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Abstract 

Defoliators and bark beetles are natural disturbance agents in many forest ecosystems around 

the world. Mapping the spatial and temporal patterns of insect disturbance dynamics can help 

in understanding their impacts on forest ecosystem resilience and functioning, and in 

developing adaptive management strategies. In recent years, much progress has been made in 

landscape-level analyses of insect-induced disturbances using remotely sensed data. However, 

many studies have focused on single insect agents or aggregated different insect agents into a 

single group. In this study, we characterized the temporal-spectral patterns associated with 

bark beetle and defoliator disturbances using Landsat time series between 1990 and 2013, 

with the objective to test if the two insect disturbances can be separated with Landsat data. 

We analyzed a recent outbreak of mountain pine beetle (Dendroctonus ponderosae Hopkins) 

and western spruce budworm (Choristoneura freemani Razowski) in British Columbia, 

Canada. To characterize the disturbance and recovery trends associated with insect 

disturbances we used the LandTrendr segmentation algorithm. We fitted LandTrendr spectral 

trajectories to annual normalized burn ratio (NBR) and Tasseled Cap (TC) time series, from 

which we then extracted a set of disturbance metrics. With these disturbance metrics, two 

random forest models were trained to a) distinguish insect disturbances from harvest and fire 

disturbances; and to b) attribute the insect disturbances to the most likely agent, i.e. mountain 

pine beetle or western spruce budworm. Insect disturbances were successfully mapped with 

an overall accuracy of 76.8%, and agents were successfully attributed with overall accuracies 

ranging from 75.3% to 88.0%, depending on whether only pure host-stands or mixed stands 

with both insect hosts were considered. In the case of mixed host stands, nearly 45% of the 

western spruce budworm disturbances were falsely attributed to mountain pine beetle. 

Spectral metrics describing disturbance magnitude were more important for distinguishing the 
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two insect agents than the disturbance duration. Spectral changes associated with western 

spruce budworm disturbances had generally lower magnitudes than mountain pine beetle 

disturbances. Moreover, disturbances by western spruce budworm were more strongly 

associated with changes in TC greenness, whereas disturbances by mountain pine beetle were 

more strongly associated with changes in TC brightness and wetness. The results reflect the 

ephemeral nature of defoliators versus the tree mortality impacts of bark beetles in our study 

area. This study demonstrates the potential of Landsat time series for mapping bark beetle and 

defoliator disturbances at the agent level and highlights the need for distinguishing between 

the two insect agents to adequately capture their impacts on ecosystem processes. 

 

Keywords: Landsat; Time series; Insect disturbances; Defoliation; Western spruce budworm 

(Choristoneura freemani Razowski); Bark beetles; Mountain pine beetle (Dendroctonus 

ponderosae (Hopkins)); LandTrendr; British Columbia 
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1. Introduction 

Insect disturbances play an important role in forest ecosystem dynamics by renewing old and 

susceptible forests, recycling nutrients, and providing food for wildlife (Parker et al. 2006). 

There is increasing evidence that human actions through management and climate change 

have altered the interactions between insects and forests, resulting in more widespread insect 

outbreaks (Raffa et al. 2008; Schoennagel et al. 2004; Swetnam and Lynch 1993). Using 

climate change projections, current research indicates that outbreaks will become more 

frequent in the future (Logan et al. 2003; Volney and Fleming 2000; Woods et al. 2010), 

which will have significant consequences for the future carbon balance of forests (Hicke et al. 

2012; Kurz et al. 2008a; Kurz et al. 2008b). 

Monitoring insect outbreaks with remote sensing data systematically over space and time 

can help with understanding landscape-scale causes and consequences of insect disturbances. 

Two of the most prevalent insect agents causing widespread tree damage and mortality are 

bark beetles and defoliators. Since impacts of defoliators and bark beetles on ecosystem 

function and structure are different (Hicke et al. 2012), distinguishing between insect agents is 

important to adapt forest management strategies and to improve ecosystem process models. 

However, studies mapping insect disturbances over large areas usually group defoliators and 

bark beetles into a single disturbance category (Huang et al. 2010; Kennedy et al. 2012; 

Masek et al. 2013).  

In coniferous forests of North America, the most important bark beetle is the mountain 

pine beetle (Dendroctonus ponderosae Hopkins). Mountain pine beetles reproduce in the 

phloem below the bark and introduce a fungus, which clogs the phloem and limits the 

translocation of water and nutrients through the tree. By using pheromones, the beetles 

usually follow a cooperative behaviour strategy (mass attack) to help overcome the defensive 
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system of trees.  Attacks by mountain pine beetle are not noticeable in the first year of 

infestation (green-attack stage) but typically lead to complete discoloration (red-attack stage) 

in the second year and complete defoliation (grey-attack stage) in the third year (Wulder et al. 

2006a). However, the progression of infestation by mountain pine beetle can vary by region, 

site, and species (Wulder et al. 2006a).  

In comparison to bark beetles, defoliating insects cause mild to moderate disturbances 

(Cooke et al. 2007). The most prominent defoliators in coniferous forests of North America 

are in the genus Choristoneura (spruce budworm), including the eastern spruce budworm (C. 

fumiferana Clemems), the jack pine budworm (C. pinus pinus Freeman), the western spruce 

budworm (C. freemani Razowski), the 2-year-cycle spruce budworm (C. biennis Free.), and 

the coastal spruce budworm (C. orae Free.) (Nealis 2008). From those, the western spruce 

budworm is most important for western North America (Hicke et al. 2012). Western spruce 

budworm larvae feed primarily on current-year foliage, which can lead to chlorosis, crown 

dieback, and tree death; particularly when insect populations are high over several years and 

in cases of secondary infestation by bark beetles (Alfaro et al. 1984; Alfaro et al. 1982; 

Shepherd 1994). Nonetheless, if defoliation rates are low, most trees typically will experience 

little damage and recover within several years (Campbell et al. 2006; Shepherd 1994). 

