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The use of functional traits to describe community structure is a promising approach to 
reveal generalities across organisms and ecosystems. Plant ecologists have demonstrated 
the importance of traits in explaining community structure, competitive interactions as 
well as ecosystem functioning. The application of trait-based methods to more complex 
communities such as food webs is however more challenging owing to the diversity of 
animal characteristics and of interactions. The objective of this study was to determine 
how functional structure is related to food web structure. We consider that food web 
structure is the result of 1) the match between consumer and resource traits, which 
determine the occurence of a trophic interaction between them, and 2) the distribution 
of functional traits in the community. We implemented a statistical approach to assess 
whether or not 35 466 pairwise interactions between soil organisms are constrained 
by trait-matching and then used a Procrustes analysis to investigate correlations 
between functional indices and network properties across 48 sites. We found that the 
occurrence of trophic interactions is well predicted by matching the traits of the resource 
with those of the consumer. Taxonomy and body mass of both species were the most 
important traits for the determination of an interaction. As a consequence, functional 
evenness and the variance of certain traits in the community were correlated to trophic 
complementarity between species, while trait identity, more than diversity, was related to 
network topology. The analysis was however limited by trait data availability, and a coarse 
resolution of certain taxonomic groups in our dataset. These limitations explain the 
importance of taxonomy, as well as the complexity of the statistical model needed. Our 
results outline the important implications of trait composition on ecological networks, 
opening promising avenues of research into the relationship between functional diversity 
and ecosystem functioning in multi-trophic systems.

Introduction

The use of functional traits to describe community structure is a promising approach 
to reveal generalities across organisms and ecosystems (McGill  et  al. 2006). Plant 
ecologists have demonstrated the importance of traits in explaining community 
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structure, competitive interactions as well as ecosystem func-
tioning (Hooper et al. 2002, Cadotte et al. 2009, Isbell et al. 
2011). The diversity of traits, which can be quantified by 
a variety of metrics (Rao 1982, Petchey and Gaston 2002, 
Villéger et  al. 2008), indicates complementarity and redun-
dancy among species. High trait diversity should reduce 
competitive interactions between species (Loreau and Hector  
2001, Kunstler et al. 2016). Several studies also revealed that 
trait identity may play an even more important role than diver-
sity (Mokany et al. 2008, Minden and Kleyer 2011). Despite 
these advances, the applicability of a trait-based approach to 
animal taxa and across trophic levels remains to be validated 
(Lavorel et al. 2013, Gravel et al. 2016).

Animal traits have been increasingly used to assess com-
munity response to various disturbances (Moretti and Legg 
2009, Aubin et al. 2013, Lavorel et al. 2013, Frainer et al. 
2014, Pey et al. 2014, Gagic et al. 2015). In most cases, stud-
ies were limited to only a few taxonomic and trophic groups. 
In comparison with autotrophs, animal traits and functions 
are both more diverse and more complex (Polis et al. 1997). 
For instance, there are no analogs in the plant kingdom for 
behavioral traits, or for the drastic changes in trait values 
exhibited by individuals throughout ontogeny (Aubin et al. 
2013). Further, the difficulty of adequately representing the 
functional structure of animal communities comes in part 
from the presence of feeding loops, cannibalistic interactions, 
omnivory, intra-guild predation and ontogenic functional 
displacement preventing the distinction of trophic levels 
(Polis and Holt 1992, Thébault and Loreau 2006, Ings et al. 
2009). The application to animal communities of functional 
indices developed for plants therefore requires new concep-
tual developments (Gravel et al. 2016).

It is widely documented that species’ traits can influence 
community functioning directly, but they can also do so 
indirectly through their impact on trophic network structure 
and thereby on regulation (Gravel  et  al. 2016). The match 
between the traits of a consumer with those of a resource 
determines pairwise interactions (Morales-Castilla  et  al. 
2015, Bartomeus  et  al. 2016). Several statistical methods 
have been proposed to link ecological traits with pairwise 
interactions, some of which are derived directly from food 
web theory (Williams 2010, Gravel et al. 2013). For instance, 
Rohr et al. (2010) and Eklöf et al. (2013) used latent vari-
ables to compute the interaction probability between pairs 
of species and relate them a posteriori to functional traits. 
Spitz  et  al. (2014) and Krasnov  et  al. (2016) performed a 
more direct analysis, replacing the matrices conventionally 
used in an RLQ analysis (Dolédec et al. 1996) with matri-
ces containing consumer and resource trait values, and their 
interactions. These studies led to a more mechanistic under-
standing of the drivers of interactions. For instance, species 
body size was found to be the major driver of predator-prey 
interactions among marine fishes (Gravel et al. 2013) and ter-
restrial litter invertebrates (Digel  et  al. 2011). Ibanez  et  al. 
(2013) and Bartomeus et  al. (2016) showed that mandible 
traits of scavengers and herbivores determine the type of 
litter and plants they are able to eat. Despite some technical 

