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ABSTRACT
Free and open access to the Landsat archive has enabled the
implementation of national and global terrestrial monitoring projects.
Herein, we summarize a project characterizing the change history of
Canada’s forested ecosystems with a time series of data representing
1984–2012. Using the Composite2Change approach, we applied spectral
trend analysis to annual best-available-pixel (BAP) surface reflectance
image composites produced from Landsat TM and ETM+ imagery. A
total of 73,544 images were used to produce 29 annual image
composites, generating ∼400 TB of interim data products and resulting
in ∼25 TB of annual gap-free reflectance composites and change
products. On average, 10% of pixels in the annual BAP composites were
missing data, with 86% of pixels having data gaps in two consecutive
years or fewer. Change detection overall accuracy was 89%. Change
attribution overall accuracy was 92%, with higher accuracy for stand-
replacing wildfire and harvest. Changes were assigned to the correct
year with an accuracy of 89%. Outcomes of this project provide baseline
information and nationally consistent data source to quantify and
characterize changes in forested ecosystems. The methods applied and
lessons learned build confidence in the products generated and
empower others to develop or refine similar satellite-based monitoring
projects.
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1. Introduction

Information on land cover change and dynamics is required to support monitoring and reporting
programmes as well as scientific objectives (Rogan and Chen 2004; Wulder, Kurz, and Gillis
2004; Townshend et al. 2011). Over large areas and long time periods, remotely sensed data sets
are ideally suited to quantitatively capture and portray conditions at a given point in time as well
as how these conditions are changing through time (Kennedy et al. 2009; Banskota et al. 2014;
Gómez, White, and Wulder 2016). For consistent and defensible results, the application of transpar-
ent and reproducible methods is critical. Following the opening of the United States Geological Sur-
vey (USGS) archive of Landsat imagery (Woodcock et al. 2008) users have been provided with high-
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quality analysis-ready imagery at a spatial resolution that is informative at the scale of human inter-
actions with terrestrial ecosystems (Wulder and Coops 2014). As a result, the user community has
been active in developing approaches to utilize this heretofore unavailable source of image data
(Hansen and Loveland 2012; Wulder et al. 2012). Projects that previously would have only been
approachable with lower spatial resolution data sets have now been implemented using Landsat ima-
gery, including global products such as forest change (Hansen et al. 2013), forest tree cover (Town-
shend et al. 2012; Sexton et al. 2013), readily available coverage for land cover mapping (Roy et al.
2010; Kovalskyy and Roy 2013), and supra-national (Griffiths, Kuemmerle, et al. 2013; Potapov et al.
2015; Ju and Masek 2016) or national (Goward et al. 2008; Cohen et al. 2016) monitoring activities.
In Canada, the National Terrestrial Ecosystem Monitoring System (NTEMS) project (White et al.
2014) aims to characterize the recent history of Canada’s forests using Landsat data. These diverse
projects, facilitated by free and open access to Landsat data, demonstrate the current state-of-the-art
in computing and image processing.

Of the large area mapping and change detection projects indicated above, each of the projects,
while similar in some respects, also have differing methodological approaches determined to meet
specific project information needs (e.g. temporal window, geographical extent, and attributes cap-
tured), as well as decisions based upon image availability. For instance, a project implemented
over the continental USA will have image availability (both spatially and temporally) in excess of
all other regions globally (Ju and Roy 2008). Thus, methods developed for the continental USA
might not be applicable elsewhere. Based upon the history of the Landsat sensors’ data collection
objectives, on-board storage capacity, and downlink, the global distribution of image availability
is variable (Wulder, White, et al. 2015). In the case of Canada, there is a long history of cooperation
with the USGS. The Canada Centre for Remote Sensing has been active in receiving imagery since
1972 and the archive has over 600,000 images representing Canada (White andWulder 2013). While
this number is large, the distribution of the images varies in space and time, and contains obser-
vations with atmospheric interference such as clouds, haze, smoke, and related shadows.

Pixel-based image compositing is an approach that can be implemented to address possible short-
comings related to image availability, atmospheric interference, phenology, and sun angles (Griffiths,
van der Linden, et al. 2013; White et al. 2014). The time series-based change mapping method
presented in Hermosilla et al. (2015a), hereafter referred to as Composite2Change (C2C), utilizes
best-available-pixel (BAP) composites of surface reflectance values generated from archival Landsat
imagery (White et al. 2014). Depending on the availability of data, atmospheric effects present, and
compositing rules (e.g. temporal window and distance to clouds), some locations may result in pixels
with ‘no data’ due to lack of suitable observations meeting the specific compositing criteria. These ‘no
data’ instances require a step to fill in data gaps with proxy surface reflectance values to enable a gap-
free spectral coverage of the given region of interest. As a result, image composites can include both
measured and estimated values (Zhu et al. 2015). These image composites are the basis for producing
a database of annual change occurring over Canada’s forested ecosystems from 1984 to 2012
(Hermosilla et al. 2015b), with information produced on the amount, type, and rates of disturbances
present. Options and approaches for dealing with sub-optimal spatial or temporal coverage of
archival Landsat data will be of relevance to many nations and regions based upon historic satellite
tasking, collection, receiving, and archiving practices (Wulder, White, et al. 2015).

