruce Budworm Population Sampling in the Lake Nipigon Infestation Area in 1955

	Plot 6								Plot 10								Plot 9					
Date	26-5		31-5		22-6		5-7		26-5		$31-5$		22-6		5-7		23-5		13-6		30-6	
No. of Branches	20		20		21		19		14		20		19		20		19		20		20	
No. of Shoots	1621		1829		1658		2222		1448		1937		1172		1283		2855		2360		2409	
	No. ${ }^{\text {\% }}$	\% \% - \%	No.	\%																		
Instar II III IV V VI Pupae Pupal skins	$\begin{array}{r} 28 \\ 247 \\ 11 \end{array}$	$\begin{array}{r} 9.8 \\ 86.4 \\ 3.8 \end{array}$	$\begin{array}{r} 3 \\ 108 \\ 98 \\ 1 \end{array}$	$\begin{array}{r} 1.4 \\ 51.4 \\ 46.7 \\ 0.5 \end{array}$	1 15 107	$\begin{array}{r} 0.8 \\ 12.2 \\ 87.0 \end{array}$	19 50 1	27.2 71.4 1.4	$\begin{array}{r} 6 \\ 215 \\ 61 \\ 1 \end{array}$	$\begin{array}{r} 2.1 \\ 76.0 \\ 21.5 \\ 0.4 \end{array}$	2 165 259 4	$\begin{array}{r} 0.5 \\ 38.4 \\ 60.2 \\ 0.9 \end{array}$	5 9 156	2.9 5.3 91.8	26 109 8	18.2 76.2 5.6	4 96 119	$\begin{array}{r} 1.8 \\ 43.8 \\ 54.4 \end{array}$	7 47 197	2.9 16.7 80.4	3 31 23 6	4.8 49.2 36.5 9.5
Total	286	100	210	100	123	100	70	100	283	100	430	100	170	100	143	100	219	100	245	100	63	100
Population Index	0.176		0.115		0.074		0.032		0.095		0.221		0.145		0.111		0.077		0.104		0.026	
Development Index	18.6		27.3		73.1		93.2		23.1		29.8		72.5		95.4		28.3		69.7		85.3	

[^0]
Table II

Summary of Spruce Budworm Population Sampling in the Lac Seul Infestation Area in 1955

* No. $=$ Number of budworms in each stage.

兹 $\%=$ The per cent of the sample in each stage. (Used to calculate the Development Index)

Table III

Comparison of the Seasonal Development of Spruce Budworm Populations in the Lake Nipigon and Lac Seul Infestation Areas for dctual Sampling Dates based on Development Index

Location	Sampling Date													
	May					June					July			
	19	20	23	26	31	13	14	17	22	30	1	2	4	,
Lake Nipigon	9.3	10.2	13.2	18.6	27.3	55.9	58.0	64.0	73.1	87.1	88.6	90.0	92.3	2
Plot 10	14.1	15.2	18.9	23.1	29.8	26.0	57.2	62.9	72.5	87.1	89.0	90.8	93.8	95.4
Plot 9	20.0	22.0	28.3	35.4	46.0	69.7	71.1	74.7	79.6	85.3	86.0	87.8	89.2	90.0
Lac Seul														
Plot 6	22.6	24.3	29.3	34.8	43.4	66.0	67.8	73.0	81.7	95.2	96.8	97.4	100.	-
Plot 8	26.8	28.2	33.5	38.5	47.0	68.8	70.3	75.6	83.4	97.1	98.8	100.	-	-
Plot D	25.6	27.4	32.4	37.2	45.7	67.0	68.2	73.1	80.8	93.2	94.9	95.3	99.5	100.