Western spruce budworm outbreaks return every 30 years on average, though the intensity of 

outbreaks can vary significantly (Alfaro et al. 2014; Axelson et al. 2015). 

Previous studies have shown that Landsat’s spectral bands can be used to discriminate 

healthy forests from insect disturbed forests. Also, with a 30 m spatial resolution, Landsat 

operates at a scale that is informative for ecological research and management decisions 

(Cohen and Goward 2004; Wulder et al. 2008). Early studies utilizing Landsat for insect 

disturbance mapping in coniferous forests typically used spectral information from one or two 

images, including the Tasseled Cap components (Franklin et al. 1995; Skakun et al. 2003), 
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spectral bands (Franklin et al. 2003), spectral mixture analysis (Radeloff et al. 1999), and 

vegetation indices based on near-infrared and shortwave-infrared reflectance (Franklin et al. 

2008). However, approaches based on single years and binary maps are somewhat restricted 

in characterizing the complex ecological dynamics of insect outbreaks. Thus, a more 

comprehensive mapping approach is needed, utilizing as many points in time as possible and 

characterizing the disturbance magnitude and duration (Gillanders et al. 2008; Kennedy et al. 

2014).  

Following the opening of the United States Geological Survey (USGS) Landsat archive 

and the related increase in capacity to produce time series (Wulder et al. 2012), annual 

Landsat time series were successfully used in a number of studies to capture insect-

infestation. While implemented just prior to the opening of the USGS archive, Goodwin et al. 

(2008) used annual Landsat time series to capture infestation by mountain pine beetle in 

British Columbia. In this study, spectral trajectories displayed little to no change in the first 

year of infestation, but a decreasing trend in subsequent years. Similar spectral and temporal 

trends were found for mountain pine beetle in Montana (Assal et al. 2014), in Colorado 

(Meddens and Hicke 2014), and in Oregon (Meigs et al. 2011). The changes in Landsat 

spectral trajectories were linked to tree mortality (Meigs et al. 2011; Pflugmacher et al. 2012), 

which enabled a landscape-scale assessment of mountain pine beetle impacts (Bright et al. 

2014; Meigs et al. 2015). Defoliator disturbances were also associated with gradual changes 

in the spectral signal (Meigs et al. 2011; Vogelmann et al. 2009; Vogelmann et al. 2012), but 

spectral trajectories were highly variable. Changes during defoliation were explained by 

decreasing vigor, top-kill, and increasing mortality resulting from consecutive defoliation 

events, though many trajectories also showed quick spectral recovery after disturbance. Thus, 

recent studies suggest that Landsat time series can be utilized to characterize the complex 

spatial and temporal dynamics of insect outbreaks, but spectral trajectories vary considerable 
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among insect agents, regions, and outbreak intensities. To better understand the ecological 

dynamics of insect disturbances, a better understanding of the spectral-temporal trajectories of 

individual insect agents is needed, enabling a more detailed mapping of insect disturbances – 

i.e. by distinguishing between bark beetle and defoliator disturbances. 

Here, our goal was to determine the capacity of spectral-temporal trajectories from annual 

Landsat time series to map defoliator and bark beetle disturbance dynamics in southern-

interior British Columbia, Canada. Our specific objectives were to:  

1. Test how well bark beetle and defoliator disturbances can be distinguished with 

Landsat time series. 

2. Characterize the spectral-temporal trajectories of bark beetle and defoliator 

disturbances with respect to severity, duration, and spectral recovery. 

3. Map the spatial and temporal pattern of mountain pine beetle and western spruce 

budworm disturbances.  

2. Study site 

Our study site is located in the interior of British Columbia, Canada, occupying an area of 

approximately 149,700 km2.  The outer extent of the study site (hereafter referred to as 

Interior) is delineated by eight Landsat footprints (WRS-2 path/row: 45/25, 45/26, 46/24, 

46/25, 46/26, 47/24, 47/25, 48/24; Figure 1). In British Columbia, a province-wide 

biogeoclimatic classification system has been established that describes the natural ecozones 

based on climatic and vegetation characteristics (Pojar et al. 1987). The Interior is dominated 

by the Interior Douglas-fir Forest zone (Hope et al. 1991). The Interior Douglas-fir Forest 

zone is characterized by mature Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) stands at 

mid-elevations (900-1200m), mixed stands of Douglas-fir and ponderosa pine (Pinus 

ponderosa Douglas ex C. Lawson) at lower elevations (600-900m), and mixed stands of 
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Douglas-fir and lodgepole pine (Pinus contorta Douglas) at higher elevations (1200-1450). 

The Interior Douglas-fir Forest borders the Montane Spruce zone at higher elevations, which 

is actually a transition zone to the Engelmann Spruce and Subalpine Fir zone. In the Interior, 

the Montane Spruce zone is characterized by extensive seral stands of lodgepole pine. At 

lower elevations, the Interior Douglas-fir Forest borders the Ponderosa Pine zone, which is 

dominated by open stands of ponderosa pine. In the northern part of the study site, the Interior 

Douglas-fir Forest borders the Sub-Boreal Pine and Spruce zone. The Sub-Boreal Pine and 

Spruce zone is dominated by lodgepole pine. The very low elevation areas are part of the 

largely non-treed bunchgrass zone. 

The Interior and in particular the Interior Douglas-fir Forest have experienced a 

complex history of fire and insect disturbances (Campbell et al. 2006; Maclauchlan et al. 

2006). There are records of western spruce budworm outbreaks over the past 400 years, 

although outbreak frequency has increased markedly during the past century (Campbell et al. 

2006). The most recent outbreak from 1999 to 2012 affected the whole IDF and peaked in 

2007 at approximately one million hectares of defoliated trees. It was the largest outbreak in 

recorded history (Westfall and Ebata 2012). In British Columbia, western spruce budworm 

mainly feeds on Douglas-fir and true fir, though other species such as hemlock, Engelmann 

spruce, larch, and pine might occasionally be attacked if growing on site (Maclauchlan et al. 