Herein we present an example of the data processing decisions and related outcomes for a large
area, time series, image compositing, and trend characterization project. Our objective is to report
outcomes of various stages of the NTEMS project, from image availability through to product out-
comes. The described image composite data represent a spatially and temporally comprehensive,
nationally consistent source of information that has the spatial (30 m) and temporal (annual) resol-
utions necessary to characterize natural and anthropogenic changes. We present the results of a
national implementation of a pixel-based image compositing approach using Landsat surface reflec-
tance data described in White et al. (2014), and the subsequent filling of data gaps with proxy values.
In addition, the change detection approach described by Hermosilla et al. (2015a), and the
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attribution of change events to a change type, following methods described in Hermosilla et al.
(2015b), have been implemented nationally, and herein, we present and implement a national accu-
racy assessment protocol on the C2C outcomes. We provide full details on the nature of the input
data in order to improve understanding of the data outputs, and address the big data challenges of
developing, producing, and validating gap-free digital geographic data products from the Landsat
archive. We report and enumerate on the particulars of image inputs, including data gaps, and
related needs for proxy infill generation. We aim to provide insights regarding algorithm develop-
ment using the Landsat archive to characterize large areas over time. We also aim to be transparent
in the decisions made for data processing and to inform on how these decisions impacted the final
products, aided by the accuracy assessment presented. By sharing this example, we endeavour to
inform implementation of similar projects by other research groups or operationally focused map-
ping agencies.

2. Study area

The generation of gap-free, surface reflectance BAP image composites was undertaken for Canada,
which has a total area of approximately 998.5 million ha. To characterize forest change, we used the
ecozone stratification of Canada (Ecological Stratification Working Group 1995). While we gener-
ated BAP composites for the entire country, our change analysis focused on those ecozones domi-
nated by forest ecosystems (Figure 1). In Canada there are 10 ecozones that are dominated by forests,
which represent more than 650 million ha, or approximately 65% of the national area (Wulder et al.
2008). These forest-dominated ecozones are a mosaic of trees, shrubs, wetlands, and lakes, with lesser
components of urban infrastructure, agricultural lands, and alpine areas, among others. Canada’s
National Forest Inventory reports that treed and other wooded land in Canada occupy 388.4 million
ha (Canadian Forest Service 2013).

Figure 1. False colour (bands: 5–4–3) proxy image composite of Canada in 2000. UTM zones are partitioned into three latitudinal
zones for data processing. In the map inset, ecozones dominated by forested ecosystems and the UTM processing zones are shown.
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3. Data

The annual image composites were created by considering as candidate images all available Land-
sat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) images (more than
81,000) from the 1285 scenes (path/rows) of the Landsat Worldwide Referencing System (WRS-
2) in the USGS archive that covered at least part of the terrestrial area of Canada, had less than
70% cloud cover, and were acquired within a date range defined as 1 August ± 30 days from
1984 to 2012. The date 1 August (Julian day 213) was designated as the central target acquisition
date due to its correspondence with the growing season for the majority of Canada’s terrestrial area
(McKenney et al. 2006). All candidate images were downloaded from the archive as Level-1
Terrain-Corrected (L1T) products. Then we produced atmospherically corrected surface ref-
lectance values for the six Landsat optical bands (bands 1–5, 7) using the Landsat Ecosystem
Disturbance Adaptive Processing System (LEDAPS) algorithm (Masek et al. 2006; Schmidt
et al. 2013). Clouds, related shadows, and other unwanted atmospheric elements are detected
and masked using the Fmask algorithm (Zhu and Woodcock 2012). Note that this algorithm
has been improved since our algorithm was developed and initially implemented, as described
in Zhu and Woodcock (2014) by additionally considering the temporal information in the
cloud detection. As the same water body can appear different both within and between years
due to wind, ice, sedimentation, and changes in volume, among other factors, Fmask outputs
were also used to define a water mask, which enabled the exclusion of water bodies from further
analysis (Lunetta et al. 2004).

4. Methods

4.1 Processing tiles and data processing approach

To reduce resampling operations, we divided the country longitudinally into 17 processing tiles,
corresponding to UTM zone boundaries (the L1T native projection), from UTM zone 7 to zone
22. Due to the northward narrowing of the UTM zones, the overlap between zones is about
30% at the southern border (e.g. 49° N) and up to 90% in the far north. Additionally, we divided
each UTM zone into three latitudinal zones: South (southern border–60° N), North (60–70° N),
and Arctic (70–83° N), see Figure 1. The temporal window for the image compositing approach
was 1984–2012. The change analysis was performed in the period 1986–2010 and the two pairs
of remaining years at the beginning (1984, 1985) and end (2011, 2012) of the time series were
not mapped in the change analysis due to lack of pre- and post-event data. Also, since our analysis
of change focused on the forested areas, we used a mask provided by Agriculture and Agri-Foods
Canada (2011 data) to identify and exclude agricultural lands from our change characterization
analyses.

Remote sensing big data computing is a challenging task due to the extensive nature of the analy-
sis, combined with the large amount of data handled (Ma et al. 2015). In order to minimize time
requirements and overcome memory issues, our methodologies were optimized to avoid processes
requiring intensive RAM use, which permitted parallel processing at different sections of the proces-
sing tiles. Following this premise, we used the image line as basic processing unit, which required
constant reading/writing data, being thus the input/output operations per second capabilities of
the hard disk drives the only time limiting factor in our processing chain.