Table IV
Results of Egg-Mass and Defoliation Surveys on Balsam Fir Trees in Permanent Plots in the Lake Nipigon and Lac Seul Infestation Areas in 1955

	Lake Nipigon Plots			Lac Seul Plots*		
	6	10	9	6	8	D
Egg-Mass Survey No. of branches examined	2	6	6	3	6	5
Area (sq.ft.) of foliage examined	10.6	26.0	31.0	48.8	137.4	99.2
No. of egg masses / 100 sq.ft.	264	193	119	28	55	89
Infestation Class*	S	M-S	M-S	I-M	M	M
Defoliation Survey						
No. of branches examined	6	6	6	6	6	6
Area (sq.ft) of foliage examined	30.6	26.0	31.0	127.8	137.4	124.7
Per Cent Defoliation (Current)	69	97	37	90	100	100

[^1]-9-
Table V
Results of an Egg-Mass and Defoliation Survey at Random Points in the Lake Nipigon Area in 1955

Location	Host	No. ikassesper 100 sq.ft.	Infestation Class*	Defoliation	
				1955	1954**
Jackfish River - at Highway 17	bF	93	M	23\%	M
Nipigon township	bF	56	M	84\%	H
Black Sturgeon R. - at Hwy 17	bF	0	0	0	0
Hurkett township (plot 5)	WS	164	M-H	23\%	L
Shillabeer Creed - at Camp 30 Rd	. bF	0	0	0	0
3 Mi . North of G.L.Camp 18	bF	243	$\dot{1}$	58\%	H
Leckie Lake - east shore	bF	18	I	12\%	L
Plot 8 - Disraeli L. Road	bF	59	M	16\%	H
Disraeli L.	bF	0	0	8%	L
Junction - Black Sturgeon Rd, and Shillabeer Creek	wS	391	H	23\%	L
Great Lakes Co. Gate	WS	0	0	0	0
Mound Lake	bF	0	0	0	0
Muskrat Lake	bF	16	L	Trace	L
Plot 2 - 6 mi N. of Black Sturgeon take field sta'tion	bF	0	0	0	0
Wolf R - at Highway 17	WS	18	I	Trace	0
Abitibi Camp 226	bF	0	0	0	0
Dorion Fish Hatchery	bF	10	L	Trace	L
L.rmistice Lake	bF	11	L	0	0
Kearns Lake	bF	0	0	0	0
Sibley Pen. - 1 mi . S. Pass Lake	bF	38	I-M	20	L

* See Section 3.2
** 1954 Defoliation was determined from survey maps and the following classes apply:

L - up to 50% current defoliation
M - over 50 to 80% current defoliation
H - over 80% current defoliation.

Table VI

Parasite Species Recovered in the Lake Nipigon and Lac Seul Areas in 1955

Table VII
Lake Nipigon Area - Plot 6-1955
Summary of Parasite Rearing Records and Calculation of Mortality/Survival Ratios

$\begin{aligned} & \text { Collection No. } \\ & \hline \text { Date } \end{aligned}$	I	II	II		$\|$Per Cent Mortality in Collection No			$\begin{gathered} \text { Mortality/Survival } \\ \text { Ratio } \\ : \quad \text { for:* } \\ \hline \end{gathered}$		
	30-5	21-6	6-7							
Stage Collected	Larvae	Larvae	Larvae	Pupae						
No. Collected	279	173	78	177	I	II	III	EL	LI	Pup
Apanteles	3	2	-	-	1.7			0.017		
Glypta	5	2	12	-	2.8			0.029		
Horogenes	$\underline{6}$	4	-	-	3.4			0.035		
Meteorus	=	3	34				14.7		0.172	
Pseudoperichaeta	-	2	-	-		1.5			0.015	
Epimasicera	-	I	4	-		0.7			0.007	
Phryxe	-	$\underline{2}$	5	-		1.5			0.015	
Gymmophthalma	-	$=$	1	-			0.4		0.004	
Apechthis	-	-	=	33			18.6			0.229
Itoplectis	-	-	-	4			2.3			0.024
Psychophagus	-	-	-	I			0.6			0.006
Amblymerus	-	-	-	$\underline{2}$			1.1			0.011
Sarcophagid sp.	-	-	-	13			7.3			0.079
Omatoma	-	-	-	2			1.1			0.011
Diptera (Unk.)	-	-	-	5			2.8			0.029
Others			4				1.7		0.017	
Total Parasites	14	16	60	60	Comb	bined	M/S	0.081	0.230	0.389
Died as larvae	100	31	12		Tot	al M	- $=$	0.8		
Died as pupae	13	13	-	25	Rel	ative	Morta	ality	$=45$.9\%
Emerged as adults	152	112	6	92						

