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Abstract 

Pixel-based image compositing enables production of large-area surface reflectance images 

that are largely devoid of clouds, cloud shadows, or haze. Change detection with spectral trend 

analysis uses a dense time series of images, such as pixel-based composites, to quantify the 

year, amount, and magnitude of landscape changes. Topographically-related shadows found in 

mountainous terrain may confound trend-based forest change detection approaches. In this 

study, we evaluate the impact of topographic correction on trend-based forest change 

detection outcomes by comparing the amount and location of changes identified on an image 

composite with and without a topographic correction. Moreover, we evaluated two different 

approaches to topographic correction that are relevant to pixel-based image composites: the 

first corrects each pixel according to the day of year (DOY) the pixel was acquired, whilst the 

second corrects all pixels to a single reference date (August 1st), which was also the target date 

for generating the pixel-based image composite. Our results indicate that a greater area of 

change is detected when no topographic correction is applied to the image composite, 

however, the difference in change area detected between no correction and either the DOY or 

the August 1st correction is minor and less than 1% (0.54–0.85%). The spatial correspondence of 

these different approaches is 96.2% for the DOY correction and 97.7% for the August 1st 

correction. The largest differences between the correction processes occur in valleys (0.71-

1.14%), upper slopes (0.71-1.09%), and ridges (0.73-1.09%). While additional tests under 

different conditions and in other environments are encouraged, our results indicate that 

topographic correction may not be justified in change detection routines computing spectral 

trends from pixel-based composites. 
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1. Introduction 

The open release of the Landsat image archive in 2008 (Woodcock et al., 2008) has resulted in 

an increase in the number of spatial and temporal processing and analytical methods (Banskota 

et al., 2014) associated with large-area analyses from remotely sensed data (Wulder and Coops, 

2014). No longer impeded by per-image costs and further enabled by provision of analysis-

ready products that have quality geometric co-regisration and calibrated spectral values, users 

are increasingly empowered (Hansen and Loveland, 2012; Wulder and Coops, 2014), especially 

for time series investigations (Kennedy et al., 2010). Multiple images with analogous conditions 

can be combined to create spatially exhaustive image composites based upon individual pixels 

(Griffiths et al., 2013; Roy et al., 2010; White et al., 2014) rather than a need for cloud-free 

scenes, with automated algorithms utilized to remove cloud, shadows, and other atmospheric 

effects (e.g., Zhu and Woodcock, 2012). Access to dense time series and an exhaustive spatial 

coverage combined with a level of detail that is informative of human and management 

activities on terrestrial ecosystems has been afforded by Landsat (Wulder et al., 2008). Change 

detection, with a particular emphasis on forest change, has been a particularly active research 

area (e.g., Kennedy et al., 2010; Huang et al., 2010), with opportunities to not only capture 

stand replacing change, but also to relate more subtle changes including magnitude, duration, 

and preceding and following land cover conditions (Frazier et al., 2014; Hermosilla et al., 2015). 

 

Currently, analysis-ready Landsat Level 1T (standard terrain correction) products include 

systematic radiometric and geometric corrections, and include the use of a digital elevation 

model (DEM) for topographic accuracy (USGS, 2013), noting that there is no standard 

topographic correction applied for terrain shadows. Topographic correction is an image 

enhancement used to minimize the impact of shadows or varying illumination caused by terrain 

(Richter, 1998), the effects of which are not well explored regarding Landsat time series 

imagery and forest change (Banskota et al., 2014). Pixel-based compositing techniques produce 

images with a range of pixel acquisition dates, resulting in the possibility of terrain shading 

differences due to a variation in solar azimuth and zenith. Certain image processing activities 

can be impacted by differences in surface reflectance values that are not indicative of actual 

surface condition differences, but rather a manifestation of the physical location (see Tan et al., 

2013). Varying terrain shadows throughout the year, as may be the case in a time series based 

on composites, may disrupt spectral trends, potentially causing errors in change detection 

results (Banskota et al., 2014). However, studies exploring forest change detection and pixel-

based composites have not included topographic corrections (e.g., Griffiths et al., 2013; 

Hermosilla et al., 2015), and a study that investigated the effects of topographic correction on a 
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land cover classification of pixel-based composites found only a small increase in classification 

accuracy (Vanonckelen et al., 2015). 