4.2 Overview of methods

The C2C methodology used to produce annual BAP image composites (White et al. 2014), infill data
gaps caused by missing data and noise filtering, detect and characterize changes (Hermosilla et al.
2015a), and attribute detected changes (Hermosilla et al. 2015b) is detailed in the references indi-
cated. A brief overview of the C2C methodology is provided below and presented in Figure 2.
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There are some instances where methods were improved from the originally published versions,
prior to national implementation, and these instances are noted where appropriate.

Utilizing the consistently calibrated data record of the Landsat series of satellite (Markham and
Helder 2012) we obtain and avail upon all candidate images to produce annual BAP image compo-
sites following the pixel-scoring functions described in White et al. (2014). These functions score
each pixel observation for (i) sensor, (ii) acquisition day of year, (iii) distance to clouds and cloud
shadows, and (iv) atmospheric opacity. Of note, we increased the penalty for ETM+ Scan Line Cor-
rector (SLC)-off data from what was reported in White et al. (2014), changing the sensor score for
ETM+ SLC-off (i.e. after 31 May 2003) from 0.5 to −0.7. This scoring ensured that TM data had
preference over ETM+ post SLC-off, avoiding the use of multiple discontinuous small portions of
images to produce the BAP image composites, thus reducing the spatial variability of the spectral
data. A systematic operator-guided post-processing screening step was also applied using the tem-
poral series of imagery to highlight locations, and remove offending images, where a geographic mis-
match was present. As per White et al. (2014), the surface reflectance values of the pixel with the
highest summation of the four scores was then used in the BAP image composites for a given
year. Based on the compositing rules, 73,544 Landsat images contributed pixels to the 29 annual
BAP composites. Those pixels without suitable observations are labelled as ‘no data’ and constitute
data gaps that are addressed later in the C2C protocol.

Using values of the normalized burn ratio (NBR) (Key and Benson 2006) in the temporal domain
(i.e. a vector of annual NBR values for each pixel), the C2C protocol (i) filters anomalous spectral
observations resulting from unscreened cloud or cloud shadows, or by haze or smoke (similar to
Kennedy, Yang, and Cohen 2010), removing those observations from the analysis (and hence pro-
ducing more data gaps), and (ii) detects changes and temporal trends by applying the bottom-up

Figure 2. Overall workflow of the C2C methodology.
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breakpoint detection algorithm proposed by Keogh et al. (2001) (see Figure 3). Since changes are
detected from the spectral trajectories (i.e. temporal domain) they may result in spatially discordant
events. Thus, a contextual analysis of the detected changes is then performed on the spatial domain
to improve the consistency and spatial cohesion of the change features generated. This contextual
analysis is undertaken in the spatial domain, and it is based on ranking the confidence in correctly
defining a change in a given year. This confidence is inversely related to the amount of missing data
before, during, and after the change event. Thus, detected changes with no or few instances of miss-
ing data are considered reliable and subsequently labelled with the change year. Changes with abun-
dant missing observations are considered to have a lower reliability. Low reliability changes that were
spatially adjacent to a high-reliability change within ±1 year are re-labelled with the year of the more
reliable spatially adjacent change, as detailed in Hermosilla et al. (2015a). Additionally, in this step
we removed change events with an area smaller than the minimum mapping unit (MMU). The
MMU size was determined to support the information needs of Canada National Forest Inventory
(0.5 ha).

Data gaps resulting as a function of scoring criteria for BAP selection (hereafter referred as no-
data observations) or as a function of subsequent noise filtering that is applied to the annual image
composites, are infilled with proxy surface reflectance values. The infill value for a given pixel is
determined using the spectral trends computed in the breakpoint detection process described
above, which serves as a guide for a piecewise linear interpolation of the spectral values in that pixel’s
time series. This process results in gap-free, surface reflectance image composites at the native Land-
sat 30 m spatial resolution, which are hereafter referred to as proxy image composites. As an
example, a proxy image composite for Canada for the year 2000 is shown in Figure 1.

From the spectral trend analysis (Figure 3) we also derive a set of descriptive change metrics that
characterize forest change events, as well as pre- and post-change conditions (Table 1). These metrics
allow for a distillation of the complex change trajectories and provide information that can be used to
determine trends and support the labelling of change types. Note that in Hermosilla et al. (2015a), we
recorded only the greatest change event, that is, the change event with the greatest magnitude in the
time series. We subsequently altered the processing to capture multiple change events in the time
series for each pixel and likewise generated additional metrics to characterize the first and last change
events. Metrics are grouped into pre-change (Figure 3, segment AB), change (segment BC), and post-
change (segment CD) categories. Change metrics characterize the negative trend segments according
to the occurrence year, duration of the event, spectral difference before and after the change event
(change magnitude), and change rate. Change rate is defined as the ratio of the change magnitude
and the duration of that change process, and provides insights regarding the severity and speed
with which changes occur. Pre- and post-change metrics inform about the spectral condition before
and after the change event. Of special interest is the post-change evolution rate metric, which is

Figure 3. Graphical depiction of spectral trends and breakpoints used to calculate change metrics for a single pixel of Landsat time
series data.

6 T. HERMOSILLA ET AL.

D
ow

nl
oa

de
d 

by
 [

C
an

ad
ia

n 
Fo

re
st

 S
er

vi
ce

] 
at

 1
0:

28
 1

3 
Ju

ne
 2

01
6 



related to the rate of spectral recovery following a change event. Values close to zero indicate very
slow post-disturbance regrowth whereas higher values are associated with higher rates of vegetation
return following disturbance, as described in Pickell et al. (2016) and Bartels et al. (2016).

