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Abstract 
Standardized protocols for forest change detection and classification based on Landsat time 
series data are becoming more common for use in characterizing multi-decadal history or trends 
in forest dynamics. One such protocol, referred to as Composite-2-Change (C2C), is a highly 
automated process developed in Canada that is applicable across extensive forest regions and 
includes change detection and typing based on Best-Available-Pixel (BAP) image compositing, 
spectral trend analysis of breakpoints, object-based segmentation, and Random Forest (RF) 
classification. The aim of this Letter is to assess the classification accuracy of the Composite-2-
Change (C2C) protocol in an eastern Canadian boreal forest environment in northern Ontario. 
Results demonstrated that the Landsat-derived change detection and attribution approach was 
approximately 90% accurate for stand-replacing forest change (fire, harvesting, roads), and 
approximately 75% for four non-stand replacing forest changes caused by spruce budworm and 
forest tent caterpillar defoliation, wetland and forest flooding caused by localized hydrological 
variations, and one class of multiple/other disturbances. The C2C protocol approach offers 
unique independent data layers for modeling that can be used to relate and inform on a range of 
substantive and subtle changes, which in turn can be labeled and tracked, offering otherwise 
unavailable information on forest dynamics over large areas.  
 
 

1. Introduction 

Natural and anthropogenic disturbance processes occur in Canada’s forests resulting in land 
cover and forest change that must be carefully monitored for management and reporting 
purposes (Wulder et al 2009). Recently, the Composite-2-Change (C2C) standardized Landsat 
time series protocol to support such monitoring was developed (White et al. 2014, Hermosilla et 
al. 2015a, 2016). C2C is based on time series forest change detection and classification methods, 
and accuracies have been shown to be higher than results obtained through simpler methods 
(e.g., image differencing) and less temporally comprehensive data sets (Hall et al. 2007). For 
example, in a boreal region of Saskatchewan in western Canada, C2C annual land cover change 
detection of stand-replacing forest disturbances (e.g., fire, harvesting and road-building 
processes) was 90% accurate. Lower accuracies were obtained for detection of non-stand 
replacing forest disturbances associated with biotic (e.g., insect) and abiotic (e.g., flooding, 
desiccation) processes (Hermosilla et al. 2015b). At the highest level of stratification, i.e., change 
or no-change, an accuracy of approximately 89% was reported, with allocation to the correct 
year for over 89% of cases tested, and 98% were allocated within +/-1 year. Disturbances were 
allocated to type with an overall classification accuracy of over 92%. Additional testing was 
recommended: i) to document the use of the C2C Landsat time series protocol in other forest 
environments and ecoregions; and ii) to consider certain change features (e.g., roads) and non-
stand replacing change in greater detail to increase the accuracy, comprehensiveness, and overall 
utility of the protocol.  

Non-stand replacing forest disturbances are important to relate stress and possible alteration to 
the factors driving forest growth and vigour (Goodwin et al. 2008, Cohen et al. 2015). Mapping 
such ephemeral changes may provide additional insight into the nature of the underlying forest 
and land dynamics being captured in time series remotely sensed data (Cohen et al. 2002, Neigh 
et al. 2014). However, non-stand replacing changes are not often systematically mapped since 
they display a lower magnitude of change and typically are not associated with a change in land 
cover class (Hermosilla et al 2015b, Franklin et al 2015).  
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The current study was designed to assess annual forest change classification accuracy, with a 
focus on a selection of non-stand replacing changes, using the C2C Landsat time series protocol 
(Hermosilla et al. 2015a) in the Hearst Forest Management Area (HFMA: see Figure 1), a large, 
actively-managed area of the Canadian Boreal Mixedwood Region (Ecological Stratification 
Working Group 1996) in northern Ontario. The goal was to confirm the level of classification 
accuracy for change caused by forest fires, harvesting (e.g., clearcutting), road-building 
activities, and non-stand replacing change related to two major defoliating insect infestations and 
the local effects of variations in hydrological regimes. Patterns of defoliation and damage caused 
by less abundant forest insects, other non-stand replacing forest changes caused by forest 
disease, desiccation events (e.g., drought, winter burn), silvicultural practices, and areas 
experiencing multiple disturbances, also occur in this area (Hearst Forest Management Inc. 2011, 
Natural Resources Canada 2013). This Letter highlights the classification accuracy obtained with 
implementation of the C2C Landsat time series protocol in the HFMA for the period 1990-2010. 

