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ABSTRACT
A critical component of landscape dynamics is the recovery of vegeta-
tion following disturbance. The objective of this research was to
characterize the forest recovery trends associated with a range of
spectral indicators and report their observed performance and identi-
fied limitations. Forest disturbances were mapped for a random sam-
ple of three major bioclimate zones of North American boreal forests.
The mean number of years for forest to recover, defined as time
required to for a pixel to attain 80% of the mean spectral value of
the 2 years prior to disturbance, was estimated for each disturbed
pixel. The majority of disturbed pixels recovered within the first 5
years regardless of the index ranging from approximately 78% with
normalized burn ratio (NBR) to 95% with tasselled cap greenness
(TCG) and after 10 years more than 93% of disturbed pixels had
recovered. Recovery rates suggest that normalized differenced vege-
tation index (NDVI) and TCG saturate earlier than indices that empha-
size longer wavelengths. Thus, indices such as NBR and the mid-
infrared spectral band offer increased capacity to characterize differ-
ent levels of forest recovery. The mean length of time for spectral
indices to recover to 80% of the pre-disturbance value for pixels
disturbed 10 or more years ago was highest for NBR, 5.6 years, and
lowest for TCG, 1.7 years. The mid-infrared spectral band had the
greatest difference in recovered pixels among bioclimate zones 1
year after disturbance, ranging from approximately 42% of disturbed
pixels for the cold andmesic bioclimate zone to 60% for the extremely
cold and mesic bioclimate zone. The cold and mesic bioclimate zone
had the longest mean years to recover ranging from 1.9 years for TCG
to 4.2 years for NBR, while the cool temperate and dry bioclimate zone
had the shortestmean years to recover ranging from 1.6 years for TCG
to 2.9 years for NBR suggesting differences in pre-disturbance condi-
tions or successional processes. The results highlight the need for
caution when selecting and interpreting a spectral index for recovery
characterization, as spectral indices, based upon the constituent
wavelengths, are sensitive to different vegetation conditions and
will provide a variable representation of structural conditions of
forests.
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1. Introduction

The return of vegetation and initiation of successional processes, often called recovery, is a
critical component of landscape dynamics (Frolking et al. 2009; Kennedy et al. 2012).
Vegetation recovery is a process, not a state; as such, tools and measures that allow for
capturing and relating this regeneration and related increase in structural complexity are
required (Shatford, Hibbs, and Puettmann 2007). Time series remote sensing is ideally suited
for systematic and transparent capture and description of recovery processes for forested
ecosystems. From a remote sensing perspective, vegetation recovery has been defined for
specific applications or objectives (Buma 2012; Frolking et al. 2009; Oliver and Larson 1996).
For example, previous studies have defined recovery as: a factor of time since last dis-
turbance (Kennedy et al. 2012); spectrally using time series trends (Hermosilla et al. 2015a;
Schroeder et al. 2011; Kennedy, Yang, and Cohen 2010); and the required time to meet
certain forest management-based conditions such as potential height, canopy cover, or
stocking (LePage and Banner 2014; Franklin et al. 2002). Additionally, the structural attri-
butes of vegetation recovery can be characterized using synthetic aperture radar (Saatchi
and Moghaddam 2000), light detection and ranging (Bolton, Coops, and Wulder 2015), and
passive stereo optical remote sensing (Persson et al. 2013). Although all these definitions are
valid, the objectives of any study considering time series spectrally based recovery trajec-
tories must be carefully considered, articulated, and linked in a meaningful way to the
spectral values or indices used. Additionally, it is critical that the limitations associated with
each definition and related methods applied are sufficiently described.