Finally, following the object-based image analysis approach presented in Hermosilla et al.
(2015b), the changes detected are attributed to a change type (fire, harvesting, road, or non-stand
replacing). Non-stand-replacing change category refers to gradual changes in vegetation that do
not lead to a change in land cover class (i.e. disease, insects, water stress, and decline). These changes
are related to temporary variations (pulsed) in the vegetation condition (Vogelmann et al. 2016) or
indicative of longer term directional alteration in vegetation condition apparent using time series
(Cohen et al. 2016; Gómez, White, and Wulder 2011).

The change attribution is implemented at the object-level based on the spectral, temporal, and
geometrical characteristics present using a random forests classifier (Breiman 2001). The spectral
characteristics include average of the spectral values of the objects before the change event, average
and standard deviation after the change event, and range, average and standard deviation of the
values of the pixel series. These metrics are derived from the spectral bands 3, 4, 5, and 7, and for
the indices NBR, and brightness, greenness, and wetness components from the Tasselled Cap
(Crist 1985). The temporal metrics are computed from the spectral trend analysis, and provide infor-
mation about the spectral response of change events as well as pre- and post-change conditions. Dur-
ation represents the time over which the event takes place. Magnitude variation is the difference
between the average spectral values before and after the change event. Pre-change and post-change
conditions are characterized by the magnitude variation, duration, and evolution rate (i.e. ratio
between magnitude variation and duration). The geometry and shape complexity of a given change
object is also described using area, perimeter, compactness, shape index, and fractal dimension. The
number of votes received by each change class is used to define and act as an indicator of attribution
confidence (Mitchell et al. 2008), in our approach computed as the ratio between the percentage of

Table 1. List of spectral trend metrics generated to characterize change events. Nomenclature referred to Figure 3.

Metric Description

Pre-changea Pre-change magnitude
variation

Difference between NBR values at the start (A) and end (B) points of the pre-
change segment

Pre-change persistence Number of years between the start (A) and end (B) points of the pre-change
segment

Pre-change evolution
rate

Ratio of pre-change magnitude variation to pre-change persistence

Change (negative
segments)

Change year Year in which breakpoint occurs (C). For pixel series with multiple change
events, this is the year in which the greatest change event occurs (greatest
magnitude change). The breakpoint separates the pre-change and change
segments

Change persistence Number of years between start (B) and end (C) points of the change segment
Change magnitude
variation

Difference between NBR values at the start (B) and end (C) points of the change
segment

Change rate Ratio of change magnitude to persistence
First change year For pixel series with multiple change events, this is the year of the first change

event (first breakpoint)
First change persistence For pixel series with multiple change events, this is the persistence of the first

change event (first breakpoint)
Last change year For pixel series with multiple change events, this is the year of the last change

event (last breakpoint)
Last change persistence For pixel series with multiple change events, this is the persistence of the last

change event (last breakpoint)
Post-changea Post-change magnitude

variation
Difference between NBR values at the start (C) and end (D) points of the post-
change segment

Post-change
persistence

Number of years with no negative segments years following a change event

Post-change evolution
rate

Ratio of post-change magnitude variation to post-change persistence

aPre- and post-change metrics are calculated for the change event with the greatest magnitude in the pixel series.
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votes of the second most voted class and the percentage of votes of the attributed class. With this
attribution confidence indicator, we prevent attributing objects to a change class when the confi-
dence is very low (i.e. near even probability between two or more classes), labelling instead these
change objects as unattributed. This will enable further interrogation and characterization of unclas-
sified change objects based on additional metrics.

In Figure 5 we show a selection of the change products resulting from the application of the afore-
mentioned methodologies. In Figure 5(a) we show the year in which the greatest change was
detected, while Figure 5(b) presents the attribution of those change events into one of the four domi-
nant change types. Additionally, metrics derived from the spectral trend analysis process are pre-
sented, including change rate (Figure 5(c)) and post-change evolution rate (Figure 5(d)). As an

Figure 5. Forest change products derived from spectral trend analysis of annual Landsat composites: (a) changes labelled by detec-
tion year; (b) attribution of those changes into a forest change type; (c) change rate; and (d) post-change evolution rate metrics.

Figure 4. Forest change attribution hierarchy. Source: Adapted from Hermosilla et al. (2015b).
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integrating example, in Figure 6 we show detailed subsets of forest change detection year, change
type attribution, and select change metrics in three locations dominated by different disturbance
regimes, specifically the Montane Cordillera, Taiga Shield West, and Atlantic Maritime ecozones.