 
 
2. Study area and data 

In the Hearst Forest Management Area, Black spruce (Picea mariana Mill. B.S.P.) is present 
with other conifer stands composed primarily of jack pine (Pinus banksiana Lamb.), white 
spruce (Picea glauca Moench Voss), balsam fir (Abies balsamea L. Mill.), and tamarack (Larix 
laricina Du Roi K. Koch). Deciduous species include aspen (Populus tremuloides Michx.) and 
white birch (Betula papyrifera Marsh.). Annual harvest up to approximately 7500 ha is primarily 
by clearcutting (Hearst Forest Management Inc. 2007). Wildfires of various intensities occur 
frequently with some forest fire suppression activity. Forest insect outbreaks are episodic in the 
area; for instance, extensive spruce budworm (Choristoneura griseicoma Meyrick) outbreaks in 
several areas of the HFMA occurred in 1996, 1997, 1998, 1999 and 2000 resulting in large areas 
of defoliation though limited stand mortality. Deciduous forest defoliation associated with 
outbreaks of forest tent caterpillar (Malacosoma disstria Hubner) was also widespread in several 
years and across a large part of the Hearst Forest. 

The HFMA intersects six Landsat WRS-2 path/rows. The 1990-2010 Landsat time series 
consists of a total of 706 Landsat images acquired representing acquisition dates from 1988 to 
2012. These data were atmospherically-corrected using the Landsat Ecosystem Disturbance 
Adaptive Processing System (LEDAPS) algorithm (Masek et al., 2006), masked for 
clouds/shadows (Zhu and Woodcock 2012), and processed into Best-Available-Pixel (BAP) 
composites (White et al 2014) based on pixel observations scored according to sensor acquisition 
with a target day of year (DOY) of 1 August (+/- 30 days), distance to clouds and cloud shadows, 
and atmospheric opacity. Data gaps (pixels with “no data” values) were filled with proxy values 
(Hermosilla et al 2015a, 2016). Reference data on forest composition, harvest, fire, insect 
outbreaks, and land cover included: i) GIS data compiled under local forest management plans 
(e.g., Hearst Forest Management Inc. 2011); ii) forest resource inventory data (Ontario Ministry 
of Natural Resources 2012); iii) forest fire maps (Amiro et al. 2001, Stocks et al. 2003); and iv) 
two recent satellite-based land cover classification products (Wulder et al. 2008, Franklin et al. 
2015).  
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3. Methods  

The major steps in the C2C Landsat time series protocol tested in this study were presented in 
detail by White et al (2014) and Hermosilla et al. (2015a,b, 2016) and are briefly highlighted 
here. The C2C time series annual change detection uses a breakpoint detection process based on 
spectral trend analysis and ‘greatest-change’ to identify change areas; in the HFMA, this step 
was determined to be over 92% accurate in identifying change for subsequent characterization 
and classification (see Franklin et al. 2015). Change characterization was accomplished by 
segmentation of change objects (minimum mapping size of 0.5 ha) based on date of occurrence 
and descriptive aspects of the change features such as duration (persistence) (Hermosilla et al. 
2015a). For the present study, these change objects were then sampled for 1291 classification 
training and validation sites encompassing each of the forest change types of interest (e.g., 
roads/infrastructure, fire, harvest, insects, and flooding) based on the reference data sources, 
expert interpretation of digital colour infrared orthophotography of the HFMA acquired at 
1:20000 scale in 2007, and limited field observations. These samples were well-distributed 
spatially and temporally (averaging approximately 2 km apart spatially across all years), thereby 
minimizing the effect of spatial autocorrelation, and the overall accuracy validated for the 
disturbances detected in the time series was considered reasonable for any given year based on 
the confirmation of year and disturbance type in the reference data (see also Hermosilla et al 
2016). Change classification was based on 1090 of these 1291 training and validation sites, or 
change objects, in known stand-replacing forest change areas. A total of 561 change objects were 
classified in known non-stand replacing change areas.  