 

The current capacity for processing of large numbers of images for both large area and dense 

time series is evident (e.g., Griffiths et al., 2012, 2013; Latifovic and Pouliot, 2014; Hermosilla et 

al., 2015; Senf et al., 2015) with the resulting composites supporting monitoring and reporting 

programs (White et al., 2014). To ensure the quality of these outcomes, additional investigation 

to determine the possible impacts of spectral differences attributable to topography on land 

cover and change applications is required. Topographic correction routines remain time 

consuming, require access to adequate digital terrain models, and can be implemented in a 

variety of ways (e.g., Soenen et al., 2005; Richter et al., 2009), with no consensus on the most 

appropriate approaches to follow, some of which may be land cover or location dependent. 

Knowledge of whether or not to include a geometric topographic correction in an image 

compositing and subsequent analysis workflow is an important consideration for resultant 

product quality as well as for time and data management. In this research we explore the 

effects of topographic correction on change detection outcomes using spectral trends 

computed from Landsat imagery. Specifically, this research focuses on the differences in the 

quantity of change detected in forested areas as well as the variation in this quantity across 

different topographic positions when using uncorrected composites, and composites from two 

different topographic correction approaches, one correcting each pixel considering its actual 

acquisition day of year (DOY), and the other considering a single date for all pixels. 

 

2. Study area and data 

2.1. Study Area 

The study area is 56,000 km2 in area and located in southwest British Columbia, Canada. The 

location is well-suited to examine the effects of mountainous terrain on spectral trends as it 

includes both the Coast Mountain Range and the Cascade Mountain Range with an elevation 

range from 0 m to 3236 m (mean: 1401 m, standard deviation: 544 m), a mean slope of 20°, 

and various complex terrain features, such as valleys, ridges, and avalanche chutes (Figure 1). 

This study area includes highly productive temperate rainforests of the coast as well as 

montane forests further east. The mean annual temperature ranges from approximately 10.2°C 

in the south to 0°C in the north and -6.1°C in high elevations (Figure 1). The mean annual 

precipitation ranges from approximately 233 mm in the north to 5883 mm in the north 

(ClimateBC version 5.10, 2015) (Figure 1). 
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Approximately 62% of the area is forest dominated by western hemlock (Tsuga hertophylla), 

western red cedar (Thuja plicata), lodgepole pine (Pinus contorta), and white spruce (Picea 

glauca). Of the forested area, approximately 77% has a canopy closure of greater than 50%. The 

area is subject to sustainable forest management (including fire suppression) which allows for a 

range of harvest scenarios. Fires are also common in the eastern part of the study area. 

 

2.2. Data 

A digital elevation model (DEM) was available from the British Columbia’s Terrain Resource 

Information Management (TRIM) (2014) dataset which covers the entire province, derived from 

elevation points and lines. The TRIM DEM is a 25 m product, hence for this study, the TRIM 

DEM was resampled to a 30 m DEM. 

 

The study area is covered by 12 scenes (path / rows) of the Landsat Worldwide Referencing 

System (WRS-2). We downloaded all available images with less than 70% cloud cover from the 

United States Geological Survey archive of Level 1 Terrain-Corrected (L1T) Landsat Thematic 

Mapper (TM) and Landsat Enhanced Thematic Mapper Plus (ETM+) acquired from August 1st ± 

30 days from 1984 to 2012. A total of 1279 candidate images were downloaded for inclusion in 

the annual best-available-pixel composites. August 1st was selected as the central target 

acquisition date due a to general correspondence with the growing season for the majority of 

Canada’s terrestrial area (McKenney et al., 2006).  

 

3. Methods 

3.1. Methods overview 

First, three sets of annual Landsat pixel image composites from 1984 to 2012 were created 

using: (i) no topographic correction, (ii) a day of year topographic correction (hereafter TCDOY) 

wherein each pixel in the composites are corrected according to their actual acquisition date, 

and (iii) an August 1st topographic correction (hereafter TCAug1) wherein each pixel is corrected 

as though it were acquired on August 1st. Second, change detection using spectral trend 

analysis was applied to each of the image composites (following (Hermosilla et al. (2015)), and 

we compared and contrasted the differences in the change detection results. The methods are 

outlined in detail below. 