4.3 Assessment of forest change detection, date labelling, and attribution to change type

A stratified random sampling strategy was applied to select evaluation samples for the change detec-
tion and attribution processes following the approach described in Olofsson et al. (2014) and guided
by Hermosilla et al. (2015b). At the highest level of our change hierarchy (Figure 4), we evaluated the
efficacy of our change detection, allocating the total number of sample points (n = 1200) equally to
our change and no change strata. We also evaluated our change attribution, whereby we assigned
detected change events to one of four change types. The 600 samples within the change strata
were allocated equally to the four change types (n = 150) (fire, harvest, road, and non-stand repla-
cing). Finally, as we captured 25 years of change, we wanted to report the frequency with which
change events were detected within the correct year. To this end, we also distributed the 600 samples
equally among the 25 years; however, as the sample size for any given year is small, we do not report
the accuracy of attribution by year. Each sample was manually interpreted by the same interpreter,

Figure 6. Examples of the forest change products derived from spectral trend analysis of annual Landsat composites in three differ-
ent disturbance dominated ecozones: (a) Montane Cordillera, (b) Taiga Shield West, and (c) Atlantic Maritime.
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who was trained to visually recognize the four change types, and was given reference examples to use
as a guide. Interpretations were vet by a second, independent interpreter to ensure consistency. The
annual BAP images composites and high spatial resolution imagery from Google EarthTM were the
main reference data sources. Additionally, other ancillary information were used to support
interpretation, including the Canadian National Fire Database (Canadian Forest Service 2015)
and regional spatial coverages depicting insects, and flagged as either change or no-change. In the
case of change, the year and change type were also recorded.

The accuracy on the detection of changes was assessed using a confusion matrix based on esti-
mated class area proportions, from which overall user’s and producer’s accuracies per class were
computed to assess the commission and omission errors as well as error bounds (Olofsson et al.
2014). The temporal accuracy of the change detection was also evaluated by comparing the change
year with the reference year. We assess the temporal accuracy of detected changes occurring within
three years of the reference events. Changes detected with a difference of four or more years were
directly flagged as detection errors. We likewise used a confusion matrix based on estimated class
area proportions to evaluate the accuracy on the attribution of the change agent.

5. Results

5.1 Image composite assessment

As Figure 7 indicates, data gaps resulting frommissing observations (no data) and noise filtering var-
ied, as well as the number of Landsat images used annually to create the image composites. Three
different periods can be observed: TM, TM and ETM+ combined, and ETM+. During the period
where only TM data were available (1984–1998), an average of 1802 images (σ = 245.9) were used
each year and 14.2% (σ = 5.5%) of pixels, on average, had no valid observations (no data). Between
1999 and 2011, TM and ETM+ sensors were in simultaneous operation, which boosted the average
number of images used to build the annual composites to 3420 (σ = 439.2). The proportion of pixels
with no data reduced to 5.9% (σ = 1.6%). The majority of the images used in the compositing process
prior to the malfunction of the Landsat 7 SLC in May 2003 were acquired by ETM+ (68% annual
average). This changed during the SLC-off mode, with ETM+ providing, on average, only the

Figure 7. Number of images used annually in the image compositing process grouped by sensor, and percentage of data gaps due
to the compositing (no data) and the noise detection processes.
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44% of the images. Finally, when Landsat 5 TM operational imaging effectively ended after the 2011
northern hemisphere growing season (November 2011), only ETM+ acquisitions were available
during 2012, which substantially reduced the number of used images to 2064 and resulted in an
increase to 21.3% of no-data pixels in the compositing process due to the persistence of SLC-off
data gaps. On average, the noise detection process applied to detect and remove noisy observations
or anomalous values from the BAP image composites adds 8.4% (σ = 2.4%) to the annual total data
gaps.

The national spatial distribution of the number of years with data gaps is shown by Figure 8(a).
Overall, a north/south striping across the entire country is evident and results from the satellite’s
polar orbit and related path overlap (which increases with latitude). Interior areas with flat topogra-
phy are less prone to persistent cloud cover (i.e. Prairies, Boreal Plains, and Taiga Plains) and show
more complete data while areas located east of Hudson Bay, and mountainous areas in the west, have
a larger proportion of pixels with no data. Even with the high level of imaging overlap, the northern
most islands of the Canadian Arctic Archipelago (i.e. Ellesmere Island and Axel Heiberg Island) are

Figure 8. Spatial distribution of data gaps (a), and histogram of the cumulative percentage of data gaps (b) for Canada, and the
three latitudinal zones defined: South, North, and Arctic.
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found to be challenging locations to obtain valid observations due to the lower number of images
acquired at these latitudes (based upon acquisition plans), combined with the persistent cloud
cover that is common in these areas. Figure 8(b) shows the histograms with the cumulative percen-
tage of data gaps: nationally, 59.2% of the observations have 5 data gaps or less; 90.4% of the pixels
have 10 gaps or less; and 99.6% of observations had less than 22 years of missing data. Stratifying by
latitudinal zones the South (southern border − 60° N) and North (60−70° N) display similar trends,
with the Arctic (70−83° N) showing alternate trends. Given the forest focus of the NTEMS project,
the characteristics in the South and North partitions identified here are of especial interest. When
considering only these two regions, 63.3% of the observations have 5 data gaps or less; 93.3% of
the pixels have 10 gaps or less; and 99.8% of observations had less than 22 years of missing data.
In contrast, the Arctic zone (70−83° N) shows the largest proportion of data gaps, where 22.7%
of the pixels have 5 gaps or less, 64.4% have 10 gaps or less, and 97.4% of pixels contained less
than 22 years of missing data.

Figure 9. Spatial distribution of consecutive data gaps (a), and histogram of the cumulative percentage of consecutive data gaps
(b) for Canada, and the three latitudinal zones defined: South, North, and Arctic.
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When examining consecutive data gaps, we found that 59% of pixels had no persistent missing
data (i.e. the number of consecutive data gaps or years of missing data was ≤1) (Figure 9(b)),
85.7% of the pixels had 2 consecutive gaps or fewer, and 99.8% of the pixels have 15 or fewer con-
secutive years of data gaps. As expected, the locations with a larger number of consecutive data gaps
coincide spatially (Figure 9(a)) with a regional and/or satellite orbital explanation to the areas that
have a larger proportion of data gaps in the time series. Within the Arctic zone consecutive data gaps
are common, with a notable breakpoint evident between 14 and 15 years, passing from 83.8% to
98.8% of the observations, corresponding with a period prior to 1999, which had few acquisitions
and persistent cloud coverage found for particular WRS-2 scenes.