The Random Forest machine learning algorithm (Breiman 2001) was employed with predictor 
variables selected from the available spectral- and trend-based metrics and geometrical 
descriptors following multicollinearity tests. Typically, the accuracy of change classification is 
difficult to assess due to a lack of consistent, fine spatial scale validation data which are 
temporally and thematically consistent over the entire Landsat observation period. Therefore, an 
out-of-bag (OOB) sample strategy was used with approximately 63% of the total (1291) samples 
employed to develop the RF decision rules. The remaining samples were used to validate each 
classifier run. When the sample size is large and well-distributed, this OOB approach has been 
shown to provide reasonable estimates of classifier error when compared to independent 
assessment error (Millard and Richardson 2015, Belgiu and Dragut 2016). The overall and 
individual classification accuracies are then presented in standard confusion matrices.  

 
 

4. Results 
The best RF classification iteration provided an overall classification accuracy of 

approximately 90% for three stand-replacing forest change classes and one general class of non-
stand replacing forest change (Table 1). This level of overall classification accuracy is 
comparable to the C2C annual time series classification results reported in the boreal region of 
Saskatchewan by Hermosilla et al (2015b) and elsewhere using time series of Landsat imagery 
(e.g., Schroeder et al. 2011). Initially, the stand-replacing forest change classes displayed minor 
confusion with the non-stand replacing forest change class, which subsequently had the highest 
individual class omission errors (15%). As expected, the separation of this general non-stand 
replacing forest change into four discrete classes of change associated with different disturbance 
processes provided greater detail but lower overall classification accuracy (75.4% overall; see 
Table 2). Areas of spruce budworm defoliation were the least accurate (64% user’s accuracy, 
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71% producer’s accuracy). Such areas are known to present variable spectral responses based on 
severity of defoliation, original stand conditions, and other factors, including, for example, the 
date of image acquisition, local spectral context, and radiometric and geometrical characteristics 
(e.g., Franklin and Raske 1994). Temporal resolution of image data is known to strongly 
influence aspen defoliation mapping accuracy (e.g., Hall et al 2007). Changes associated with 
variations in hydrological regimes in wetlands displayed the highest individual class accuracies 
(80% user’s accuracy, 79% producer’s accuracy). Areas that experienced multiple non-stand 
replacing disturbances by the same or different processes were characterized in the annual 
classifications as a separate class (other). Such areas may have been subject to multiple years of 
either spruce budworm or forest tent caterpillar defoliation, and/or subsequently experienced 
significant disturbance (e.g., wind damage, fire, harvesting, including partial harvest operations 
through salvage cutting, which could also occur after fire). There were significant omission and 
commission errors between this class and the other non-stand replacing forest change classes. 

Generally, the overall and individual classification accuracies in the HFMA test reflect the 
expected relative distinctiveness and patterns of both stand-replacing and non-stand replacing 
forest change as represented in Landsat time series data. These classification results confirm that 
disturbances, when accurately identified by time series change detection (e.g., Franklin et al 
2015), can then be accurately classified. In turn, accurate annual change classification, such as 
obtained by implementing the C2C protocol, provides a sound basis for exploration of forest 
dynamics and land cover change (Hermosilla et al 2015b). For example, classification of annual 
change over the time period 1990-2010 in the HFMA revealed that, of the more than 30,000 
change objects identified, patterns in year-to-year variability could be associated with wildfire, 
harvesting, defoliating insect outbreaks and localized seasonal/annual hydrological events. 
Stand-replacing forest change associated with road-building, forest harvest operations and fire 
represented two-thirds (about 67%) of the forest change area on an annual basis, while non-stand 
replacing changes associated with insect outbreaks influenced almost 6% of the area identified as 
change. A number of small areas were interpreted in the classification as areas of desiccation and 
secondary forest insect outbreaks. Ephemeral wetland change represented approximately 12% of 
the change area. And finally, approximately 11% of the area identified as forest change was 
associated with multiple disturbance events, though multiple disturbances by the same process 
were not classified separately in this study.  