distinctions between the various statistical approaches, they 
all have in common the idea that interactions depend on the 
match between “foraging traits”, which characterize the way 
a consumer attacks and handles resource, and “vulnerability 
traits”, which characterize defense and escape from predation 
(Rohr et al. 2010, Gravel et al. 2016).

Trait-matching constraints determine the occurrence of 
interactions between pairs of species (Bartomeus et al. 2016), 
but it is the distribution of all traits in the community that 
will determine the structure of the network (Gravel  et  al. 
2016). The functional structure of a community can be 
described by its functional identity (average value of each 
trait) and its functional diversity (the variance of each trait). 
Several metrics can be used to characterize these two aspects. 
Community weighted mean (CWM) represents the average 
of each trait weighted by relative abundance (Garnier et al. 
2004). Functional indices can be computed to represent 
the multi-dimensional functional volume of communities  
(Villéger et al. 2008, Mouillot et al. 2013). These methods 
have been used to analyze the functional structure of animal 
communities (Mouchet  et  al. 2010, Dehling  et  al. 2014, 
Coulis et al. 2015), although relatively little is known about 
their importance for network structure. For instance, even 
though we know that body size strongly constrains preda-
tory interactions (Rohr et  al. 2010, Eklöf  et  al. 2013), less 
is known about the effect of average and variance of the  
frequency distribution of body size on network properties 
such as connectance and degree distribution (Albouy  et  al. 
2014). It is as yet unknown whether any relationship between 
functional indices and network properties would arise once 
accounting for multiple traits, for which empirical distribu-
tions have many more dimensions.

Investigating the relationship between functional and 
network structure is particularly relevant in soil communi-
ties where taxonomic and functional diversity is high. Inter-
est in relationships between soil food webs, their functioning 
and the abiotic environment has grown steadily over the past 
several years (Berg and Bengtsson 2007, Melguizo-Ruiz et al. 
2012, de Vries et al. 2013, Moya-Laraño et al. 2014). How-
ever, the role of functional structure has not yet attracted such 
attention. Soil organisms play a crucial role in key ecosystem 
processes, they are the main agents of nutrient cycling, and 
thus essential for primary production in all terrestrial ecosys-
tems (Wardle 2006). Soil communities remain, nonetheless, 
among the least documented ecological systems (Bardgett and 
Wardle 2010). This is partly due to the difficulty of observing 
soil organisms, particularly their ecological interactions. For-
mal experiments such as cafeteria style trials, gut content anal-
ysis and isotope studies provide much needed information on 
species interactions (Brose and Scheu 2014). However, they 
are not yet widely used and are possibly too time consuming 
to be applied extensively. The dominance of generalism in 
species diet and of bottom up control of population dynamic 
lead to organic matter breakdown favored mainly by species  
complementarity (Hedde  et  al. 2010, Digel  et  al. 2014). 
Combined together, low resource competition and opportu-
nistic feeding promote a high diversity of organisms and a 
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very strong body size structure (Wardle 2006). The excep-
tionally high diversity of certain guilds and of functionally 
redundant species, as well as the difficulty of observing spe-
cies dynamics due to the physical nature of soils, make the 
use of the functional approach particularly promising to 
characterize soil food web structure.

Our objective in this study is to investigate the relation-
ship between the functional structure of soil communities 
and the structure of the network of trophic interactions (see 
Fig. 1 for a summary description of the analytical steps fol-
lowed). We first investigated the extent to which functional 
traits determine the occurrence of pairwise trophic interac-
tions in soil food webs. Our study includes a particularly 
broad range of taxa, from microbes (bacteria and fungi) to 
macro-arthropods. As we had no a priori trait-matching 
rules and wanted to account for non-linear relationships 
between traits, we adopted a statistical algorithm derived 
from machine learning techniques. We then examined the 
relationship between descriptors of trait structure (identity 
and diversity) and network structure across 48 soil food webs 
in Germany. We used a collinearity analysis to compare two 
matrices describing functional and network structure. This 
study is a first step toward a better understanding of the  
relationship between the trait structure of multi-trophic 
communities and their functioning.