2006).  

Mountain pine beetle is also active in the Interior. The most recent outbreak occurred 

between 2002 and 2012 and led to high mortality rates in ponderosa and lodgepole pine 

stands (Westfall and Ebata 2012). Even though mountain pine beetle can feed on any pine 

species, lodgepole-pine is considered its primary host in British Columbia (Wulder et al. 

2006a). 
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Figure 1: Study area in British Columbia. The main map shows the major biogeoclimatic 

zones (BEC zones) in the study area. 

3. Data and methods 

3.1 Landsat data and LandTrendr disturbance mapping  

We used the LandTrendr segmentation approach (Kennedy et al. 2010) to map and 

characterize disturbances between 1990 and 2013. To achieve this, we followed three main 

steps: 1) create annual time series of cloud-free, anniversary-date observations; 2) fit time 
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series trajectories for each pixel; and 3) derive a set of metrics from each trajectory to 

describe the disturbance and recovery characteristics of each pixel. We processed all Landsat 

footprints individually in their original UTM projection (WGS84) and then mosaicked the 

final disturbance metrics for the whole study site in the BC Albers Equal Area (NAD83) 

projection. For mosaicking, we used Voronoi polygons as edge lines between neighbouring 

scenes (Kennedy et al. 2012). Areas that were non-forest in 1990 were masked out using a 

binary forest cover map created from supervised classification. 

To minimize the effect of phenology and data gaps caused by atmospheric 

interference, LandTrendr builds annual anniversary-date, best observation composites using 

all cloud-free observations from each scene and overlapping scenes within a pre-defined 

seasonal window (Kennedy et al. 2010). We downloaded all available Landsat Thematic 

Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) scenes from the US Geological 

Survey (USGS) archive and used the LEDAPS algorithm (Masek et al. 2006) to produce 

surface reflectance images for the 23-year time period. For building the best observation 

composites, we defined the seasonal window as ±30 days around July 15th. Clouds, cloud 

shadows, and snow were detected and masked out using the Fmask algorithm (Zhu and 

Woodcock 2012). 

Once a consistent annual time series is created, the LandTrendr algorithm fits spectral 

trajectories to the time series by dividing it into a series of connected linear segments 

following two main steps: First, the start and end of each segment is determined by estimating 

the years of change using a spectral index of choice (segmentation process). Second, the 

spectral index values at vertices are estimated (fitting process), yielding a trajectory of 

interconnected segments that characterize the disturbance history for each pixel (Figure 2). 

The segment breakpoints are called vertices. In this study, we used the Normalized Burn 

Ratio (NBR) (Key and Benson 2006) to derive the segmentation and then applied the fitting 
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to NBR and the first three Tasseled Cap (TC) components (Crist 1985). NBR has previously 

been demonstrated to be sensitive to insect disturbances in North America (e.g. De Beurs and 

Townsend 2008; Meigs et al. 2011; Townsend et al. 2012) and has been used with 

LandTrendr in other studies (Kennedy et al. 2010; Kennedy et al. 2012; Meigs et al. 2011). 

However, NBR is only a single spectral index based on two bands, whereas the TC 

components are multi-dimensional indices derived from the multispectral data space.  The TC 

components are sensitive to green vegetation abundance and vigor (greenness), canopy 

structure and moisture (wetness), and background soil signal (brightness) (Cohen and Goward 

2004) and have been used in many studies mapping insect infestation (e.g., Coops et al. 

2006b; Skakun et al. 2003; Wulder et al. 2006b). 

 

 

 

Figure 2: Exemplified LandTrendr segmentation and spectral trajectory fitted to an NBR time 

series. Grey dots (a-d) indicate vertices. Disturbance and recovery metrics derived from the 

trajectory are shown. 

Finally, we derived a set of metrics describing the spectral-temporal characteristics of 

the trajectory fitted to NBR and TC trajectories, closely following Meigs et al. (2011) and 

Pflugmacher et al. (2014). For each pixel’s trajectory, we first identified the greatest 

disturbance segment, defined as the segment with the greatest negative change in NBR. From 
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the greatest disturbance segment, we calculated the change magnitude (GDMAG; Figure 2), 

segment duration (GDDUR; Figure 2), and recorded the onset of disturbance, defined as the 

first year of the greatest disturbance segment. Similarly, we calculated recovery magnitude 

(RCMAG; Figure 2) and duration (RCDUR; Figure 2) from the spectral recovery segment 

following the greatest disturbance segment. To facilitate interpretation, the NBR change 

magnitudes of disturbance and recovery were converted to percent change relative to the 

spectral value of the pre-disturbance condition (start vertex of each segment). 

3.2 Mapping approach 

We followed a two-phase classification approach to map spatial and temporal patterns of 

mountain pine beetle and western spruce budworm disturbances (Goodwin et al. 2008; Meigs 

et al. 2015): First, we classified the LandTrendr disturbance and recovery metrics into harvest 

and fire disturbances, insect disturbances, and undisturbed areas. We refer to this 

classification phase as disturbance classification. Second, we assigned all pixels identified as 

insect disturbances in the first classification phase a likelihood of being disturbed by either 

mountain pine beetle or western spruce budworm (in the following referred to as insect agent 

attribution). 

3.2.1 Phase one: disturbance classification 

In the first classification phase, we used the LandTrendr disturbance metrics to classify forest 

changes into 1) insect disturbances, 2) harvest and fire disturbances, and 3) undisturbed forest.  

Clear-cut harvest and fires behave differently in spectral and temporal space than insect 

disturbances, which makes them distinguishable with Landsat time series (Goodwin et al. 