5.2 Assessment of forest change detection and attribution

The confusion matrix of the change detection assessment by estimated proportions of area is shown
in Table 2. The overall detection accuracy is 0.89 (±0.024). User’s accuracies are high for both change
(0.92 ± 0.02) and no change (0.88 ± 0.02) categories. The producer’s accuracy is very high for no
change class (0.98 ± 0.01) and significantly lower for change class (0.61 ± 0.04). The analysis of
the change detection rate per class (Table 3) indicates that about 96% of samples allocated in
both fire and harvesting categories are satisfactorily detected, and that road class has the lowest
detection rates (66.3%). 89.3% of the changes are labelled to the correct year, and 97.7% are within
±1 year. Table 4 shows the change attribution assessment result, with an overall accuracy of 0.92
(±0.024). Fire shows the highest user’s accuracy (i.e. lowest commission error) and notable separabil-
ity with the other identified stand-replacing and non-stand-replacing changes. The forest harvest
class has balanced user’s (0.88 ± 0.05) and producer’s (0.88 ± 0.05) accuracies, with some confusion
with roads, since these two events often occur simultaneously, in proximity, and have similar spectral
characteristics resulting in the lowest producer’s (0.36 ± 0.09) and user’s (0.75 ± 0.07) accuracies for
the road class.

6. Discussion

We have presented outcomes of the NTEMS project: a 30-m Canada-wide product based on time
series of gap-free Landsat surface reflectance image composites for the characterization of forest
changes and dynamics across three decades using the C2C protocol (Hermosilla et al. 2015a).
This research has been made possible by free and open access to Landsat data (Woodcock et al.
2008; Wulder et al. 2012; Wulder and Coops 2014), new processing (e.g. Griffiths, van der Linden,
et al. 2013; White et al. 2014) and methodological opportunities (Hansen and Loveland 2012), as well
as the richness of the Landsat archive over Canada (White and Wulder 2013), in contrast to many
nations and regions globally (Wulder, White, et al. 2015).

This project represents an example of the new opportunities for information generation using
remotely sensed data based upon access to large amounts of analysis-ready images (Hansen and
Loveland 2012; Ma et al. 2015). There are a growing number of examples for this type of large
area, multi-temporal application with the particulars of the approach based upon the region of inter-
est and/or the information need of the project (Roy et al. 2010; Townshend et al. 2012; Hansen et al.
2013; Potapov et al. 2015). Pixel-based image compositing allows for terabytes (TB) of data to be

Table 2. Confusion matrix of estimated proportions of area for change detection assessment (p < .05).

Reference

Change No change Total User’s accuracy Producer’s accuracy Overall accuracy

Change 0.149 0.014 0.163 0.92 ± 0.02 0.61 ± 0.04 0.89 ± 0.025
No change 0.097 0.740 0.837 0.88 ± 0.02 0.98 ± 0.01
Total 0.246 0.754 1.000
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temporally and spatially considered in an automated fashion to extract selected pixels to ultimately
produce detailed information about land cover and land cover change, among other outputs (Han-
sen and Loveland 2012; White et al. 2014).

To allow for consistency in image values over space and time, we converted all pixels to surface
reflectance (with the LEDAPS algorithm; (Masek et al. 2006)). Implementing the Fmask algorithm
(Zhu and Woodcock 2012) allowed for screening of undesired atmospheric effects and related arte-
facts (clouds, haze, through to shadows), to create masks, and produce scores to be used in pixel
selection. With Canada at nearly 1 billion ha in size, at the 30 m Landsat spatial resolution the
country is comprised of more than 10 billion pixels, with even more having been processed due
to the methods applied and the overlap between UTM zones. To obtain an idea of the amount of
data processed and storage requirements, one can multiply the number of pixels (10 billion) by
the number of bands, number of years, processing masks (e.g. water, data availability, noise,
snow), spectral trend analysis information, and bit depth (e.g. byte, integer, and float formats) of
each spatial layer under consideration. For NTEMS, this results in over 400 TB of data to ultimately
produce about 25 TB of Canada-wide seamless surface reflectance composites and time series land
change information products. By way of elaboration, more drive space is required (∼600 TB in our
case) than complete data storage needs due to the nature of how the data is partitioned onto drives
for processing (by UTM sub-zone processing tiles).

In support of our forest-focused application we had precise information of the location of the
agricultural areas enabling exclusion of these highly variable (within and between year) from the
change analysis. However, we do note that imagery from multiple seasons would enable additional
information to aid in discrimination between forest and croplands, as well as for the labelling of land
cover (e.g. Dymond et al. 2002). We produced phenologically consistent composites by restricting
the image acquisition date to a 60-day window corresponding to the vegetation growing season in
most Canadian forest ecosystems (i.e. July and August). This definition of the image acquisition
range could be further refined by locally adapting the growing season dates based on latitude
(Zhou et al. 2001). In restricting acquisition dates, we limit both phenological variation as well as
the number of candidate observations, the latter of which increases the chance of data gaps that
require to be filled with estimated surface reflectance values.