Methods

Datasets

We used two different datasets of trophic interactions in 
conjunction with a literature documentation of functional 
traits (Fig. 1). The first dataset was obtained from the study 
of Digel  et  al. (2014), who documented the presence and 
absence of interactions among 881 invertebrate species that 
were recorded at 48 sampling sites (hereafter called the food 
webs dataset). The study sites of Digel  et  al. (2014) were 
located in beech and coniferous forests across three geo-
graphical areas in Germany. Interactions were monitored 
using a combination of methods ranging from molecular 
gut content analyses to cafeteria experiments, the details of 
which are provided in the original publication. An absence 
of interaction was assumed between two species if they were 
found together at least in one location but were not observed 
interacting. Each food web contained between 89 and 168 
species, with the total number of trophic interactions ranging 
from 729 to 3344. Overall, 34 193 unique interactions were 
observed across the 48 food webs, and a total of 215  418  
absences of interactions. Some species, particularly  
small ones at low trophic levels, were identified as morpho-
species or even functional groups (Supplementary material 
Appendix 1 Fig. A1).

We compiled a second dataset from literature review 
(hereafter called the independent interactions dataset) in 
order to improve representation of interactions involv-
ing detritivores and herbivores. The literature search was 

carried out using Google Scholar with keywords including 
taxonomic group names and keywords indicating trophic 
interactions (‘interaction’, ‘diet’, ‘consumption’, ‘cafeteria 
experiment’, ‘feed’). We selected articles involving inter-
actions between terrestrial invertebrate species and any 

Computation of taxonomic distance
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Figure 1. Schematic representation of the analyses performed. Each 
step is numbered chronologically and referred in the text. We used 
the two datasets (food webs + independent) with species traits and 
species interactions to ask two questions. 1) Can we predict species 
interactions from species traits? To answer this question, we used 
three types of models (generalized linear model, gradient boosted 
model and random forest) parametrized using several samples, and 
validated with different samples (cross-validation procedure). 2) Are 
certain aspects of food web structure related to functional structure? 
To answer this question we computed descriptors of network struc-
ture, functional identity and functional diversity. We linked each 
component of functional structure to each component of network 
structure with a Procrustes analysis.
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resource, for a total of 126 studies (Supplementary material 
Appendix 2 Table A1). Across these, a total of 1273 interac-
tions were recorded between 645 species. Only 88 absences 
of interaction were found.

We selected eight traits as potential indicators of either 
foraging or vulnerability attributes (Table 1, Fig. 1.1). 
These traits were documented for each species or taxa based 
on a literature review, as well as from visual assessment of 
images. In addition to these traits, we included two proxies 
for hard-to-measure traits. We considered feeding guild as a 
trait syndrome (co-occurring trait attributes that can be sued 
to synthesize a function, McIntyre et al. 1999) and a proxy 
of characteristics that could not be measured directly on an 
organism (e.g. the ability to digest plant material). Also, tax-
onomy was used as a latent trait (i.e. non-measured traits 
or syndrome that are estimated from the data, Rohr  et  al. 
2010), following the eco-phylogenetic approach of  
Mouquet et al. (2012). Only a handful of studies (Rohr et al. 
2010, Eklöf et  al. 2012, Krasnov et al. 2016) have investi-
gated thus far the joint contribution of traits and taxonomy 
to the occurrence of interactions. Here, we relied on an index 
of taxonomic distance to overcome the lack of time calibrated 
phylogenies and the challenge of accounting simultaneously 
for a wide range of organisms (from bacteria to arthropods). 
To do so, we used the R package ‘ape’ to obtain taxonomic 
distances between species and then conducted a princi-
pal coordinates analysis (PCoA) on taxonomic distances 
to record the score of each species from the first two axes  
(Fig. 1.2). This approach therefore only accounts for 
the topology of the tree and not the rate of evolutionary  
processes.

Statistical analysis

Determining interactions in soil food webs from traits
We first tested if functionally similar species tend to have the 
same resources and consumers (Fig. 1.3). To do so, we calcu-
lated Gower distances (Podani and Schmera 2006) between 
pairs of species according to their trait values. Then, we tested 
if the distance between a species A and B is related to the 
probability that both species A and B share an interaction 

(or lack of ) with species C. To do so, we fitted a GLM with 
shared interactions (0 or 1) between species A and B as a 
function of the distance between them. Significance was 
assessed with a χ2-test.