 

3.2. Pre-processing and image compositing 

Pixel-based image composites were created from Landsat Thematic Mapper (TM) and 

Enhanced Thematic Mapper Plus (ETM+) imagery according to the methodology from White et 
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al. (2014). First, the six optical bands of all images were processed through an atmospheric 

correction using the Landsat Ecosystem Disturbance Adaptive Processing System (LEDPAS) 

algorithm (Masek et al., 2006). Second, clouds, shadows, and water were masked using the 

Function of mask (Fmask) algorithm (Zhu and Woodcock, 2012). Following these steps, each 

pixel was given separate scores for sensor, acquisition day of year, distance to clouds and cloud 

shadows, and atmospheric opacity, based on Griffiths et al. (2013). For the sensor score, 

Landsat 5 scored higher than Landsat 7 due to the Landsat 7 Scan Line Corrector (SLC) error 

(White et al., 2014). Dates of image acquisition were scored based on the number of days from 

August 1st (Griffiths et al., 2013; White et al., 2014). There were 1279 candidate images for 

compositing (i.e., acquired within ± 30 days of August 1st with < 70% cloud cover). For each 

image in each year between 1984 and 2012, the scores were summed and the best pixel (i.e., 

with the highest score) in the year was chosen to be written to the annual composites (Griffiths 

et al., 2013; White et al., 2014). Areas in which there was no suitable pixel to contribute to an 

annual composite were assigned a “no data” value. Of the 1279 candidate images, pixels from 

1202 images were ultimately used to build the annual composites. As the focus of this work is 

on forested areas, agricultural lands were identified and excluded from our analyses using a 

mask provided by Agriculture and Agri-Foods Canada (2011 data; 

ftp://ftp.agr.gc.ca/pub/outgoing/aesb-eos-gg/Crop_Inventory/). 

 

3.3 Topographic correction 

We applied the sun-canopy-sensor (SCS) topographic correction (TC) algorithm (Gu and 

Gillespie, 1998) independently to each band of the original pixel-based composites. The SCS 

correction was designed specifically for forest environments, with special focus on forests with 

canopy closure greater than 50%. This correction has been shown to be superior in forested 

landscapes, since it accounts for the sun angle on the terrain as well as the canopy, making it a 

geometric correction (Gu and Gillespie, 1998; Soenen et al., 2005). While this method does not 

correct for atmospheric effects itself, and shading or reflectance from other terrain, it has been 

used as a benchmark for topographic correction (Fan et al., 2014). As one of our objectives was 

to explore the effect that a pixel-specific DOY topographic correction would have versus a 

generic DOY correction, we applied the SCS algorithm using two different approaches: (i) we 

used the acquisition DOY for each individual pixel to provide a pixel-specific correction 

(hereafter TCDOY); and (ii) we assumed a single acquisition DOY (August 1st; corresponding to the 

target DOY for image compositing) for all pixels and applied the correction uniformly across the 

entire pixel-based composites (hereafter TCAug1). 

 

The SCS topographic correction was achieved by applying Equation (1) where Ln is the corrected 

reflectance of a pixel, L is the reflectance of a pixel provided from the imagery, α is the slope of 

ftp://ftp.agr.gc.ca/pub/outgoing/aesb-eos-gg/Crop_Inventory/
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the terrain from the DEM, Θ is the solar zenith angle, and i is the angle of incidence (Gu and 

Gillespie, 1998; Soenen et al., 2005).  

 

 

(1) 

For each date the solar zenith angle (ϴ) and the angle of incidence (i) were calculated using 

Equation (2) and Equation (3) respectively.  

  (2) 

   (3) 

where asp is the aspect of the terrain from the DEM, φ is the latitude, h is the hour angle, n is 

the DOY counted from January 1st, and δ is the declination of the sun computed using Equation 

(4). 

 

 
(4) 

The hour angle (h) was -22.5°, based on the time being 90 minutes before solar noon, as most 

of the Landsat TM images in the study area were acquired at approximately this time. The on-

the-ground positon was assumed to be the centre of the study area, (Lat: 50.5°, Long: -120°). 

The study area was sufficiently small that the solar azimuth changed by maximum of only 3.7° 

and the solar elevation by 4° across the range during a single date. 

 

3.4. Change detection and proxy compositing 

Changes were detected using Landsat time series and spectral trend analysis as presented in 

Hermosilla et al. (2015). Beyond detecting and describing changes and trends, this method 

produced annual seamless surface reflectance composites (hereafter referred to as proxy 

composites). This method contained three major stages: breakpoint detection, contextual 

analysis, and creation of seamless image composites. Pixel values in pixel series, the temporal 

vector of a pixel, informed the creation of the composites. 