2008; Kennedy et al. 2012; Meigs et al. 2015). While insect disturbance can lead to complete 

stand mortality, spectral change magnitudes associated with harvest and fire disturbances are 
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usually significantly higher (Goodwin et al. 2008; Hais et al. 2009), and of shorter duration 

(Meigs et al. 2015). As reference data, we randomly selected and labeled 800 pixels closely 

following the approach by Cohen et al. (2010), Kennedy et al. (2012), Pflugmacher et al. 

(2012) and Meigs et al. (2015).  

For identifying and labeling disturbances in the reference pixels, we used Landsat 

image chips, Landsat spectral trajectory plots, high-resolution imagery, the provincial aerial 

overview survey (AOS) database (Wulder et al. 2009), the provincial Vegetation Resource 

Inventory (VRI) database (Leckie and Gillis 1995), and the Canadian National Fire Database. 

The AOS collects polygon-level data on insect agent and disturbance severity during aerial 

overflights. The AOS (Figure 7) is currently the most comprehensive database on insect 

disturbances at the landscape level (Meddens et al. 2012), but it is not a precise spatial 

product as it has several positional and attribution limitations, and it is subject to a certain 

observer bias, such as off-nadir viewing, variations in lighting conditions, and interpreter 

experience and fatigue, among others (Wulder et al. 2006a). To reduce uncertainties in the 

AOS data, we omitted polygons with the severity class 'trace', indicating only single infested 

trees within a stand (Wulder et al. 2009). Moreover, we only included insect disturbed pixels 

within mountain pine beetle and western spruce budworm host-tree stands according to the 

VRI. Stands in the VRI are delineated using very-high-resolution imagery, and species 

composition is assigned using photo interpretation (Leckie and Gillis 1995). Species 

composition information includes the six leading species including their relative abundance. 

In total, 358 pixels were undisturbed, 145 were disturbed by harvest or fire, and 267 pixels 

were disturbed by insects (either mountain pine beetle or western spruce budworm). A small 

proportion (30 pixels) could not clearly be assigned to one of the three categories, and those 

were excluded from further analyses. In Figure 3 we present examples of all three 

disturbances classes. 
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Figure 3: Four examples of Landsat spectral trajectories (black dots) and LandTrendr fitted 

trajectories (grey lines) with corresponding Landsat image chips (columns one and two; 

R/G/B=Landsat band 4/5/3) and very high-resolution imagery (column three). For mountain 

pine beetle and western spruce budworm disturbances (rows B and C) the AOS polygons also 

are shown. 

 

Using the reference pixels, we trained a random forest classification model (Breiman 

2001) provided in the randomForest package (Liaw and Wiener 2002) of the statistical 

software R (R Core Team 2014). The random forest model was validated using the out-of-bag 
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confusion matrix (Breiman 2001), from which we estimated overall, user’s, and producer’s 

accuracies, as well as errors of omission and commission. 

3.2.2 Phase two: insect agent attribution 

Following the disturbance mapping in phase one (Section 3.2.1), we estimated for each insect-

disturbed pixel the probability of being disturbed by mountain pine beetle or western spruce 

budworm, respectively. Continuous probabilities of class presence offer greater flexibility in 

interpreting map predictions than discrete classes, i.e., by choosing more conservative or 

relaxed estimates of the total area disturbed (Wulder et al. 2006b). For this purpose, we 

calibrated a second random forest model with a second reference dataset based on the AOS 

and the VRI database. We selected all insect disturbance pixels covered by either a mountain 

pine beetle or a western spruce budworm AOS polygon, again omitting the ‘trace’ class. 

Some areas (16% of all pixels) were covered by mountain pine beetle and western spruce 

budworm polygons, and we omitted those pixels from the reference set to avoid confusion 

between both insects. For model training, we further narrowed down the selection to those 

pixels identified as pure mountain pine beetle or western spruce budworm host-stands in the 

VRI (i.e. 100% Douglas-fir or 100% lodgepole pine), reducing unrelated spectral variability 

in the reference data (Franklin et al. 2003). From this selection, we randomly drew 10,000 

pixels for training of a random forests model as described in Section 3.2.1; and sampled 

10,000 pixels for validating the model in pure stands. Moreover, we sampled a second 

reference set of 10,000 pixels, covering pure and mixed stands. Using two reference sets – i.e. 

one sampled in pure host stands and one sampled independently of host-configuration – 

allowed us to assess the effects of mixed stands on attribution accuracy. 

Using the trained random forest model, we predicted the probability of mountain pine 

beetle and western spruce budworm disturbances for all insect disturbances pixels. In random 
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forest, the probability of class membership is estimated from the proportion of tree votes 

obtained by a class.  

4. Results 

4.1 Classification of disturbances and insect agents 

The disturbance classification yielded an overall accuracy of 76.8% (Table 1), with the 

highest user’s and producer’s accuracies in the harvest/fire disturbance class (80.9% and 

84.8%, respectively), slightly lower user’s and producer’s accuracies for the undisturbed class 

(78.8% and 83.2%, respectively), and moderate accuracies for the insect disturbance class 

(70.8% and 63.7%, respectively). Class confusion was highest between insect disturbances 

and undisturbed areas. In total, 34±9% of the forested area was disturbed by insects and 

20±9% were disturbed by harvest or fire. Most of the forested area in the study area (46±6%) 

was stable over the study period. The classification map (Figure 4) was used to mask out 

undisturbed areas and harvest/fire disturbances in the following results. 
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Table 1: Validation of the first classification phase (disturbance classification), which 

distinguishes undisturbed areas, insect disturbances, and clear-cut harvest and fire 

disturbances. The confusion matrix is derived from the out-of-bag sample of the random 

forest model. 