Secondly, we investigated the role of foraging and vulner-
ability traits in driving the occurrence of pairwise interactions 
(Fig. 1.4). We considered only direct trophic interactions. We 
considered that the occurrence of a direct interaction between 
a consumer and a resource (response variable) is a binomial 
process conditional on their traits (explanatory variables). We 
compared three statistical techniques to predict the probabil-
ity of interaction among species: generalized linear models 
(GLM), gradient boosted models (GBM), and random forest 
models (RF). GBM and RF are machine learning algorithms 
(Breiman 2001), which, using decision tree-like processes, 
find the best combination of variables and variable coefficients 
to explain the response variable. This method deals easily with 
non-linear relationships and is more flexible than GLMs. 
GLMs, however, represent the trait-matching centrality for-
malism developed by Rohr et al. (2010), which is grounded in 
food web theory and is essentially the common denominator 
to most trait-matching methods (Gravel et al. 2016).

We implemented different types of cross-validation to 
assess the model accuracy (Fig. 1.5). We first performed cali-
bration on the food webs dataset and validated on the inde-
pendent interactions dataset, and the other way around. We 
also performed cross-validation within the food webs dataset 
by calibration on two geographical areas and validation on 
the third area. We also performed bootstrapping cross-vali-
dation by randomly selecting 36 out of the 48 food webs for 
calibration and validation on the remaining 12 food webs 
(25% of the dataset). Random selection of food webs for 
cross-validation was repeated ten times. Finally, we selected 
two samples without any species in common, by taking ran-
domly pairs of species inside the 48 food webs: one was used 
for parametrization, and the other for validation. The accu-
racy of the predictions of the models was calculated with the 
true skill statistic (TSS). The TSS quantifies the proportion of 
prediction success relative to false predictions and returns val-
ues ranging between 1 (perfect predictions) and –1 (inverted 
forecast) (Allouche et al. 2006). We evaluated the individual 

Table 1. Description of traits (and proxies for other traits) used in the different models. (C): carnivorous interactions, (HFD): herbivorous– 
fungivorous–detritivorous interactions. ∗Food webs dataset and body mass measurements were provided by Digel et al. (2014). Body mass 
was hard to obtain from the literature; therefore, for the independent interactions dataset we assessed body mass from body size, using 
documentation protocols described in Andrassy (1956, Freckman 1982) and Ganihar (1997).

 Trait Type Description Documentation Model

Observed traits prey capture strategy boolean web builder or not literature C
 poison boolean use of poison to kill prey or not literature C
 body mass continuous logarithm of the mass of an individual (in grams) measurement, literature* C, HFD
 mobility categorical 1: immobile, 2: crawling (no legs), 3: short legs, 4: 

long legs, 5: jumping, 6: flight
literature C

 toughness categorical 0: soft (no chitin, or few lignin), 0.5: hard, 1: has a 
shell (or is a seed)

literature C, HFD

Latent traits feeding guild boolean carnivore: 1/0, detritivore: 1/0, fungivore: 1/0, 
herbivore: 1/0

literature HFD

 taxonomy continuous scores on the 2 pcoa axes of the taxonomy literature C, HFD
 vertical stratification boolean below soil surface : 1/0 and/or above soil surface : 1/0 literature C, HFD
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contribution of the different traits to the occurrence of inter-
actions. Models were fitted by removing one trait at a time 
and TSS of the reduced model was compared to the full 
model. Predictions were significantly improved by separating 
the model in two: one for carnivorous interactions, and one 
for interactions in which resources are microbes, dead mat-
ter, or producers. We report the results of these two models 
separately.

Relationship between descriptors of functional structure and 
of network structure
The next step of our analysis was to investigate the relation-
ship between functional and network structure using the 
food webs dataset (Fig. 1.6). We computed CWMs of each 
trait for each local food web. Functional diversity was char-
acterized using community trait variance (CWV, variance 
of each non-binary trait, Sonnier et al. 2010), functional 
richness and functional evenness (proportion of functional 
space filled by the species community and regularity of abun-
dance distributions in the functional space, respectively, 
Villéger et al. 2008).