 

Changes were detected following a bottom-up breakpoint detection algorithm described by 

Keogh et al. (2001), over pixel series using Normalized Burn Ratio (NBR) values. NBR was used 

because it has been proven to be and effective and reliable spectral index at detecting forest 

disturbances (Kennedy et al., 2010). Initially, the pixel series comprised of n values were 

separated into n-1 segments. Then, Root-Mean-Square-Error (RMSE) was calculated to 

determine the cost of merging pairs of adjacent segments. The pair with the lowest cost was 

merged. Cost values were then iteratively recalculated for new segments until either the 

maximum number of segments allowed or the maximum cost of merging allowed are reached. 

The merging cost was adapted throughout the process to ensure that the algorithm met the 

maximum segment requirement. 
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To improve the consistency and the spatial cohesion of the temporally detected changes, a 

contextual analysis was applied spatially. The reliability of correctly determining the year of a 

change was ranked, and was inversely related to the number of years of missing data (i.e., 

pixels labelled as “no data”) before, during and after the change event. Thus, detected changes 

with no or few missing data were considered reliable and subsequently labelled with the 

change year. Changes with missing observations were considered to have a lower reliability. 

Low reliability changes that were spatially-adjacent to a high-reliability observation within ± one 

year were re-labelled with the year of the more reliable change. Additionally, change events 

that had a size less than the minimum mapping unit (MMU) were removed. The MMU size was 

0.5 ha, allowing for a sufficiently fine grain to support a range of information needs, including 

those of national programs such as the National Forest Inventory and spatial carbon accounting 

activities (White et al., 2014).  

 

As the final step of the method, pixels labelled as “no data” were infilled with higher-reliability 

proxy values, using the temporal segments produced in the breakpoint detection process. 

Completion of this process produced gap-free surface reflectance proxy composites, which we 

used for analysis. We used the NBR values to characterize the change magnitude, which is the 

difference between the NBR values before and after the change event, and can fall between 0 

for no changes and -2 for major changes. 

 

3.5. Assessment of topographic correction on change detection outcomes 

To quantify the effects of topographic correction (TC) on change detection outcomes, we used 

the non-corrected change detection outcome as a benchmark (hereafter NC). We then 

calculated the difference between the benchmark and each of the topographically corrected 

outcomes using Equation (5), and the total number of pixels detected as change each year.  

 

 
(5) 

 

Assessing the location of the differences of detected changes throughout the different 

treatments is important in determining the spatial similarity of the changes detected. The 

spatial correspondences between the TCDOY and NC, and the TCAug1 and NC were quantified 

using Equation (6). 

 

 
(6) 
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The normalized difference is assessed for the entire forested area, as well as the forested area 

within different topographic strata, to determine where on the landscape the effects of the 

topographic corrections are most pronounced. The proportion of area detected as change 

within each strata is also assessed to determine those areas of the landscape have the greatest 

impact on the differences between the corrections and non-correction processes. These strata 

were determined using the topographic position index (TPI) (Weiss, 2001) and the Land Facet 

Corridor Designer extension in ArcGIS 10.3 by Jenness et al. (2013) (Figure 2). This algorithm 

stratified the study area into 5 topographic positions (in order of increasing TPI value): valleys, 

lower slopes, gentle slopes, upper slopes, and ridges. Valleys and lower slopes are areas that 

have lower elevation than most of their surroundings. Valleys have slopes higher than 12.5 

degrees. Gentle slopes are near equal in elevation to their surroundings, and have a slope 

between 0 and 12.5 degrees. Upper slopes and ridges have elevations higher than most of their 

surroundings, and ridges have slopes above 12.5 degrees.  

 

Following the forest change hierarchy proposed in Hermosilla et al. (In review), three changes 

were differentiated, including two types of stand-replacing changes, and non-stand-replacing 

change. The stand replacing changes were either fire, which results in stand mortality, or 

harvest, which is the temporary removal of trees for utilization. Non-stand-replacing change 

types were characterized as low magnitude, punctual, trend anomalies that relate year-on-year 

ephemeral changes and that did not lead to a change in land cover class (i.e., phenology, 

insects, water stress). All three types of changes were visually identified and assessed by 

comparing the topographically corrected and non-topographically corrected outputs. 