Overall, the amount of data gaps within Canada’s forested ecosystems is limited, especially when
compared with the non-forested Arctic latitudes, which have both a greater number of data gaps and
a greater number of consecutive data gaps. Other regions (i.e. Pacific Range, Rocky Mountains, Lab-
rador Peninsula, and Island of Newfoundland) are characterized by a greater number of data gaps,

Table 3. Detection rate per change class type.

Class Detection rate

Fire 95.9%
Harvesting 96.2%
Non-stand replacing 83.5%
Road 66.3%

Table 4. Confusion matrix populated by estimated proportions of area for forest change attribution assessment (p < .05).

Reference

Fire Harvesting
Non-stand
replacing Road Total

User’s
accuracy

Producer’s
accuracy

Overall
accuracy

Fire 0.444 0.003 0.006 0.000 0.453 0.98 ± 0.02 0.93 ± 0.04 0.92 ± 0.02
Harvesting 0.008 0.167 0.005 0.009 0.189 0.88 ± 0.05 0.88 ± 0.05
Non-stand
replacing

0.024 0.020 0.303 0.004 0.352 0.86 ± 0.07 0.96 ± 0.04

Road 0.000 0.001 0.000 0.005 0.006 0.75 ± 0.07 0.36 ± 0.09
Total 0.476 0.190 0.315 0.013 1.000
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but these gaps are rarely present in consecutive years due to the spatial randomness of cloud cover,
compared to some systematic collection-related issue, such as SLC-off gaps. In addition to the
absence of suitable observations, a considerable number of data gaps are flagged by filtering noisy
observations, which are mostly caused by unscreened clouds, cloud shadows, haze, or smoke. This
highlights the challenges and limitations not only of detecting clouds using a single date (Zhu
and Woodcock 2012) but also the importance of time series for screening anomalous observations
(Zhu and Woodcock 2014).When developing a protocol for implementation over large areas using
thousands of images it is imperative that the data required for application of a given algorithm is
systemically and consistently available. We initially aimed to include information related to the
annual variability in spectral values within year, with difficulties arising due to a lack of consistency
in image availability and subsequent valid pixels (cloud and shadow free) for the wider range of
dates. Plus, the number of images that would be available to use to produce the within year variance
information would vary, making the indicator inconsistent. As a result, we chose to produce a
reliable annual rendition, using as much of the phenologically appropriate data as possible. Data
blending (e.g. spatial / temporal fusion of MODIS and Landsat) does provide an opportunity for
mitigating the variability in Landsat data yield within year and to enable systematic representation
of a particular date(s) within year. For instance, Senf et al. (2015) demonstrate the application of syn-
thetic Landsat data from data blending (after Hilker et al. 2009) in a land cover mapping context.
Given the December 1999 launch of MODIS, applications combined with Landsat are largely only
relevant post-2000 (e.g. Boschetti et al. 2015); given our earlier time series start date (1984) inclusion
of such derived data was not deemed as applicable to our application.

The recent launch of the ESA’s Sentinel-2 satellite (Drusch et al. 2012) will offer new opportu-
nities to the image compositing field. Sentinel-2 has comparable spatial, spectral, and temporal
characteristics with the Landsat sensor family, creating opportunities to combine the data from
the satellites (Wulder, Hilker, et al. 2015). The calibrated measures made by Sentinel-2 will promote
integration with those of Landsat. Integration of Landsat and Sentinel-2 data will allow for improved
temporal revisit frequency, increasing the availability of observations free of atmospheric effects,
thereby reducing the number of data gaps and their associated drawbacks in the image composites
and change detection outcomes. With Landsat 7 and 8 combined with two Sentinel-2 instruments,
there will be an opportunity for an image collected every 2–4 days, with the longer intervals occur-
ring towards the equator (Wulder, Hilker, et al. 2015; Wulder, White, et al. 2015).

The implementation of the spectral trend analysis over wall-to-wall image composites permits the
extension of temporal analyses from regional to national, continental, and even global scales (Grif-
fiths, Müller et al. 2013; Hansen et al. 2013; Roy et al. 2015). Our change detection assessment results
show the ability of spectral trend analysis of Landsat time series to accurately locate, delineate, and
date stand-replacing and non-stand-replacing forest changes (Table 2). The spectral trend analysis of
Landsat time series provides abundant information about forest changes that enables a rich descrip-
tion of disturbance aspects such as intensity, variability, or speed with which forest changes occur
ultimately supporting the typing the change event with high accuracy (Table 4), especially for fire
and harvesting events. The number of classes attributed to type in this implementation, while reflec-
tive of the dominant categories, are not exhaustive to the full range of change types present over
Canada. The aim of the change hierarchy developed by Hermosilla et al. (2015b) is to acknowledge
the categorical limitation, but to also provide framework for understanding what is mapped and to
offer a means, given appropriate resources, to add further nested categorical detail. The Canada-wide
assessment accuracies presented herein have high overall accuracy values for both change detection
(89.0%) and change attribution (91.9%). The detection of fire and harvesting events is carried out
with superior accuracy, being the roads the most challenging events to be correctly detected and
attributed.