Subtle differences among spectrally based recovery indicators can affect the conclusions
of a study. Many remote sensing based definitions of recovery have used the normalized
differenced vegetation index (NDVI) (Tucker 1979; Cuevas-Gonzalez et al. 2009; Sader et al.
1989). AlthoughNDVI is particularly sensitive to changes in foliar condition and is commonly
used in disturbance detection applications (Nemani and Running 1997), it has demon-
strated limitations as an indicator of recovery (Sader et al. 1989; Huete et al. 1997) largely
because forbs, grasses, and other non-woody pioneer vegetation will immediately colonize
a disturbed site and rapidly return the site to pre-disturbance NDVI levels (Buma 2012;
Schroeder et al. 2011). Thus, NDVI provides limited capacity for characterization of structural
attributes, which are often more important indicators for biodiversity, habitat availability,
and carbon (Pflugmacher et al. 2014; Banskota et al. 2014). An improved understanding of
the information content of particular vegetation indices suggests the use of indices that
include short-wave infrared wavelengths (Cohen and Goward 2004; Schroeder et al. 2011).

The objective of this research was to examine trends associated with a range of spectral
indicators of forest recovery and report the potential limitations and caveats associated with
each indicator. We present the results of a comparative analysis of spectrally derived indica-
tors of forest recovery captured with a high level of spatial detail and utilizing a quarter
century of Landsat imagery for a range of conditions across North American boreal forests.

2. Data and methods

This research utilizes the free and open access to imagery available from the United States
Geological Survey (https://espa.cr.usgs.gov) and the Landsat satellite programme (Woodcock
et al. 2008; Wulder et al. 2012). Landsat surface reflectance images derived from the Landsat
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Ecosystem Disturbance Adaptive Processing System (Masek et al. 2008) with less than 70%
cloud cover during the growing season were downloaded for a random sample of 40 World
Reference System 2 (WRS-2) scenes (Figure 1) for the period 1985–2010. The sample was
randomly stratified by three major bioclimate zones and intersected with the North American
boreal zone (Metzger et al. 2013, Brandt 2009). We calculated the length of the growing
season for each scene based on the scene centre latitude (Zhou et al. 2001). Peak NDVI day-of-
year was derived from moderate resolution spectroradiometer (MODIS) imagery for North
America and was equivalent to the target day-of-year for the best available pixel (BAP)
compositing: July 28 (Zeng, Jia, and Epstein 2011). By coupling length of the growing season
with peak NDVI day-of-year, we derived the start- and end-of-season days-of-year. Thus, the
growing season was dynamically defined for each scene in order to accommodate latitudinal
shift in growing season timing and length and to ensure that the Landsat imagery was
phenologically consistent across the time series.

We used a BAP approach to create image composites to reduce data gaps in the
image time series caused by cloud, cloud shadow, haze, and smoke (White et al. 2014).
The image compositing method scores pixels from the multiple Landsat image acquisi-
tions based on sensor, day-of-year, atmospheric opacity, and proximity to cloud or cloud
shadow using the criteria given in White et al. (2014). Pixels identified by the Fmask
algorithm (Zhu and Woodcock 2012) as cloud, shadow, or snow were masked from the
BAP composites and a 50 m buffer was applied around clouds and cloud shadows to
reduce misclassification errors. The Landsat Thematic Mapper (TM) sensor was scored
higher than the Enhanced Thematic Mapper Plus (ETM+) sensor due to the scan line
corrector malfunction that occurred with the ETM+ in May of 2003. Day-of-year was
scored according to a Gaussian function with a maximum score equivalent to the

Figure 1. Distribution of the Landsat scenes stratified across major bioclimate zones (Metzger et al.
2013) within North American boreal forests (Brandt 2009). The bioclimate zones are transparent
relative to the 2000 MODIS vegetation continuous fields (VCF) layer depicting pixels greater than
50% forested (dark grey).
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median day-of-year of the growing season. Pixels with atmospheric opacity lower than
10% were scored higher to avoid the selection of hazy observations. The pixels with the
highest scores based on these criteria were then composited into annual images that
were used in the disturbance and recovery mapping process (White et al. 2014).