  Reference   

 Class Undisturbed Insect Harvest/Fire Total 
User’s 

accuracy 
[%] 

Error of 
commission 

[%] 

Map 

Undisturbed 298 74 6 378 78.8 21.2 
Insect 54 170 16 240 70.8 29.2 

Harvest/Fire 6 23 123 152 80.9 19.1 
Total 358 267 145    

 Producer’s 
accuracy [%] 83.2 63.7 84.8 

 
Overall 

accuracy 
[%] 

 

 Error of 
omission [%] 16.8 36.3 

15.2 
 76.8  

 

 

Table 2: Confusion matrix for predicting mountain pine beetle (MPB) and western spruce 

budworm (WSBW) disturbances in pure host-stands. 

  Reference   

 Agent WSBW MPB Total 
User’s 

accuracy 
[%] 

Error of 
commission 

[%] 

Map 
WSBW 4996 563 5559 89.9 10.1 
MPB 636 3805 4441 85.7 14.3 
Total 5632 4368    

 Producer’s 
accuracy [%] 88.7 87.1  

Overall 
accuracy 

[%] 
 

 Error of 
omission [%] 11.3 12.9  88.0  
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Table 3: Confusion matrix for predicting mountain pine beetle (MPB) and western spruce 

budworm (WSBW) disturbances in pure and mixed stands. 

  Reference   

 Agent WSBW MPB Total 
User’s 

accuracy 
[%] 

Error of 
commission 

[%] 

Map 
WSBW 4970 450 5420 91.7 8.3 
MPB 2021 2559 4580 55.9 44.1 
Total 6991 3009    

 Producer’s 
accuracy [%] 71.1 85.0  

Overall 
accuracy 

[%] 
 

 Error of 
omission [%] 28.9 15.0  75.3  

 

The binary classification of mountain pine beetle and western spruce budworm 

disturbances (using a probability threshold of p=0.5) achieved an overall accuracy of 88.0% 

in pure host-stands (Table 2), indicating that the two insects can be reliably distinguished 

using disturbance and recovery metrics derived from Landsat time series. Nonetheless, the 

overall accuracy dropped to 75.3% when mixed stands were considered (Table 3), suggesting 

that the attribution of insect agents is more difficult in stands composed of different host tree 

species. For pure stands (Table 2), the producer’s and user’s accuracies were well balanced 

between both insects, whereas the user’s accuracy for mountain pine beetle disturbances was 

substantially lower (55.9%) for the mixed stands, which means that mountain pine beetle 

infected areas were overestimated in those stands. 
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Figure 4: Map derived in the disturbance classification phase showing undisturbed areas, 

harvest/fire disturbances, and insect disturbances. A binary map of the insect disturbances is 

later used to mask out undisturbed areas and areas disturbed by harvest/fire (Figure 7).  

4.2 Spectral-temporal characteristics of mountain pine beetle and western spruce budworm 

disturbances 

Some differences between mountain pine beetle and western spruce budworm disturbances 

were apparent when comparing the disturbance and recovery metrics (Figure 5). Disturbance 

magnitudes in NBR for mountain pine beetle were on average 20% higher than for western 

spruce budworm. For mountain pine beetle 50% of the disturbances had a disturbance 

magnitude higher than 40%, whereas for western spruce budworm this was only the case for 

30% of the disturbances. The TC components showed more distinct differences between 

mountain pine beetle and western spruce budworm disturbances magnitudes (Figure 6). 

Western spruce budworm disturbances showed a 30% higher decline in greenness than 
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mountain pine beetle disturbances; whereas mountain pine beetle disturbances showed a three 

times higher decline in brightness than western spruce budworm. Moreover, mountain pine 

beetle disturbances showed a slightly higher increase in wetness during disturbance than 

western spruce budworm. This finding suggests that the TC components are of particular 

importance for separating between defoliator and bark beetle disturbances. 

Differences in disturbance duration were not as distinct, though some general patterns 

could be observed (Figure 5): For mountain pine beetle, 50% of the disturbances were very 

short (two years or less), 20% of the disturbances were between three and five years in 

duration, and 30% of the disturbances persisted longer than 5 years. In comparison, western 

spruce budworm disturbances were only slightly longer on average (five years compared to 

four years for mountain pine beetle), though the proportion of long-duration (>5 years) 

disturbances was higher (40%). Only 20% of the western spruce budworm disturbances were 

between three and five years, and the remaining 40% were two years or shorter. 

 



Preprint of an article accepted for publication with Remote Sensing of Environment 21 

 

Figure 5: Boxplots of the disturbance and recovery metrics for the NBR stratified by insect 

agent. Disturbance and recovery magnitude from NBR are expressed in percent. 

 

Differences in NBR recovery magnitude (Figure 5) were not as distinct as differences 

for disturbances, with mountain pine beetle experiencing a slightly higher variation in 

recovery magnitude. For recovery duration, however, western spruce budworm disturbances 

resulted in longer recovery durations compared to those following mountain pine beetle 

disturbances. For the TC recovery magnitudes (Figure 6), western spruce budworm and 

mountain pine beetle disturbed stands tended to completely recover in TC greenness. For 

spectral recovery in wetness, both insects had lower spectral recovery values than the changes 

in wetness during disturbance. Recovery in brightness was close to the changes during 

disturbance for mountain pine beetle and close to zero for western spruce budworm. 
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Figure 6: Boxplots of the disturbance and recovery metrics for the TC components stratified 

by insect agent. Change magnitudes from TC components are expressed as absolute change in 

greenness, brightness, and wetness, respectively. 

 

4.3 Spatial and temporal pattern of mountain pine beetle and western spruce budworm 

disturbances 

The maps of mountain pine beetle and western spruce budworm disturbance probability 

(Figure 7) resembled the disturbance patterns of the aerial overview survey quite well, 

although the spatial detail is much higher. Some differences can be found for mountain pine 

beetle in the northwestern part of the study area, though this area has also been subject to 

intensive salvage logging and fire (Figure 4). High probabilities of mountain pine beetle 

disturbances are concentrated in the lodgepole pine dominated area in the northeastern part of 

the study site (Sub-boreal Pine and Spruce zone and Sub-boreal Spruce zone), and in the 

higher elevation regions of the Montane Spruce zone. High probabilities of western spruce 
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budworm disturbances are concentrated in lower-elevation parts of the Douglas-fir dominated 

areas (Interior Douglas-fir zone) and in the low area bunchgrass zones.  