Standard network properties (Williams and Martinez 
2000, Newman and Girvan 2004, Vermaat et al. 2009) were 
computed for each of the 48 food webs: number of species, 
number of links, connectance (number of links observed 
divided by the square of species richness), generality (stan-
dard deviation of normalized number of resource per species), 
vulnerability (standard deviation of normalized number of 
consumers per species), mean trophic level (weighted trophic 
level across the different paths from the species to the base of 
the food web), omnivory (fraction of species that consume 
resources at more than one trophic level), modularity (clus-
tering of species into groups with which they interact more 
than with species in other groups), mean maximum similar-
ity (mean of the maximum trophic similarity of each taxon to 
other taxa, i.e. the number of consumers and resources shared 
by a pair of species divided by their total number of consumers 
and resources). We also considered the more refined represen-
tation of network structure with the frequency distribution of 
four node motifs. Motifs are subset of three nodes viewed as 
the building blocks of diverse networks and their frequency 
distribution has been related to food web dynamics (Stouffer 
2010). We selected the motifs representing well-known food 
web modules: linear food chain, apparent competition (a sin-
gle consumer with two resources), resource competition (two 
consumers on the same resource), and omnivory (a consumer 
feeding simultaneously on two different trophic levels).

Basal species had a low taxonomic resolution and were 
therefore removed them from the computation of the dif-
ferent network metrics to avoid any bias. We performed a 
principal component analysis (PCA) on the matrices of 
CWM, CWV, functional indices, network properties and 
motif frequency in order to position the different communi-
ties in multivariate functional and network spaces (Fig.1.7). 
We compared these ordinations using a Procrustes analysis 
(Jackson 1995) and tested the hypothesis that the rela-
tive position of different food webs was related in the two 

ordination spaces (Fig. 1.8). The Procrustes method finds the 
best linear fit between two ordinations: one of the ordina-
tions is reflected, rotated and expanded in order to position 
food webs as close to their counterpart as possible in the sec-
ond multivariate space. Statistical significance of the corre-
lation was assessed using a Procrustean randomization test  
(PROTEST), which tests whether the sum of residual devia-
tions of the communities matching is less than expected by 
chance (Jackson 1995). We also computed the observed cor-
relation between matrices to estimate the goodness of fit. We 
performed a Spearman correlation between pairs of metrics 
in order to more finely investigate univariate relationships 
(Fig. 1.9).

All of the analyses were performed with R (< www.r- 
project.org >) and the packages ‘ade4’ (Dray and Dufour 
2007), ‘gbm’ (Ridgeway 2015), ‘randomForest’ (Liaw and 
Wiener 2002) and ‘ape’ (Paradis et al. 2004).

Data deposition

Data available from the Dryad Digital Repository: < http://
dx.doi.org/10.5061/dryad.1sg4j > (Laigle et al. 2017).

Results

Trait-matching predicts a large part of the variation in the 
occurrence of pairwise interactions. First, we found that 
functionally close species tend to have the same resources 
and consumers (comparison between the null model and the 
two other models, p < 2.10–16). Secondly, we found that all 
three statistical analyses performed well at predicting interac-
tions from traits. The GLM had the lowest TSS value (TSS of 
0.06 for carnivorous interactions and 0.38 for other interac-
tions), followed by the GBM (TSS = 0.40 and TSS = 0.41), 
and the best model was the RF (TSS = 0.98 and TSS = 0.86). 
Most cross-validation scenarios were satisfying (Table 2). 
TSS of cross-validations between food webs from the three 
different geographical areas ranged between 0.89 and 0.93 
for carnivorous interactions, and between 0.59 and 0.61 for 
non carnivorous interactions. Cross-validation by removing 
25% of interactions yielded TSS of 0.77 and 0.79 for car-
nivorous and other interactions, respectively. Trait-matching 
constraints were however restricted to the dataset, as revealed 
by the poor performance of cross-validation between data-
sets, with TSS between –0.16 and 0.03. Overall, we found 
that the most important trait or proxy to predict species  
interactions are body mass and taxonomy, followed by tough-
ness of the resource, use of poison for carnivorous interac-
tions, kingdom of the resource, and consumer diet for 
non-carnivorous (Fig. 2).

We evaluated the relationship between CWM and  
network properties (Fig. 3a) and found that the functional 
identity of species making up a community is related to 
network structure (p <1.10–4 for the PROTEST, R = 0.62). 
We present all the spearman coefficients between variables 
in Supplementary material Appendix 3 Table A2. Not 
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surprisingly, mean trophic level, omnivory and connectance 
all increase with the number of carnivorous species (Spear-
man coefficients of r = 0.88, r = 0.74 and r = 0.69, respec-
tively). The number of links, vulnerability, generality, and 
also omnivory increase with the number of species that use 
poison to hunt (r = 0.65, r = 0.60, r = 0.63, and r = 0.60). 
Vulnerability also decreases with species that live below-
ground (r = –0.51). Finally, trophic similarity decreases with 
the first PCoA axis representing species taxonomy, and with 
species body mass (r = –0.51 and r = –0.45).