* EL - early larval period

LL - late larval period
Pup - Pupal period

Note: Underlined number indicate those collections chosen as most representative for calculation of N / S

Table VIII
Lake Nipigon Area - Plot 10 - 1955
Summary of Parasite Rearing Records and Calculation of Mortality/Survival Ratios

Collection ${ }^{\text {NO}}$.	I	II	II			C		Morta	ty/S	val
Date	30-5	21-6	$6-$		Mor	alit	in		Ratio	
Stage Collected	Larvae	Larvae	Larvae	Pupae		ecti	ก NO.:		for:*	
No. Collected	264	170	104	186	I	II	III	EL	LL	Pup
Apanteles	7	2	1	-	0.6			0.006		
Glypta	7	24	50	-	4.3			0.045		
Meteorus	$\underline{=}$	5	29	-			12.7		0.145	
Horogenes	-	1	-	-		0.9		0.009		
Hymenoptera (Unl	-	-	3	-			1.3		0.013	
Phryxe	-	4	I	-		3.5			0.036	
Epimasicera	-	3	3	-		2.7			0.028	
Apechthis	-	-	-	60			32.3			0.477
Itoplectis	-	-	-	1			0.5			0.005
Phaeogenes	-	-	-	3			1.6			0.016
Psychophagus	-	-	-	6			3.2			0.033
Sarcophagid sp.	-	-	-	13			7.0			0.075
Omatoma	-	-	-	7			3.8			0.040
Diptera (Unk.)	-	-	-	\%			4.3			0.045
Total Parasites	8	39	87	98	Combined M / S			0.060	0.222	0.691
Died as larvae	100	30	10		Total M/S m 1.190					
Died as pupae	11	8	2	19	Relative Mortality $=54.3 \%$					
$\begin{aligned} & \text { Emerged as } \\ & \text { adults } \end{aligned}$	135	93	5	69						

* EL - early larval period

LL - late larval period
Pup - pupal period

Note:
Underlined numbers indicate those collections chosen as most representative for calculation of M / S

Table IX
Lake Nipigon Area - Plot 9-1955
Summary of Parasite Rearing Records and Calculation of Mortality/Survival Ratios

* EL - early larval period

LL - late larval period
Pup - pupal period

Note: Underlined numbers indicate those collections chosen as most representative for calculation of M / S

Table X
Lac Seul Area - Plot 6-1955
Summary of Parasite Rearing Records and Calculation of Mortality/Survival Ratios

* EL - early larval period

L山 - late larval period
Pup - pupal period

Note: Underlined numbers indicate those collections chosen as most representative for calculation of M / S

Table XI
Lac Seul Area - Plot 8 - 1955
Summary of Parasite Rearing Records and Calculation of Mortality/Survival Ratios