 

 

Figure 7: Mapped probability of (a) mountain pine beetle and (b) western spruce budworm 

disturbances in comparison to the Aerial Overview Survey (AOS) maps (c and d). 

  

The temporal dynamics of the western spruce budworm and mountain pine beetle 

outbreak show distinct differences between both agents (Figure 8). For our study area, the 
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mountain pine beetle outbreak began in 2000, peaked in 2007, and decreased afterwards. The 

current western spruce budworm outbreak also started in 2000 and peaked in 2003. After 

2003, infestations by western spruce budworm steadily declined until 2010. Comparing the 

Landsat based estimates to the temporal profiles of the AOS maps, substantial differences can 

be observed. The AOS-based area estimates are higher than the Landsat-based estimates, 

especially for mountain pine beetle. Nevertheless, the temporal patterns of the Landsat based 

estimates resemble the AOS based trajectories quite well. 

 

 

Figure 8: Temporal dynamics of the western spruce budworm and mountain pine beetle 

outbreak as estimated from Landsat and the Aerial Overview Survey (AOS) maps. Shown is 

the area (in hectares) disturbed by one of each insect over time. Landsat estimates are based 
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on different thresholds used for classifying the probability output into presence/absence maps 

of mountain pine beetle and western spruce budworm. The upper bound represents all stands 

with a probability greater 0.5 and the lower bound represents all stands with a probability of 

greater 0.8. 

5. Discussion 

5.1 Mapping mountain pine beetle and western spruce budworm disturbances 

5.1.1 Mapping approach 

Our results confirm that insect disturbances can be distinguished reliably from undisturbed 

areas and more intense disturbances such as clear-cut harvest and fire (Goodwin et al. 2008; 

Kennedy et al. 2012; Meigs et al. 2015), though insect disturbances might be confused with 

undisturbed areas once disturbance magnitudes are low. This issue was previously reported by 

other studies (Coops et al. 2006a; Kennedy et al. 2012) and results from the fact that slight 

disturbances are easily confused with spectral changes caused by residual clouds or 

phenological differences in the source image stack. Since this confusion results in a higher 

error of omission for insect disturbances, our resulting insect disturbance map is a more 

conservative estimation of the total area affected. 

 We presented evidence that defoliator and bark beetle disturbances can be separated in 

pure host-stands using spectral and temporal disturbance metrics derived from Landsat time 

series. However, once mixed stands were considered, there was a high likelihood (44.1%; 

Table 3) of mountain pine beetle disturbances being falsely attributed. These errors were 

predominately located at the border between the Douglas-fir and the lodgepole pine 

dominated zones, where stands mixed between host- and non-host-trees are common. In those 

stands, western spruce budworm is the predominant agent of disturbance, but the spectral-
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temporal signal can be mixed between western spruce budworm and single pines attacked by 

mountain pine beetle. It is moreover possible that errors in the AOS database are more 

prevalent in those mixed stands, where different agents are hard to separate visually. Our 

mixed reference data set might thus include some false labels caused from erroneous 

attribution the AOS data. Using the VRI information, which is spatially explicit, can help 

identify stands that are more likely to be classified falsely. 

 In contrast to the methodological approach suggested by Meigs et al. (2015), which 

combines LandTrendr with AOS maps using a simple overlay analysis, we used the AOS data 

to train a model assigning a likelihood of insect agent to each disturbance pixel identified by 

LandTrendr. Our approach thus allows also attributing agents to insect disturbances outside of 

AOS polygons. By restricting the training process to those polygons coinciding with host-

trees of each insect agent (Franklin et al. 2003), we moreover avoid false attribution by 

spatially erroneous AOS polygons (i.e. mountain pine beetle AOS polygons in pure Douglas-

fir forests; see also Section 5.3). 

5.1.2 Spatial and temporal pattern of western spruce budworm and mountain pine beetle 
disturbances 

Our maps show the spatial and temporal patterns of the current outbreaks of mountain pine 

beetle and western spruce budworm in southern British Columbia, and they spatially expand 

the maps developed by Meigs et al. (2015) for the USA Pacific Northwest. The spatial 

patterns of mountain pine beetle and western spruce budworm probability resembled the BEC 

zones (Figure 1) and thus the availability of host trees in our study area. Distinct differences 

in the probability were found for the northern zones (Sub-boreal Pine/Spruce zone) and for 

the higher elevation zones (Mountain Spruce zone) of the study area, where lodgepole pine is 

the leading species, and climatic conditions are considered to be less favorable for western 
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spruce budworm. Highest probabilities of western spruce budworm disturbances were found 

in the lower elevation, hot and dry regions of the Interior Douglas-fir Forest zone, where 

western spruce budworm is known to be most active (Maclauchlan et al. 2006). In zones 

mixed between hosts of both insects, however, probabilities of either mountain pine beetle or 

western spruce budworm were generally lower, indicating that both insects might be present. 

In those areas, the attribution of one specific agent is thus hampered.  

 The mountain pine beetle outbreak in our study area started in 2000 and peaked in 

2007, whereas the province-wide peak was in 2005 (Meddens et al. 2012). Since our study 

area is located south of the major lodgepole pine areas of British Columbia, the lag to the 

provincial trends is not unexpected. The western spruce budworm outbreak peaked earlier 

than mountain pine beetle. There is evidence that drought can influence western spruce beetle 

population dynamics and trigger outbreaks (Flower et al. 2014; Hicke et al. 2012), and the 

drought years 2000-2004 (Schwalm et al. 2012) might be one of the causes for the current 

outbreak. 