Secondly, we found that CWV is correlated to network  
properties (p <1.10–4 for the PROTEST, R = 0.58)  
(Fig. 3b). Variance in body mass and in the first axis of the 

PCoA of the taxonomy is negatively correlated to trophic 
similarity (r = –0.51 and r = –0.49). Variance in toughness 
is negatively correlated to vulnerability, mean trophic level 
and omnivory (r = –0.60, r = –0.72, r = –0.79), while vari-
ance in mobility is negatively correlated to mean trophic level 
(r = –0.65). Similar relationships were also observed for other 
diversity metrics, although the relationships were weaker 
(with a p-value of < 1.10–4 for the PROTEST, and R = 0.45), 
(Fig. 3c). Species richness is positively related to functional 
richness (r = 0.71), but not functional evenness (r = 0.05). 
Trophic similarity varies inversely to functional evenness 
(r = –0.48). Modularity is not correlated to any functional 
index.

Table 2. Cross-validation results for the carnivorous interactions (C) and the herbivorous-fungivorous-detritivorous interactions (HFD).  
Random forest models were calibrated with one sub-dataset and validated on a second one. Several cross-validation scenarios were  
considered: between food webs from 3 different geographical areas; between randomly selected food webs (36 for parametrization, 12 for 
validation); between the independent interactions dataset and the food webs dataset; between samples that do not have any species in  
common. FW = food webs dataset, II = independent interactions dataset, a = number of observed and predicted interaction presence, 
b = number of observe absence and predicted presence, c = number of observed presence and predicted absence, d = number of predicted 
and observed absence. 

Validation Data for parametrization Data for validation Model a b c d TSS

Cross areas FW: x+y FW: z RFC 12738 570 1115 86056 0.91
   RFHFD 312 32 195 3384 0.60
Cross FW 38 food webs 12 food webs RFC 12535 271 350 83736 0.97
   RFHFD 427 38 105 3429 0.79
Cross datasets II FW RFC 32283 202136 0 0 0
   RFHFD 890 6150 0 0 0
 FW II RFC 32 9 559 33 –0.16
   RFHFD 9 0 301 32 0.13
Cross samples FW FW RFC 3299 385 958 22519 0.76
   RFHFD 24 85 98 1068 0.12
 II II RFC 342 14 1 0 0
   RFHFD 183 4 11 15 0.73

(a) (b)

Figure 2. Importance of traits to predict carnivorous and non-carnivorous interactions according to the random forest model (see Table 2 
for details on traits). The ‘mean decrease Gini’ (total decrease in node impurities from splitting on the variable) is proportional to the con-
tribution of each variable in the model. High mean decrease Gini represents a high importance of the variable. C: consumer traits, and R: 
resource traits.
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The frequency of the different motifs was found to 
be independent of functional metrics (p-value = 0.46, 
R = 0.17), but correlated to the CWM (p < 1.10–4, R = 0.40) 
(Fig. 3d). Fungivores, herbivores and detritivores increase 
with the frequency of motifs representing resource compe-
tition (r = 0.65, r = 0.39 and r = 0.19, respectively), while 
carnivores increase with the frequency of motifs related 
to omnivory (r = 0.37). Omnivory increases even more if  
carnivores use poison or webs to catch their prey (r = 0.34 
and r = 0.64).

Discussion

This study is a first step toward a better understanding of 
the role of functional traits in the structure of trophic inter-
action networks (Fig. 4). Traits are known to be impor-
tant drivers of assembly processes in plant communities 
(McGill  et  al. 2006, Violle  et  al. 2007). They also play a 
key role in other important ecosystem functions such as 
primary productivity. Building on this principle, this study 
shows that the structure of more complex communities such 

(a) (b)

(c) (d)

Figure 3. Procrustes representation of the correlation between the variables representing the functional structure (community weighted 
mean, community weighted variance, functional diversity indices) and those reflecting network structure (network properties and motifs 
frequency). Each dot corresponds to a local community.
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as soil food webs is also related to the different aspects of 
the trait distribution. We found that traits such as body 
size, mobility and hunting mode affect the occurrence of  
trophic interactions in soil food webs, but other aspects of 
the community functional structure such as trait identity 
and diversity were also related to the summary character-
istics of the network structure. These results show how the  
trait-based approach to food webs can efficiently and  
mechanistically position species within a community and 
explain its macroscopic properties.

