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Applying paclobutrazol at dormancy induction inhibits shoot
apical meristem activity during terminal bud development
in Picea mariana seedlings
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Abstract

Key message Applying paclobutrazol at dormancy

induction inhibited shoot apical meristem mitotic

activity, thereby decreasing rate and duration of needle-

primordium initiation and thus needle-primordium

number in terminal buds of Picea mariana seedlings.

Abstract The effect of applying various rates of paclobu-

trazol (an inhibitor of gibberellic acid biosynthesis) at

dormancy induction on shoot apical meristem activity

during terminal bud development in first-year Picea mar-

iana Mill. (B.S.P.) seedlings was investigated. During

needle-primordium initiation, mitotic activity was reduced

in shoot apical meristems of treated seedlings compared

with control seedlings. The reduction was most evident

within the peripheral zone where primordia arose but also

occurred within the apical zone, which provides cells to the

peripheral zone. The reduced mitotic activity within the

peripheral zone coincided with a decrease in both rate and

duration of needle-primordium initiation on nascent

embryonic shoots within terminal buds in treated seedlings

compared with control seedlings. Moreover, meristems of

treated seedlings were smaller, shorter, and narrower (de-

termined by cell counts as another measure of mitotic

activity) compared with control seedlings. Thus, these

meristems had less available space for needle-primordium

initiation. As a result, embryonic shoots in treated seed-

lings had fewer needle primordia compared with control

seedlings. Furthermore, onset of bud endodormancy (de-

limited by an absence of mitotic activity within the shoot

apical meristem after completion of needle-primordium

initiation) was realized in treated seedlings before the last

sampling date, whereas it was not realized in control

seedlings by the last sampling date.

Keywords Cell division � Conifer � Cytohistological
zonation � Plant growth retardant � Shoot apices

Introduction

Reproductive bud development in seed orchards for the

Pinaceae has been promoted by exogenous gibberellin A4/7

(GA4/7), when applied with adjuvant cultural treat-

ment(s) (Pharis et al. 1987). Applied alone, GA4/7 had no

effect on size or mitotic activity of shoot apical meristems

in Pseudotsuga menziesii (Mirb.) Franco (Owens et al.

1985) or Picea engelmannii Parry (Owens and Simpson

1988) buds. Pharis et al. (1987) suggested that GA4/7 is

used both for vegetative growth and reproductive devel-

opment in the Pinaceae, and in that order of preference.

Indeed, GA4/7 stimulated the number of cataphylls initiated

in Pinus contorta Dougl. ex Loud vegetative buds (Long-

man 1982). Other gibberellins (GAs) have also been

implicated in control of foliar-organ primordium initiation

by shoot apical meristems during vegetative bud develop-

ment in the Pinaceae (Little and MacDonald 2003).

Specifically, the number of needle- and cataphyll-primor-

dia initiated during terminal bud development was stimu-

lated by application of GA1, GA3, and GA4 in Picea glauca

(Moench) Voss and GA1, GA3, GA4, and GA9 in Pinus

sylvestris L. (Little and MacDonald 2003). Moreover, the

role of exogenous GA3 on shoot apical meristem mitotic
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and organogenic activity during terminal bud development

in Pinus sylvestris has been documented (MacDonald and

Little 2006). This research was conducted to provide

background knowledge for genetic engineering of wood

formation. Specifically, it was designed to discern the

endogenous controls of embryonic shoot formation during

terminal bud development—as longer shoots provide

additional longitudinal space for vascular cambium initia-

tion and thus more wood formation.

Plant growth retardants are synthetic compounds that

modify growth and development (Grossman 1990). Typi-

cally, they are reported to slow or inhibit internode elon-

gation in subapical meristems (Dicks 1979; Padilla et al.

2015) without affecting organogenic activity by shoot

apical meristems (Dicks 1979; Cohen et al. 2013). One

such retardant, paclobutrazol (PBZ) [(2R,3R)-1-(4-chlor-

ophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)-pentan-3-ol],

elicits inhibition in plants by blocking successive oxidative

steps between ent-kaurene and ent-kaurenoic acid during

GA biosynthesis (Hedden and Graebe 1985). Furthermore,

PBZ has been used in various studies to discern the role of

GA in controlling growth (e.g., Grossman 1990; Ubeda-

Tomás et al. 2009; Li et al. 2015; Zhang et al. 2016). In the

current study, PBZ was used to infer the role of GA in

control of Picea mariana Mill. (B.S.P.) shoot apical

meristem activity. Specifically, the hypothesis was that

PBZ would inhibit mitotic and organogenic activity during

terminal bed development, given that exogenous GA1,

GA3, and GA4 stimulated needle-primordium initiation in

Picea glauca terminal buds (Little and MacDonald 2003).