 Using probability maps instead of discrete class labels allowed for a flexible 

interpretation of results (Wulder et al. 2006b). Depending on the application, one can chose 

more conservative or relaxed thresholds, targeting management actions more precisely. 

Alternatively, it is possible to select the probability threshold based on a selection criteria 

such as maximized overall accuracy, kappa, or using receiver-operating characteristics (ROC) 

analysis (Manel et al. 2001). 

 Even though temporal patterns and trends of mountain pine beetle and western spruce 

budworm disturbances resembled each other in the Landsat and AOS maps (Figure 8), we 

found substantial differences in the actual infestation area estimates (Figure 7 and 8). Those 

differences were not unexpected and have been reported previously (e.g., Meigs et al. 2015), 

and emerge from the positional issues and the nature of the manual attribution of AOS maps. 
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AOS maps are manually prepared with infestation boundaries often generalized and including 

areas with non-infested trees or non-vegetated areas. While the Landsat-based estimates might 

underestimate trace insect disturbances (i.e., single infested trees), the large differences 

between the Landsat-and AOS based estimates reinforce that area estimates derived from 

AOS maps must be interpreted with caution (Wulder et al. 2006a).  

5.2 Spectral-temporal characteristics of mountain pine beetle and western spruce budworm 

disturbances 

5.2.1 Disturbance magnitude 

Spectral change magnitudes were important predictors for distinguishing mountain pine beetle 

and western spruce budworm disturbances, which is not surprizing as it directly relates to the 

biology and disturbance ecology of the two insects, particularly with respect to disturbance 

severity and contagiousness. Mountain pine beetle disturbances commonly lead to complete 

defoliation and mortality within a few years (Wulder et al. 2006a), explaining the high 

spectral change magnitudes associated with mountain pine beetle disturbances. Moreover, 

mountain pine beetle disturbances commonly occur in aggregated patches (Coops et al. 2010), 

which facilitates the detection with 30-m Landsat pixels (Meddens et al. 2013; Skakun et al. 

2003). Infestation patterns by western spruce budworm are often diffuse (Cooke et al., 2007) 

and result in lower mortality rates, especially if feeding periods are short as in our case 

(Shepherd 1994). Nonetheless, trees will show partial symptoms such as chlorosis, 

deformation, or top-kill (Campbell et al. 2006; Maclauchlan et al. 2006), which also influence 

the spectral disturbance magnitude. Looking at the VRI database, the rate of dead standing 

trees (percent of dead trees in relation to dead and alive trees per stand) in Douglas-fir stands 

affected by western spruce budworm was 15.4% (SD = 4.8%) compared to 44.9% (SD = 
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28.2%) for lodgepole pine stands affected by mountain pine beetle. Hence, the differences in 

disturbance magnitude between mountain pine beetle and western spruce budworm 

disturbances evident in in this study can be explained by the different impacts both insects 

have on tree mortality. 

Even though we found expected differences in disturbance magnitude, we also 

observed an overlap between both insect agents (Figure 5). Healthy trees present in mixed 

stands, which dampen the disturbance signal, might cause low disturbance severities for 

mountain pine beetle (Skakun et al. 2003). High disturbance severities for western spruce 

budworm might be the result of western spruce budworm co-occurring with secondary bark 

beetle (Hummel and Agee 2003) or drought (Flower et al. 2014). Hence, even though 

disturbance magnitude was of importance for distinguishing between bark beetle and 

defoliator disturbances, there is high variability, which complicates the mapping in 

heterogeneous landscapes where hosts of both insects are present. In our study area, 

approximately 7% of the lodgepole pine and Douglas-fir stands were comprised a mixture of 

both host species (i.e., either lodgepole pine or Douglas-fir made up >10% secondary species 

composition). 

The disturbance metrics obtained from the TC components showed a more nuanced 

picture of the differences between both insect agents than the disturbance metrics obtained 

from the NBR. The NBR only captured the overall differences in tree mortality, whereas the 

changes in TC can be attributes to the different impacts both insects have on the tree canopy. 

The changes in wetness associated with mountain pine beetle can be attributed to the 

complete defoliation and thus change of the tree canopy caused by mountain pine beetle, 

which is corroborated by several other studies (Coops et al. 2009; Franklin et al. 2003; Hais et 

al. 2009; Skakun et al. 2003; Wulder et al. 2006b). The three times higher changes in 

brightness for mountain pine beetle disturbances can be attributed to higher bark, branch, and 
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soil reflectance in completely defoliated stands (Hais et al. 2009). As a confounding factor, 

stands experiencing change at the canopy level can also exhibit stronger understory 

reflectance (Radeloff et al. 1999). In fact, Hais et al. (2009) found that increasing understory 

reflectance can increase TC greenness during bark beetle disturbance, which, however, was 

not the case in our study. 

 The higher changes in TC greenness associated with western spruce budworm 

defoliation found in this study might be an indication of the ephemeral changes in foliage, 

with low impacts on the overall canopy structure of a tree. This result is in agreement with a 

western spruce budworm outbreak in Oregon (Franklin et al. 1995) and with Gypsy Moth 

(Lymantria dispar Lin.) defoliation in northern Wisconsin (Thayn 2013). Both studies showed 

that TC greenness was more important for predicting defoliation than wetness and brightness. 

A study of the jack pine budworm in Wisconsin (Radeloff et al. 1999) moreover found that 

changes in green needle fraction, obtained from spectral mixture analysis, had the highest 

correlation to populations of jack pine budworm.  