 

4. Results  

Overall, both the TCDOY and the TCAug1 change detection outcomes had less total area changed 

than NC outcome (Figure 3). NC produced the largest area detected as change, followed by 

TCAug1 and TCDOY. For TCDOY correction, there is less area identified as change than for the non-

corrected composite in 21 of the 27 analyzed years (Figure 3). For the TCAug1 correction, the 

correction process detects less area as change in 23 of the 27 years (Figure 3). The area 

detected as change each year ranges from 10000 ha to 78000 ha (Figure 4). The difference in 

area detected as change for the DOY correction is less than 1% in both cases, with 0.85%, and 

0.54% for the August 1st correction and non-corrected composite, respectively (Table 1). The 

spatial correspondence with NC, on average across all years, is 96.2% (standard deviation: 1.9%) 

for the TCDOY and is 97.7% (standard deviation: 1.6%) for the TCAug1 (Table 4). 
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Stratifying the landscape by topographic position indicates where most of the changes, and 

differences between the changes detected, occur. Across all three sets of changes, most occur 

on the ridges and valleys (Table 2) and this pattern is relatively consistent for NC, TCDOY, and 

TCAug1. Across the five different topographic positions, the normalized percentage difference 

between the two corrections and the non-correction is similar, with the August 1st differences 

being smaller across all five of the strata (Table 3). For both the TCDOY correction and TCAug1, 

most of the differences in the amount of change detected occur in valleys, upper slopes, and 

ridges (Table 3). 

 

The TCDOY and TCAug1 perform more closely both overall (Table 1) and throughout the strata 

(Table 3) than either of the TC processes do when compared to the NC process. The spatial 

correspondence between TCDOY and TCAug1 is 97.1 % (standard deviation: 1.1%) (Table 4). Still, 

TCAug1 detects more change than TCDOY in 20 of 26 years (Figure 4). Most of the differences in 

the between TCDOY and TCAug1 occur in ridges and valleys (Table 3).  

 

Examples of the effects of topographic correction and non-correction for detecting fire and 

harvesting events are shown in Figure 5a and 5b respectively. The main differences in effects 

the topographic correction and non-correction are found in non-stand replacing disturbances 

which are typically more subtle, and may represent low-magnitude variations on the condition 

of a given land cover type and do not necessary involve a cover change (Lehmann et al., 2013). 

The application of topographic correction may lead to poorer detection of the subtle changes 

caused by non-stand replacing disturbances (see example in Figure 5c). Figure 6 indicates that 

differences between both the TCDOY and TCAug1 correction, and the NC are subtle changes with a 

NBR value near 0.  

 

5. Discussion 

When undertaking change detection applications, images would ideally be from similar dates 

across years (often called anniversary dates). Given the satellite revisit cycles, image availability 

and quality, there has been a tolerance around the anniversary date as a target, not an absolute 

requirement. With pixel-based composites, in contrast to scene-based change analyses, there is 

an opportunity for greater variability in dates between years due to the pixel-based 

compositing approach. That is, a given pixel-series will have a greater potential for variability in 

DOY as a greater number of images are utilized for populating each annual pixel location 

(following the compositing rules (see Griffiths et al., 2013; White et al., 2014). End users can 

control for these differences somewhat by constraining the DOY or applying different rule 

functions to penalize pixels with DOY further from the target date. Differences in illumination 
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conditions based upon acquisition data are known to have an impact on pixel reflectance in 

topographically diverse environments. The degree of the impact will be related to the land 

cover, slope, and aspect (Teillet et al., 1982); but, will also be limited in the BAP context by the 

preferential target date and bounded temporal window within which images are eligible for 

inclusion. The implementation of a topographic correction based on sun-sensor geometry 

standardized for a single date (August 1st) does not account for the actual date of pixel 

acquisition, and therefore, one would expect more change area to be detected. Our results 

indicate this was not the case, however, and the TCAug1 actually performs more similarly to the 

change detection with NC than the TCDOY does. If the NC process is more true to reality, then 

this implies that the target date is sufficient as the correction date, and using the more 

processing intensive TCDOY is not necessary. Nonetheless, as the difference between all the 

approaches is small, topographic correction is likely not justified due to the overhead it adds to 

processing, especially for large areas. 