From traits to interactions

We successfully used a trait-matching approach to determine 
soil food web interactions. We were able to predict 98% of 
interactions between animal resources and consumers using 
a small set of traits in addition to taxonomy as a proxy for 
unmeasured traits. Our method, inspired by the match-
ing centrality formalism (Rohr  et  al. 2010), compared the 
accuracy of three statistical approaches (generalized linear 
models, gradient boosted model, and random forest mod-
els) to predict species interactions from their traits. Random 
forest (RF) was the most efficient method, indicating that 

trait-matching constraints are not linear and possibly multi-
variate. The random forest algorithm is based on regression  
trees, allowing the classification of interactions with a set 
of conditions, a process similar to what ecologists would 
intuitively do when constructing an interaction network. 
Cross-validation results were satisfying, both when tested in 
different geographical areas (leaving one area out of the cali-
bration data) and with different species (leaving a set of spe-
cies out of the calibration data). Non-carnivorous interactions 
were better predicted in the independent interactions dataset, 
which contained more precise non-animal species identifica-
tion. On the other hand, carnivorous interactions were better 
predicted in the food webs dataset, in which species identifi-
cation was done only for animal species. We nonetheless have 
to remain careful about the ability of the model to predict 
interactions of species in new systems. Indeed, the random 
forest algorithm tends to over-fit the data, as we exemplified 
by the validation across datasets.

In agreement with previous studies conducted in other 
systems (Brose et al. 2006, Riede et al. 2010, Williams 2010, 
Gravel et al. 2013), body mass was found the trait that best 
predicts interactions, followed by taxonomy. Taxonomy can 
be used as a proxy, approximating traits that are hard to 
document (Mouquet et al. 2012), such as chemical defense 
or behavior, following the assumption that some traits are 
highly conserved within taxa. Taxonomy also helps captur-
ing trait syndromes, such as the ant Plectroctena which uses 
nutcracker mandibles in combination with a hunting strat-
egy specific to the predation of millipedes (Polidori 2011). 
Further, kingdom of the resource and diet of the consumer 
provides an approximate way to characterize the backbone 
of network structure, with the identification of interactions 
that are trivially prohibited also called forbidden interac-
tions, such as herbivores not feeding on animals (Morales-
Castilla et al. 2015). As more studies are published, it will be 
interesting to see whether the amount of variance explained 
by taxonomy decreases with increasing quality of trait  
information, or if some fundamental constraints cannot be 
disentangled only using trait data and remain best explained 
by evolutionary history.

From functional structure to network structure

Having verified the existence of a relationship between traits 
and the occurrence of interactions, we then explored rela-
tionships between functional and network structure. The 
strongest associations were observed between trait composi-
tion (i.e. CWM), network properties, and motifs frequency. 
While we did not had a priori expectations, the results we 
found were all coherent. For instance, it was not surprising 
to find that a higher number of carnivorous species was cor-
related to the average trophic level, but also connectance. 
We also found that the use of poison or webs were positively 
related to the number of links, and the frequency of the 
motif that represents omnivory. In contrast, vulnerability 
decreased with the number of species living below-ground, 

Figure  4. Summary diagram showing observed relationships 
between functional diversity properties, network properties and 
traits mean and variance. Functional properties are surrounded, 
network properties are framed, trait means are framed with a penta-
gon and trait variances are written inside a cloud. Relationships 
between variables are represented with arrows: solid = positive cor-
relation; dotted = negative; dashed = neither positive nor negative. 
The width of the arrows represents the strength of the relationship.
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presumably because it limits predation by spiders. These 
results suggest that hunting strategy is a representative trait 
of species generality, and in combination with species vul-
nerability, both determine the number of links.

The relationships we found between functional diversity 
metrics and network properties were more intriguing. First, 
relationships between the range of trait values and network 
properties were more interesting when looking at each trait 
individually, than when considering functional richness. 
Correlations between functional richness and network prop-
erties were likely driven by the strong dependence of this 
index to species richness (Villéger et al. 2008), which in turn 
increase the number of links per species (Martinez 1992), 
as well generality and vulnerability. We expected that func-
tional richness, by increasing functional differences among 
species, would be negatively correlated to trophic similarity. 
However, trophic similarity was rather negatively correlated 
to variance in body mass and taxonomy. This observation is 
consistent with results of the first part of the study. While 
functional richness could provide insights about the amount 
of functions a community can provide, it should considered 
in conjunction with individual trait investigation to approxi-
mate network structure.