5.2.2 Disturbance duration 

The disturbance duration also showed differences between mountain pine beetle and western 

spruce budworm, with mountain pine beetle exhibiting mostly short-duration disturbances and 

western spruce budworm mostly medium- to long-duration disturbances. Mountain pine 

beetle infestations often follow a three-year scheme (i.e. green-, red-, and grey-attack stage; 

Goodwin et al. 2008; Wulder et al. 2006a), which is reflected in the high proportion of short-

duration disturbances (two years or less) for mountain pine beetle found in this study. For 

western spruce budworm, the majority of the disturbances were longer than two years, which 

reflects the common feeding periods of two to five years in our study area (Shepherd 1994), 

though we also observed disturbances longer five years. Even though western spruce 
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budworm disturbances tended to be longer than mountain pine beetle disturbances, duration 

observed in this study were still shorter than durations reported in a study from Oregon 

(Meigs et al. 2011). They found more distinct differences in disturbance duration between 

mountain pine beetle and western spruce budworm and chose a threshold of six years to 

visually separate both insect agents. For our study, this separation based solely on disturbance 

duration was not possible, suggesting that a combination of severity and duration metrics 

achieves best results in separating different insect agents.  

5.2.3 Spectral recovery 

The spectral recovery signals for western spruce budworm disturbances were generally longer 

than those for mountain pine beetle infestations. The recovery magnitudes for western spruce 

budworm disturbances were close the disturbance magnitudes, emphasizing the ephemeral 

nature of insect defoliation, with often complete regeneration of foliage in the years following 

the disturbance (Campbell et al. 2006; Cooke et al. 2007). However, understory vegetation 

also can contribute to the recovery signal by benefiting from the increased light availability in 

stand experiencing defoliation (Lynch and Moorcroft 2008). The spectrally faster recovery of 

lodgepole pine stands may be an indication of such understory tree and shrub vegetation, 

which capitalizes on increased availability of water, sunlight, and nutrients in mountain pine 

beetle affected stands. This interpretation is also supported by the rapid changes in brightness 

following infestation, indicating that soil signals, which are present immediately after 

infestation, are rapidly covered by understory tree and shrub vegetation. 

5.3 Transferability to other regions and uncertainties in the analysis 

While this study shows that spectral and temporal patterns of insect disturbances are useful 

for distinguishing different insect agents, a review of the literature indicates that such patterns 
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can vary by region and outbreak, which means that classification models and logics derived in 

our study may not be directly transferable to another region. For example, the western spruce 

budworm outbreak in our study was relatively short and mild, which is typical for this insect 

(Cooke et al. 2007). However, western spruce budworm impacts can also be more severe if 

the defoliation lasts over several years or co-occurs with secondary bark beetles. For example, 

Meigs et al. (2015) found that mountain pine beetle and western spruce budworm generally 

had equal impacts on tree mortality, which is in contrast to our findings. Differences might 

result from the relatively light impacts of the current western spruce budworm outbreak 

compared to past outbreaks in British Columbia (Axelson et al. 2015; Lynch and Moorcroft 

2008) and from differences in regional climate, land use history, and management. For a more 

severe outbreak, the disturbance magnitudes of mountain pine beetle and western spruce 

budworm might be less important for distinguishing both insect agents than the disturbance 

duration (as in Meigs et al. (2011)). 

 The datasets used in this study have particular strength and weaknesses, introducing 

uncertainties that need to be considered while transferring methods derived in this study to 

other regions. First of all, our initial disturbance classification is based on photo-interpretation 

(i.e. interpretation of Landsat spectral trajectories, image chips, and high-resolution data; 

Figure 3), which might be prone to errors. Visually detecting high intensity disturbances such 

as harvest and fire is relatively easy to achieve, given their significant impact on the Landsat 

spectral trajectory (Figure 3). Photo-interpretation has thus been used frequently for labeling 

reference pixels of such disturbances (Cohen et al. 2010; Kennedy et al. 2012). However, 

visually detecting transient disturbances, i.e. as caused by light insect disturbances, can be 

more challenging. We used additional auxiliary data to guide interpretation of insect 

disturbances, which helped to separate true disturbances from spectral change caused from 
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natural variance in the source stack, i.e. atmospheric noise, residual clouds, phenological 

differences, or spatial mis-registration. 

 A second source of uncertainty in the data arises from the AOS maps. Even though the 

AOS maps are the most comprehensive database on insect disturbances at the landscape level, 

they are not a precise spatial product. Spatial inaccuracy of the AOS polygons can result from 

numerous causes, including off-nadir viewing, variations in lighting conditions, and 

interpreter experience and fatigue, among others (Wulder et al. 2006a). For example, we 

identified stands where mountain pine beetle was detected even though no host-trees were 

present according to the VRI database. To account for this potential error in model training, 

we reduced the selection of training pixels to those pixels where the AOS maps coincided 

with the respective host tree (Franklin et al. 2003). For validating the model in pure and 

mixed stands (Table 3), however, we did not apply this filtering step, allowing for a more 

realistic representation of the landscape (i.e. by including pure and mixed stands). The second 

validation sample might thus include labeling errors resulting from the AOS dataset. Further 

research should consider alternative training/validation approaches based on ground-surveys, 

though for large spatial extents (as in the case of our study), those approaches can be very 

expensive and time-consuming (Cohen et al. 2010). 

6. Conclusion 

In this study we characterized bark beetle and defoliator disturbances in southern-interior 

British Columbia, Canada, using a well-established Landsat-based time series segmentation 

approach (LandTrendr). From our results, we conclude that Landsat can be utilized to 

distinguish between bark beetle and defoliation disturbances in our study region, using 

specific spectral-temporal features. In making the distinction between agents of insect 

disturbance the magnitude of disturbance was found to be of highest importance. Bark beetle 
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disturbances led primarily to changes in wetness and brightness (i.e., changes in the tree 

structure such as complete needle loss). Defoliation disturbances were of lower magnitude 

and linked to changes in greenness (i.e., changes in the trees’ foliage). The resulting maps and 

estimates offer a combined and detailed picture of the mountain pine beetle and western 

spruce budworm outbreaks in our study region through quantifying both the temporal and 

spatial dynamics. These otherwise unavailable spatially explicit and quality assured maps can 

help inform science and management information needs as well as offering new opportunities 

for addressing increasingly refined forest reporting objectives. 
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