Forest disturbances were mapped using a modified version of the vegetation change
tracker (VCT, after Huang et al. 2010) for the time series of each target WRS-2 path row
(Pickell et al. 2014). The modified VCT assigns a class of persisting forest, persisting non-
forest, disturbed, or water for each pixel in the time series using trend logic applied to a
spectral index. First, a forest training mask is created for each annual image composite
and then a spectral index is computed for the time series of forested pixels. Thresholds
are set a priori to determine whether a forested pixel will be assigned to the disturbed or
stable forest classes. Forest training areas were identified using a combination of MODIS
Vegetation Continuous Fields (MOD44B) product from the year 2000 (Sexton et al. 2013),
annual NDVI values, and visual interpretation of true-colour annual Landsat composites.
Although the VCT analysis relied in part on annual NDVI values to map initial forest
training areas, NDVI was not used to map disturbances and thus this choice was not
related to the evaluation of NDVI as a recovery indicator. The disturbance index (DI)
(Healey et al. 2005) was used for mapping forest disturbances and identifying core
forested areas with thresholds that were developed specifically for boreal forests
(Pickell et al. 2014). Pixels that exceeded the DI thresholds for at least 3 consecutive
years were labelled as disturbed. We only considered stand-replacing disturbance from
fire and forest harvesting because forest structure changes significantly following
greater magnitude disturbance severities (Hermosilla et al. 2015b) and vegetation
recovery can therefore be robustly characterized (Schroeder et al. 2011). Moreover, the
VCT captures a range of forest disturbances with varying severities at lower accuracies
(Thomas et al. 2011). Disturbed pixels with a DI magnitude change of at least 5 were
included in the final analysis as stand-replacing disturbances (Healey et al. 2005). Pixels
disturbed in multiple years were not considered and only the most recent disturbances
of the time series were included in the final analysis. Disturbance was filtered to a
minimum mapping unit of 12 Landsat pixels (~1 ha). Previous studies have demon-
strated the spatial accuracy of the VCT-derived disturbance maps to be very high for
stand-replacing disturbance (>90% accuracy by area) and the times of occurrence of the
majority of disturbance events were correctly identified within ±1 year (Pickell et al.
2014; Thomas et al. 2011).

A suite of spectral indices were selected to represent a range of spectral responses of
vegetation recovery: NDVI; normalized burn ratio (NBR) (Key and Benson 2006); tasselled
cap greenness (TCG) (Crist 1985); and the mid-infrared Landsat band 5 (B5) (Schroeder
et al. 2011). Recovery was defined as 80% of the mean spectral value of the 2 years prior
to disturbance for each disturbed pixel in the time series. This definition is similar to
other spectrally based forest recovery definitions (e.g. Kennedy et al. 2012; Baumann
et al. 2012; Schroeder et al. 2011). Two years of pre-disturbance observations repre-
sented a compromise between characterizing recovery trends for as much of the time
series as possible while using stable pre-disturbance trends that were reliable and
representative of characteristics present at the pixel level. Thus, recovery was not
quantified for disturbances occurring in the last year of the time series.
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3. Results and discussion

Trends in recovery varied depending on the indicator and bioclimate zone. TCG and NDVI
provided the fastest recovery rates, while NBR and the mid-infrared spectral band pro-
vided the slowest recovery rates. The mean length of time for spectral indices to recover
(reach 80% of their pre-disturbance value) was highest for NBR, 3.9 years, and lowest for
TCG, 1.7 years. The cold and mesic bioclimate zone had the longest mean years to recover
ranging from 1.9 years for TCG to 4.2 years for NBR, while the cool temperate and dry
bioclimate zone had the shortest mean years to recover ranging from 1.6 years for TCG to
2.9 years for NBR. This result may indicate that return of vegetation and initiation of
successional processes is at least partially dependent on bioclimate zone, but the indices
are also correlated. For example, the mid-infrared spectral band is a major component in
the calculation of NBR, and NDVI describes the contrast between the reflectances in the
visible red and near-infrared spectral bands which also receive the largest weightings in
the calculation of TCG. It is important to note that the number of pixels recovered is a
function of number of years since disturbance. For example, only disturbances that
occurred between 1987 and 1998 could have had recovery trends beyond a 10-year
horizon. Therefore, the number of pixels recovered is necessarily biased towards shorter
recovery times in the time series. Mean years to recover was higher for the subset of pixels
that were disturbed 10 or more years ago (i.e. between 1987 and 1998): 5.6 years for NBR;
4.8 years for the mid-infrared spectral band; 2.7 years for NDVI; and 1.7 years for TCG.