Collection No.	I	II			II		Cent		Mortal	ty/Sur	rvival
Date	20-5	17			-7	Mort	lity	in		Ratio	
Stage Collected	Larvae	Larvae	Pupae	Larvae	Pupae	Coll	ection	No:-		for:*	
No. Collected	279	221	30	18	268	I	II	III	EL	LI	Pup
Apanteles	11	2	-	-		6.0			0.064		
Glypta	$\underline{29}$	56	-	2	-	15.9			0.189		
Meteorus		1	-	9	-			3.2		0.033	
Iypha	-	7	-	$\underline{-}$	-		4.3			0.045	
Epimasicera	-	б	-	-	-		3.7			0.038	
Nemorilla	-	I	-	-	-		0.6			0.006	
Phorocera	-	I	-	-	-		0.6			0.006	
Phryxe	-	Σ	-	-	-		1.2			0.012	
Omatoma	-	8	3	-	1		4.9			0.052	0.004
Apechthis	-	I	4	-	$\overline{9}$			3.4			0.035
Phaeogenes	-	-	-	-	39			14.6			0.171
Amblymerus	-	-	-	-	17			6.3			0.067
Tetrastichus	-	-	-	-	$\underline{1}$			0.4			0.004
Pseudosarcophaga	-	-	1	-	6			2.2			0.022
Diptera (Unk.)	--	4	-	1	I		2.5	0.4		0.026	0.004
Total Parasites	41	89	8	12	74.	Combined M / S			0.253	0.2180 .307	
Died as larvae	97	31	-	5	-	Total M/S $=0.994$					
Died as pupae	16	21	4	-	76	$\underline{\text { Relative Control }}=\underline{49.8 \%}$					
$\begin{aligned} & \text { Emerged as } \\ & \text { adults } \end{aligned}$	125	80	18	1	118						

* EL - early larval period

LL - late larval period
Pup - pupal period

Note: Underlined numbers indicate those collections chosen as most representative for calculation of M / S

Table XII
Lac Seul Area - Plot D - 1955
Summary of Parasite Rearing Records and Calculation of Mortality/Survival Ratios. .

Collection No.	I	II	III		Per Cent Mortality in Collection No.:-			$\begin{gathered} \text { Mortality/Survival } \\ \text { Ratio } \\ \text { for:* } \\ \hline \end{gathered}$		
Date	19-5	14-6	4-7							
Stage Collected	Larvae	Larvae	Larvae	Pupae						
No. Collected	275	276	54	201	I	II	III	EL	LIT	Pup
Apanteles	19	18	-	-	10.9			0.122		
Glypta	20	50	-	-	11.4			0.129		
Meteorus	-	2	25	-			11.1		0.125	
Epimasicera	-	4	-	-		2.8			0.029	
Apechthis	-	-	-	4			2.0			0.020
Phaeogenes	-	-	-	16			8.0			0.087
Itoplectis	-	-	-	1			0.5			0.005
Amblymerus	-	-	-	40			19.9			0.248
Tetrastichus	-	-	-	2			1.0			0.010
Pseudosarcophag	-	6	-	$\underline{3}$			1.5			0.015
Diptera (Unk.)	4	6	-	-		4.1			0.043	
Total Parasites	43	80	25	66	Com	ned	M/S	. 251	. 117	. 385
Died as larvae	100	63	9	-	Tota	M/S	$=$	073		
Died as pupae	18	34	-	128	Rela	ive	Control	$=$	51.8\%	
Emerged as adults	114	99	-	7						

* EL - early larval period

LL - late larval period
Pup - pupal period

Note: Underlined numbers indicate those collections chosen as most representative for calculation of M / S

Table XIII

The Mortality/Survival ratios for the main species of parasites recovered from the permanent sample plots and the total relative per cent mortality, from 1953 to 1955