 

The stratification results, as expected, confirm that the greatest differences between the 

corrected and uncorrected change outputs occur in high slopes (Weiss, 2001), which is 

anticipated as it is in these areas of the terrain that are most influenced by shadows and as a 

result is where the algorithm is having the most impact (Soenen et al., 2005). Furthermore, 

Kumar et al. (1997) found that illumination on slopes greater than 20° differed substantially 

throughout the year between and within aspects. While our results are not directly comparable 

to this study, they are consistent in that areas with the greatest slopes (ridges, upper slopes, 

and valleys) experienced the most differences in change detected, and in Kumar et al. (1997) 

these areas had the greatest illumination differences. Our study, however, shows much smaller 

differences in changes detected than the differences in illumination in Kumar et al. (1997), likely 

due to inherent mechanisms in our methods that reduce the differnces between the corrected 

and uncorrected BAP composites. The pixels in the BAP composites are from July and August, 

when the solar azimuth and zenith are near their highest points. While there are differences in 

illumination at different slopes and aspects during this time (Kumar et al., 1997), in July and 

August from year-to-year the illumination at a pixel (at which the slope and aspect are 

constant) may not be enough to cause a detected change in the algorithm. Additionally, using a 

band ratio such as the NBR can reduce the illumination differences between months, as it is a 

single value calculated from two bands near-equally affected by illumination. Once again, the 

small difference at a mean <1% in the amount of detected change area between the corrected 

and uncorrected BAP composites confirms the limited impact of the topographic correction 

processes on the overall change detection results. 

 

It is clearly evident that stand replacing disturbances (i.e., fire, harvesting) are appropriately 

detected whether or not a topographic correction is applied. Indeed, our change detection 
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process (Hermosilla et al., 2015) is designed to be robust to variation in spectral response, so 

unless illumination conditions related to topography are for some reason markedly different 

from one year to the next, the process will be able to detect the change. Once again, this 

variation is constrained by the limited date range used for the compositing. It is the more subtle 

changes, characterized by low variations in the spectral magnitude, where the differences may 

occur. Stand-replacing changes have differences in NBR (i.e. change magnitude variation) of -

0.5 or smaller. Most of the subtle changes not detected by the topographic corrected routines 

exhibit values close to 0 (Figure 6), which indicates that the non-stand-replacing changes are 

slight and likely related to variations in vegetation condition due to sporadic (e.g., defoliation, 

diseases), or more cyclical events driven by hydrological and/or weather regimes, such as 

phenological variations, stressed vegetation, or desiccation processes (Hermosilla et al., 2015). 

Future research could explore the effects of topographic correction on detecting these change 

types, especially non-stand-replacing changes, in greater detail. 

 

The DEM can introduce noise in topographic correction (Huang et al., 2008; Nichol and Hang, 

2008) via sub-pixel variation (Nichol and Hang, 2008; Richter, 1998), and the interpolation 

method during its creation (Nichol and Hang, 2008). Although not explicit in the results of this 

study, both the TCDOY and TCAug1 may introduce noise. In our case, the DEM produced artifacts 

predicting shading on the corrected BAP composites where none is apparent on the 

uncorrected composites. These artifacts follow terrain contours introducing some undulating 

lines (Figure 5a and c) in the topographically corrected reflectance values. The change detection 

process minimizes the effect of these artifacts through the removal of groups of pixels smaller 

than 0.5 ha, the MMU. Also, since the DEM effects are similar for each year, especially for the 

TCAug1, these small shaded areas may have a minimal effect on the differences observed.  

 

In addition to these DEM effects, the SCS correction may overcorrect in steep sloped areas 

(Soenen et al., 2005). Considering these implications, and the reality that the SCS correction is 

designed to function best in forests with > 50% canopy closure (Gu and Gillespie, 1998; Soenen 

et al., 2005), the topographic correction process brings with it numerous decision factors and 

processing considerations. This is especially true for pixel-based composites, due to the larger 

areas that they may cover, as well as the fact that pixels in pixel-based composites are acquired 

from a range of dates. For these reasons and the small differences between the TCDOY, TCAug1, 

and NC processes, the processing and time costs of the terrain-based geometric topographic 

correction process may not be justified for change detection applications using pixel-based 

composites. 
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6. Conclusions 

In this research we analyze the effect of topographic correction on forest change predicted 

from time series of Landsat pixel-based image composites. To do this, we topographically 

corrected the image composites using the sun-canopy-sensor correction algorithm. The spectral 

trends of the composites were analyzed to detect non-stand-replacing changes. We assessed 

the effects of the algorithm using two different correction dates: August 1st, in which each pixel 