The majority of pixels detected as disturbed had observable trends of vegetation
recovery within the first 5 years of disturbance regardless of the index or bioclimate zone.
Figure 2 shows the frequency of recovered pixels relative to the years since disturbance by
bioclimate zone. There was little difference between bioclimate zones for the same index
with most differences observed within the first 5 years of disturbance (Figure 2). The mid-
infrared spectral band had the greatest difference among bioclimate zones 1 year after
disturbance, ranging from 42.2% for the cold and mesic bioclimate zone to 59.9% for the
extremely cold and mesic bioclimate zone (Figure 2). The cumulative percentage of pixels
recovered after 5 years was greater for NDVI (93.4%) and TCG (95.3%) compared with NBR
(77.9%) and the mid-infrared spectral band (84.3%). The differences of cumulative percen-
tage of pixels recovered wereminimal after 10 years between NBR (93.2%), the mid-infrared
spectral band (93.1%), NDVI (99.5%), and TCG (98.5%). These results indicate that vegetation
has spectrally returned to pre-disturbance levels and that successional processes are likely
to have initiated. Sites takingmore time to recover may have experienced a land use change
or a notably severe disturbance.

The percentage of pixels that had not recovered after 5 years were plotted as a
function of the percentage of the pre-disturbance mean value for each index in Figure 3
where 80% corresponded to 80% of the mean pre-disturbance values of the recovery
indicator. After 5 years, the majority of disturbed pixels in the extremely cold and mesic
and the cold and mesic bioclimate zones for NDVI and the mid-infrared spectral band
were close to meeting the 80% threshold (Figure 3). The trend in recovering pixels for
TCG was similar to NBR (Figure 3), but the relative difference in cumulative recovered
pixels after 5 years between these indices was 17.4%. Disturbed pixels in the extremely
cold and mesic and cold and mesic bioclimate zones had higher rates of recovery
compared with the cool temperate and dry bioclimate zone (Figure 3).
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The mid-infrared spectral band and NBR have been shown to be related to structural
components of vegetation, while NDVI and TCG are more sensitive to levels of chlorophyll
(Cuevas-Gonzalez et al. 2009; Epting and Verbyla 2005). Both the mid-infrared spectral band
and NBR are known to represent the recovery of non-leafy structural attributes of vegetation
beyond the initial flush of grasses, herbs, and shrubs (Wulder 1998; Schroeder et al. 2011).
The curves of non-recovered pixels for the mid-infrared band and NDVI likely represent
variation of spectral recovery across a gradient of disturbance severity (Figure 3). By contrast,

Figure 2. Percentage of pixels recovered by the number of years following disturbance. The number
of disturbed pixels is equal for all indices.
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the linear curves of NBR and TCG are likely an artefact of continually increasing near-infrared
reflectance as leaf cover accumulates within the disturbed pixel (Figure 3). Thus, the results
indicate that the mid-infrared spectral band and NBR are expected to be more suitable for
tracking vegetation succession following disturbance when compared to NDVI and TCG.
Based on knowledge of successional processes (Oliver 1980), the signal from visible and
near-infrared wavelengths is expected to quickly saturate following disturbance due to the
rapid colonization of early pioneer and shade-intolerant species.