This level of annual forest change classification and interpretation provides a strong 
foundation for analysis of forest baseline conditions and disturbance, rates of forest change, and 
sustainability of forest practices. Allocation of change and change types following a hierarchy of 
categories tied to detectability supports different information needs and focused investigations, 
given appropriate training data and methods, to further describe change features or conditions of 
interest (including biotic non-stand replacing disturbances related to forest insects and diseases, 
and abiotic effects such as those associated with locally-variable hydrological conditions). 

 
5. Conclusion 
A standardized Landsat time series protocol C2C has been developed for forest and land 

cover monitoring and assessment over large-areas and relatively long-time periods in Canada 
(White et al 2014, Hermosilla et al 2015a,b, 2016). Using this protocol in the Hearst Forest 
Management Area in northern Ontario, annual forest changes detected using spectral trend 
analysis (Franklin et al 2015) over two decades (1990-2010) were classified using a machine 
learning algorithm. Stand-replacing forest changes associated with roads, industrial-scale forest 
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harvesting patterns and wildfires were classified with the highest individual class accuracies and 
with approximately 90% overall classification accuracy. Four classes of annual non-stand 
replacing change caused by defoliating insect outbreaks and local hydrological changes (e.g., 
forest and wetland flooding) were approximately 75% accurate. Areas that experienced multiple 
non-stand replacing disturbances were identified with higher omission and commission error. In 
this study, a detailed spatial autocorrelation analysis between the samples is beyond the scope of 
the current paper but, will be conducted in future research to explore its impact on the 
classification accuracy. Future research will also examine operational improvements to the use of 
the time series protocol (e.g., selection of variables, training and validation samples, classifier 
algorithm, and comparisons to other time series analysis methods), and will consider in greater 
detail multiple disturbance areas by the same and different processes, additional non-stand 
replacing forest change processes, and other forest environments. 
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Table 1. Confusion matrix for disturbance classes (Harvest, Fire, Roads and Non-stand replacing disturbances) using the best 
RF iteration based on 1090 training area image objects and predictor variables (spectral- and trend-based metrics, and 
geometrical descriptors).  

  
 

 

 

 Reference
 

Class name  Fire Harvest
Non‐stand 
replacing Roads Sum

User's 
accuracy (%)

Commission 
error (%)

Pr
ed

ic
te
d 

Fire  267 3 22 5  297 0.90 0.10

Harvest  2 233 19 4  258 0.90 0.10

Non‐stand replacing  8 5 305 7  325 0.94 0.06

Roads  3 9 14 184  210 0.88 0.12

Sum  280 250 360 200  1090

Producer's accuracy (%)  0.95 0.93 0.85 0.92  Overall accuracy 90.73%

Omission error (%)  0.05 0.07 0.15 0.08   Margin of error  ± 2.8
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Table 2. Confusion matrix for the non-stand replacing disturbance classes (spruce budworm damage, forest tent caterpillar 
defoliation, ephemeral wetlands, and one class of other disturbances, which includes different multiple events) using the best 
RF iteration based on 561 training area image objects and predictor variables (spectral- and trend-based metrics, and 
geometrical descriptors). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

  REFERENCE 

 
Class name  Spruce 

Budworm 
Forest Tent 
Caterpillar

Ephemeral 
Wetlands Other 

Sum 
User's 
accuracy (%) 

Commission 
error (%) 

Pr
ed

ic
te
d 

Spruce Budworm  

             

65 8 7 21 101 0.64 0.36

Forest Tent Caterpillar  5 87 9 16 117 0.74 0.26

Ephemeral Wetlands  10 11 123 10 154 0.80 0.20

Other  11 14 16 148 189 0.78 0.22

Sum  91 120 155 195 561    

Producer's accuracy (%)  0.71 0.73 0.79 0.76 Overall accuracy 75.4%

Omission error (%)  0.29 0.27 0.21 0.24  Margin of error  ± 3.5
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 Figure 1. Training and validation sample and full change dataset distribution. 