Functional evenness also had a negative relationship with 
trophic similarity, but not with modularity and connectance 
as we would have expected. Low functional evenness char-
acterizes the distribution of species in functional groups 
within the community. Therefore, low functional evenness 
increased the availability of resource and the number of con-
sumers (mainly determined by matching of their taxonomy 
and body mass), thus increasing trophic similarity. Simi-
larly, we would have expected a decrease in modularity with 
functional evenness. Modularity can be seen as a measure of 
trophic complementarity between functional groups of spe-
cies (Poisot et al. 2013, Montoya et al. 2015). For example, 
Olesen et al. (2007) showed that modules of species with con-
vergent traits values are present in species rich pollinators–
plant communities. Thus, it would have been reasonable to 
expect modules of similar consumers (i.e. functional groups) 
sharing the same resources. We suspect our results might 
stand from the high amount of generalist predators linking 
modules. We also only found a weak relationship between 
functional evenness and connectance. Then, functional 
evenness provides insight into species trophic similarity and 
thus competition and complementary among species.

Our analysis had some limitations, which should ori-
ent future research. Taxonomic resolution of basal trophic 
groups was very low, therefore influencing the number of 
species and links in each network. This limitation does not 
impact the analysis of trophic interactions among carnivo-
rous species, but certainly does for detritus and plants. These 
nodes are key for major ecosystem processes such as nutri-
ent cycling, therefore, more precise species identification and 
documentation of interactions are needed. The importance 
of taxonomy for the explanation of pairwise interactions 
also underlines the coarse resolution of trait information 

we were able to gather from literature. Taxonomy does not 
inform us about the mechanisms involved in interactions, 
and limits our model to taxa present in the training data. 
Moreover, the decision tree computed by the random for-
est, for the two datasets together, required more than 10 000 
nodes, for 250 972 interactions. The rules of the random 
forest are likely specific to the training data. If we want to 
correctly predict interaction for a new pair of species absent 
from the training dataset, their traits should be similar to 
one of the 20 000 groups of pairs of the training species. 
We found that traits mediate species interactions, but the 
complexity of statistical model made the interpretation 
difficult. Other traits could perform better at discriminat-
ing interactions by requiring less nodes, and could replace 
taxonomy. Traits potentially mediating species interactions 
(Moretti  et  al. 2016) were difficult to document precisely 
due to a lack of available information. We expect that the 
documentation of traits representing foraging strategy and 
predatory avoidance, as well as spatial and temporal co-
occurrence should improve significantly our ability to pre-
dict predatory interactions. Non-animal interactions could 
also be predicted more accurately with traits such as chemi-
cal defense and stoichiometry. Trait measured directly on the 
individuals for which interactions were observed could also 
improve our understanding of trait-matching constraints 
(Bartomeus  et  al. 2016). That said, we emphasize the dif-
ficulty of finding traits that are relevant and could be mea-
sured across the range of organisms we considered. There is 
currently no standard that would account for the variabil-
ity of characteristics that could be found from nematodes 
to spiders. Further, while additional traits might refine our 
ability to predict exceptional interactions, like highly spe-
cialized consumer–resource matches, each additional trait is 
susceptible to decrease the generality of the model. Future 
investigations of trait-matching constraints will therefore 
require a proper analysis of the optimal solution to the  
generality–accuracy tradeoff.

Conclusion

We offer a new approach to answer quantitatively questions 
which ecologists often addressed intuitively. Despite some 
limitations, we showed how trait composition, taxonomy 
and body mass in particular, determine the distribution of 
species interactions in a community. The growing interest 
for trait-based approaches to soil fauna will likely improve 
trait documentation, and thereby the precision of future 
analyses. As Schleuning et al. (2015) and Gravel et al. (2016) 
have recently pointed out, the next challenge in biodiversity 
and ecosystem functioning studies will be to relate network 
ecology to ecosystem processes. Answers to these questions 
have the potential to upend existing theories by demon-
strating the changing effect and importance of functional 
diversity across trophic levels, as suggested by Lefcheck and 
Duffy (2015). The joint study of functional and network 
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structure may provide valuable insight by bridging important  
conceptual gaps. 
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