Parasite Species	Lake Nipigon Area									Lac Seul Area						
	1953			1954			1955			1953.		1954.		1955		
	6	10	9	6	10	9	6	10	9	6	8	6	8	6	8	D
Apanteles	0:025	0.019	0.017	0.058	0.116	0.104	0.017	0.006	0.006	0.044	0.049	0.190	0.037	0.110	0.064	0.122
Glypta	. 008	. 004	-	. 030	. 073	. 041	. 029	. 045	. 089	. 083	. 153	. 152	. 212	. 104	. 189	. 129
Horogenes	-	-	-	-	-	-	. 035	. 009	. 006	. 032	. 003	. 003	-	-	-	-
Meteorus	. 023	. 004	-	. 139	. 004	. 064	. 172	. 145	1.538	. 048	. 040	. 168	. 040	. 036	. 033	. 125
Epimasicera	. 047	. 004	. 006	. 040	. 004	. 027	. 007	. 028	. 046				-	. 012	. 038	. 029
Lypha	-	-	-	-	-	-	-	-		. 010	. 022	. 004	. 023	. 006	. 045	-
Omatoma	-	-	-	-	. 006	-	. 011	. 040	. 025	-	. 005	. 006	. 012	. 024	. 056	-
Phryxe	-	. 018	. 006	. 049	. 008	. 024	. 015	. 036	. 029	-	-		-		. 012	-
Aphecthis	. 008	. 028	. 006	. 091	. 063	. 471	. 229	. 477	. 076	. 003	. 021	. 047	. 003	. 064	. 035	. 020
Iteplectis	. 217	. 051	. 012	. 095	. 024	. 004	. 024	. 005	-	. 009	. 011	. 019	. 007	. 009	-	. 005
Phaeogenes	. 008	-	. 072	. 004	. 034	-	-	. 016	. 025	. 002	-	. 138	. 045	. 178	. 171	. 087
Psychophagus	. 017	-	. 034	. 011	. 003	. 137	. 006	. 033	. 167	-	-	-	-	-	-	-
Sarcophagid sp.	-	-	-	. 003	. 040	. 065	. 079	. 075	. 200	-. 001	-	. 019	. 007	. 018	. 022	. 015
Amblymerus	-	-	. 034	-	-	-	. 011	-	. 025	-	-	. 019	-	. 095	. 067	. 248
Relative \% Mortality all species	27	15	16	38	31	55	46	54	77	20	24	50	30	46	50	52

6. REFERENCES

1. Bess, H. A. 1945. A measure of the influence of natural mortality factors on insect survival. Ann. Ent. Soc. Am. 38(4): 472-481.
2. Blais, J. R. 1951. Investigations of parasites in spruce budworm populations in the Lac Seul infestation of northwestem Ontario. Ann. Tech. Rept. For. Ins. Lab., Sault Ste. Marie, 1950., Vol. 5.
3. ----- 1952. Ann. Tech. Rept., For. Ins. Lab., Sault Ste. Marie, 195I, Vol. 5.
4. -....- 1953. Ann. Tech. Rept., For. Ins. Lab., Sault Ste. Marie, 1952, Vol. 4.
5. -.-. 1954. Interim Report 1954-1, Sault Ste. Marie.
6. …-. 1956. Interim Report 1954-16, Sault Ste. Marie.
7. Elliott, K. R. 1955. A survey of a continuing spruce budwo rm infestation south of Black Sturgeon Lake - 1954. Interim Report 1954-11. Forest Insect Lab., Sault Ste. Marie.
8. Fettes, J. J. 1951. Investigations of sampling techniques for population studies of the spruce budworm on balsam fir in Ontario. Ann. Tech. Rept., For. Ins. Lab., Sault Ste. Marie, 1950, Vol. 4.
9. MaDonald, S. 1951. Population and parasite studies of the spruce budworm. Ann. Tech. Rept., For. Ins. Lab., Sault Ste. Marie, 1951. Vol. 5.
10. --...-. 1952. Population and parasite studies of the spruce budworm in the Lake Nipigon infestation area. Ann. Tech. Rept., For. Ins. Lab., Sault Ste. Marie, 1952. Vol. 4.
11. McGugan, B. M. 1950. Investigations of parasites in the natural control of the spruce budworm. Ann. Tech. Rept., For. Ins. Lab., Sault Ste. Marie, 1950. Vol. 4.
12. Morris, R. F. 1954. A sequential sampling technique for spruce budworm egg surveys. Can. J. Zool. 32:302-313.
13. Stairs, G. R. 1955. Population and parasite studies of the spruce budworm, Lake Nipigon area, 1953, 1954. Interim Report 1954-13, For. Ins. Lab., Sault Ste. Marie.

[^0]: * No. = Number of budworms in each stage
 $\% \%=$ The per cent of the sample in each stage. (Used to calculate the Development Index)

[^1]: * See section 5