The level of the change categorization hierarchy selected was to be broadly inclusive of the main
change types present over the forested area of Canada, especially the stand-replacing disturbances of
wildfire and harvesting. The robustness of the random forest model, and related regional training
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data collection strategy, combined with the spectral, spatial, and geometric distinctness of the change
categories selected is illustrated in Figure 6 with details of three Canadian ecozones dominated by
different disturbance regimes presented. The Montane Cordillera case exhibits large areas of forest
change, driven not only by the mid-2000s outbreak of the mountain pine beetle infestation but also
by increases in logging activity in relation to this outbreak (Parkins and MacKendrick 2007).
Although geographically extensive, the insect infestation resulted in low rates of variation in the
spectral response of the vegetation when compared to stand-replacing disturbances. The Taiga
Shield West is an effective demonstration of the change dynamics in the unmanaged boreal forest,
where the landscape is predominantly influenced by successive and widespread large fires (Stocks
et al. 2002). Finally, the Atlantic Maritime example shows the domination of harvesting activities
as the main driver of forest change in southern coastal areas of eastern Canada (Power and Gillis
2001). Not only are areas of change captured, but trends can also be described spatially, by jurisdic-
tion or management status, or by other drivers supported by the relevant spatial datasets. Reporting
on historical disturbance agents and trends, stratified by ecological or political units, establishes a
foundation for future scientific applications as well as for meeting national and international report-
ing obligations.

The seamless Landsat surface reflectance image composites and the change events, characteristics,
and types represent a single, nationally consistent and verifiable source of information with spatial
(30 m) and temporal (annual) resolutions necessary to characterize natural and anthropogenic forest
changes. The results presented here on amount and rate of stand-replacing and non-stand-replacing
disturbance events support detailed national reporting of land cover dynamics, and enhance land
management policies. The timely and spatially complete change products provide information
well suited to improve the characterization of forest biomass over large areas and related modelling
of carbon. Moreover, this unique data set facilitates previously not possible investigations of disturb-
ance regimes at that national level over a range of disturbance agents, including and beyond wildfire
and harvest. Additionally, due to the generation of detailed post-change spectral information and
change metrics there is a refined ability to investigate how forests return following disturbance (Bar-
tels et al. 2016). Spectral information and metrics can be consulted to determine evidence of, and
related rates, of forest regeneration (aka recovery) (Frazier, Coops, and Wulder 2015; Pickell et al.
2016). As an additional application, the combination of the spectral information of the annual
proxy composites, the change information, and the spectral trends can enable the development of
annual land cover maps, making possible wall-to-wall quantification and mapping of forested
land cover changes and land cover dynamics. The integration of the surface reflectance composite
outcomes presented here with lidar data will be key for production of a national map of forest struc-
ture, including parameters such as canopy cover, biomass, and height (Pflugmacher, Cohen, and
Kennedy 2012; Zald et al. 2016).

The generated image composites cover the period 1984–2012 while the change characterization is
focused on 1986–2010. With both programmes now considered operational, the imagery currently
being collected by Landsat-8 OLI and Sentinel-2 are poised to support research and monitoring
needs for the foreseeable future (Wulder, Hilker, et al. 2015). Additionally, the recent advances in
Landsat Multispectral Scanner data product development and custom processing techniques (Braa-
ten et al. 2015) indicate an increasing potential to further historically expand the time series of image
composites and forest change products backwards until 1972 (Pflugmacher, Cohen, and Kennedy
2012), while noting need for archival representation (Wulder, Hilker, et al. 2015). The outcomes
of this project can provide valuable baseline information from a consistent data source with the
spatial and temporal resolution necessary to quantify and characterize natural and anthropogenic
changes in forested ecosystems to support national monitoring programmes and a range of scientific
applications within a Canadian context. Future NTEMS research is anticipated to focus on develop-
ing approaches to dynamically extend the temporal coverage of time series and forest change infor-
mation as well as extending the attribute suite to include canopy cover, biomass, and height, as
examples.
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7. Conclusions

Availing upon the free and open analysis ready image data products made available via the USGS
Landsat archive, novel and heretofore unavailable large area, time series characterizations are poss-
ible. In this work we comprehensively inform and enumerate on image inputs and data gaps that
were addressed in the compositing process and enable a national assessment of our forest change
detection and attribution techniques. Those interested in undertaking a project to characterize base-
line conditions and subsequent trends are recommended to first undertake a metadata analysis of the
Landsat archive contents. The metadata analysis will inform on the general amount as well as the
spatial and temporal distribution of images available. The subsequent planning and methods devel-
opment can then be linked to the expected archival image yield. Each stage of the data selection,
composite rule application, through to subsequent composites and change products can be distin-
guished and quantified. Particularities of the quantification of each methodological stage provide
insights into the quality and reliability of the information generated from the resultant composite
and change products. The NTEMS was aimed to characterize the recent history of Canada’s forests
using the free and open access to analysis ready Landsat data. In this paper, we present outcomes
produced through generating annual BAP composites and applying the C2C protocol to generate
Canada-wide annual gap-free surface reflectance composites, and forest change and change type
attribution layers. In so doing, we are able to accurately – temporally, spatially and by change
type – report national summaries on the amount and rate of both stand-replacing (i.e. fire, harvest-
ing, and roads) and non-stand-replacing change events. These outcomes provide baseline infor-
mation on natural and anthropogenic changes in forested ecosystems to support national
Canadian monitoring programmes and scientific applications. Our aim is that our communication
enables clarity and transparency regarding our approach, but to also inform and assist others in
implementation of similar projects.
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