was corrected as though it had been acquired on that date, and a day of year correction, in 

which each pixel was corrected based on its actual date of acquisition. We assessed the impact 

of these topographic corrections by comparing change detection outputs against change 

detection outputs generated when no topographic correction was applied to the image 

composites. Our results indicate that topographic correction does not cause a substantial 

difference in the forest change detection results with a 0.54–0.85% difference in changes 

detected compared to the non-corrected images. Stand replacing disturbances such as fire and 

harvest are detected well by both; however, in cases of non-stand replacing disturbances, - 

where there are subtle, low magnitude changes on the landscape, - the addition of a 

topographic correction in the change detection workflow negatively impacted the detection of 

these changes. Our results indicate that a terrain-based geometric topographic correction may 

not be justified in change detection routines computing spectral trends from pixel-based 

composites. Further research may explore the effects of other correction methods on similar 

change detection processes. 
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Table 1. Mean and coefficient of variation (CV) of the absolute value of the percent difference 

between the number of pixels detected as change in the correction and the no correction (NC) 

for the two correction treatments, the day of year (TCDOY) correction and the August 1st 

correction (TCAug1), and between the two correction treatments. Equation ((5)) was used to 

calculate the percent difference for the two correction treatments. 

  TCDOY, NC TCAug1, NC TCDOY, TCAug1 

Difference of areas 

detected as change 

Mean 0.85% 0.54% 0.36% 

CV 1.08% 0.98% 2.05% 
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Table 2. Proportion of changes detected, for all years, for each topographic position for the 

three change detection process: a day of year (TCDOY) topographic correction, an August 1st 

topographic correction (TCAug1), and no topographic correction (NC). 

Topographic Position TCDOY TCAug1  NC 

Valley 36.26% 36.26% 36.40% 

Lower slope 8.89% 8.83% 8.89% 

Gentle slope 12.26% 12.40% 12.21% 

Upper slope 6.17% 6.17% 6.17% 

Ridge 36.42% 36.45% 36.36% 
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Table 3. Mean of the absolute value of the percent difference between the number of pixels 

detected as change in the correction and the non-correction for the two correction treatments, 

the day of year (TCDOY) correction and the August 1st correction (TCAug1) for each topographic 

position. Equation ((5)) was used to calculate the percent difference for the two correction 

treatments. 

Topographic position TCDOY, NC TCAug1, NC TCDOY, TCAug1 

Valley 1.14% 0.70% 0.39% 

Lower slope 0.69% 0.50% 0.24% 

Gentle slope 0.45% 0.26% 0.13% 

Upper slope 1.09% 0.71% 0.21% 

Ridge 1.09% 0.73% 0.40% 
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Table 4. Spatial correspondence in percent of pixels of detected changes overlapping, as 

determined by Equation 6, for the no correction (NC) process, the day of year topographic 

correction (TCDOY), and the August 1st topographic correction (TCAug1). 

 NC TCDOY TCAug1 

NC 100.0% 96.2% 97.7% 

TCDOY - 100.0% 97.1% 

TCAug1 - - 100.0% 
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Figure 1. Location of the study area within North America and British Columbia, a) an image 

composite of Landsat imagery from 2012 displaying the band combination 5, 4, 3, b) the digital 

terrain model with red representing high elevations and dark green representing low 

elevations, c) the mean annual temperature across the study area, and d) the mean annual 

precipitation across the study area.  
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Figure 2. Representation of strata used in this study, as determined by the topographic position 

index (TPI).  
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Figure 3. Percent difference of pixels classified as change between the day of year (TCDOY) 

correction and the non-correction (NC), and the August 1st correction (TCAug1) and the non-

correction (NC), as calculated from Equation (5).  
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Figure 4. Area detected as change each year for the non-correction and the day of year (DOY) 

correction and August 1st correction.  
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Figure 5. BAP proxy 5,4,3 composites showing the difference in (a) harvest-caused changes, (b) 

fire-caused changes, and (c) non-stand-replacing changes detected between day of year (DOY) 

topographically corrected images and uncorrected images for the study area.  
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Figure 6. All area detected as change in the non-correction process, that not detected in the day 

of year (DOY) correction and August 1st correction, and the normalized burn ratio (NBR) value 

associated with the changes. Although values of this metric vary from -2 to 0 (corresponding to 

the maximum possible difference between two NBR values), x-axis shows from -1.3 to 0 for 

displaying purposes.  

 
 