Figure 3. Percentage of non-recovered pixels against percentage of the mean pre-disturbance value
for each index investigated 5 years after disturbance.
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Recovery rates among the bioclimate zones suggest that there may be subtle spectral
differences in successional processes. For example, Figure 2 shows the frequency of
recovered pixels for NDVI and the mid-infrared spectral band provided improved oppor-
tunities to observe differences between the bioclimate zones in the first 5 years post-
disturbance. The higher rate of recovery observed for the extremely cold and mesic
bioclimate zone in the first year post-disturbance could be related with lower pre-
disturbance mean values compared to the other zones when using the mid-infrared
spectral band and NDVI. Also, the accuracy of the VCT has not been tested in sparse
boreal forests and the forest-tundra ecotone that characterizes much of the extremely
cold and mesic bioclimate zone and more research is needed in this area. Trends in NBR
recovery were much more gradual while TCG saturated 1 year after disturbance (Figure 2).

Recovery rates among the bioclimate zones during later succession (i.e. ≥5 years post-
disturbance) were also best observed using NDVI and the mid-infrared spectral band
(Figure 3). There was a notable lag effect for recovery of disturbed pixels in the cool
temperate and dry bioclimate zone after 5 years with the mid-infrared spectral band and
NDVI indices compared with the other bioclimate zones (Figure 3). The frequency
distribution of non-recovered pixels in the cool temperate and dry bioclimate zone
suggests that after 5 years these forests may still be far from reaching the recovery
definition with the mid-infrared spectral band and NDVI (Figure 3).

The results should be interpreted with some caution because recovery was not
distinguished for different disturbance types. It was evident that the choice of recovery
indicator was important for different types of disturbance. For example, the initial flush of
leafy vegetation following a fire or harvest saturates the recovery signal for NDVI and TCG.
Additionally, disturbance legacies are evident in the recovery rates from visual assessment
of harvesting and fire (Figure 4). For example, roads within harvests appear to recover
more slowly than the surrounding forest using NDVI compared with TCG (Figure 4(a)).
Recovery is remarkably heterogeneous within fires, which is primarily evident with the
mid-infrared spectral band and NBR indices (Figure 4(b)). The examples shown in Figure 4

Figure 4. Number of years to recover by index for examples of forest harvesting in Alberta (a,
path45/row23, 117° 17ʹ W 53° 44ʹ N) and a fire in Northwest Territories, Canada (b, path57/row14,
128° 12ʹ W 65° 33ʹ N). The year of disturbance colour ramp applies to the change image, the DI
change magnitude colour ramp applies to the change magnitude image, and the number of years to
recover colour ramp applies to the recovery images.
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are typical of forest management occurring in southern boreal forests and fire which is
much more common in occurrence and extent throughout the northern boreal forests.

4. Conclusions

In this paper, we analysed the implications of considering four spectral indices (NDVI, NBR,
TCG, and themid-infrared spectral band) to estimate forest recovery rates for boreal forests of
North America using Landsat time series. The results indicated that spectral indices character-
ized different components of forest recovery. Thus, NDVI and TCGwere related with the initial
flush of leafy vegetation, while NBR and the mid-infrared spectral band were related with
structural components caused by increasing structural complexity of the forest cover.
Recovery time varied by indicator with NBR having the highest mean years to recover
(3.9 years) and TCG having the lowest mean years to recover (1.7 years) across all bioclimate
zones. The cold and mesic bioclimate zone had the slowest recovery rates across the
indicators (ranging from 1.8 years for TCG to 4.1 years for NBR), while the cool temperate
and dry bioclimate zone had the quickest recovery rates (ranging from 1.6 years for TCG to
2.9 years for NBR). Recovery time was remarkably heterogeneous within different disturbance
types andwas dependent on the indicator. Roads within harvests recoveredmore slowly than
the surrounding forest and this was mostly evident with the mid-infrared spectral band and
NBR. Fires were particularly heterogeneous using NDVI as a recovery indicator, but NBR and
the mid-infrared spectral band showed improvement in distinguishing areas that took the
longest to recover. We note that imagery is often not used in isolation and supplementing
optical observations with active remote sensing measurements that can provide structure
information could enhance estimation of regrowth with disturbance history from Landsat.
Regardless, the results presented here can advance the assessment and monitoring of forest
recovery for large area mapping initiatives and improve our understanding of post-distur-
bance vegetation dynamics in North American boreal forests.
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