Materials and methods

Seedling culture

The study was conducted at the Government of New-

foundland and Labrador, Department of Natural Resources,

Forestry Services Branch, Mount Pearl Forest Tree Nursery

in Mount Pearl, NL (47�300N, 52�460W). On 15 June,

multi-cavity containers (67 cavities per container, 57 mL

volume per cavity, 9 cm cavity depth, 3.2 cm cavity top

diameter) were filled with a 3 peat:1 vermiculite:1 perlite

(by volume) substrate mix. Seeds were machine sown, and

silica sand was applied as mulch. We used a half-sib Picea

mariana seedlot arising from a provincial tree-breeding

program that was selected for superior height and diameter

growth. Containers were moved to a polycarbonate-glazed

greenhouse, bringing it to full capacity.

Study seedlings received the same cultural regime as

those destined for the provincial reforestation program.

Photoperiod-extension lighting was not used. Irrigation

was delivered by an overhead boom. From germination

through exponential growth phases of culture, greenhouse

temperature was maintained at 24/18 �C day/night by

heating and venting by day and by heating and closing

heat-retaining curtains at night. During germination, low-

pressure irrigation with water only was used, as needed, to

keep the mulch moist. Seed germination was finished by 25

June. Then, starter fertilizer (11 N–41P–8 K, with N at

50 mg/L) was applied during the establishment phase,

which continued until 29 July. Grower fertilizer (20 N–8P–

20 K, with N at 100 mg/L) was applied during the expo-

nential phase between 04 and 24 Aug. For the dormancy-

induction phase, application of finisher fertilizer (8 N–

20P–30 K, with N at 50 mg/L) began on 01 Sep. In addi-

tion, greenhouse heating ended, but venting continued, as

needed, to maintain the greenhouse at ambient, outdoor

temperatures. As PBZ is transported acropetally in xylem

(Wang et al. 1986; Richardson and Quinlan 1986), seedling

roots were drenched once with PBZ (Zeneca Agro, Stoney

Creek, ON) in finisher fertilizer on 08 Sep. at the following

rates: 1.0, 2.5, and 5.0 mg active ingredient per seedling.

Finisher fertilizer without PBZ served as control. The

manufacturer suggested these rates based on results from

trials aimed at controlling first-year shoot elongation

(subapical meristem activity). The experimental layout was

a randomized complete block design, with four plots to

account for within-greenhouse variability. Rates were

randomly assigned to containers in each plot. After 21 Oct.,

fertilization ended, and irrigation with water resumed and

continued during the sampling period of this study.

Shoot apical meristem activity during terminal bud

development

For the investigation of the effect of PBZ on shoot apical

meristem activity during terminal bud development, seed-

lings were randomly sampled in each rate from the

assigned containers in each plot. Sampling occurred the

day before PBZ application, 1 week after application, and

then weekly until 24 Nov. On each sampling date, the shoot

tip on each seedling was excised, sliced along two parallel

planes to expedite fixation, and fixed in FAA (formalin:

glacial acetic acid: ethanol: water) (Johansen 1940). Then,

shoot tips (grouped by rate and plot) were dehydrated in a

tertiary-butyl alcohol series (Johansen 1940), embedded in

wax, sectioned longitudinally and serially using a rotary

microtome set at 8 lm, mounted on slides, and stained with

safranin and hematoxylin (Johansen 1940). The median

longitudinal section (MLS) is situated in the middle of the

serial sections through a shoot tip, in which shoot apical

meristem height and width are maximal. The MLS was

selected using both a Leica MZ6 stereomicroscope [Leica

Microsystems (Canada) Inc., Richmond Hill, ON] and a

Nikon Labophot compound microscope (Nikon Canada,
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Mississauga, ON). The original intent was to examine the

MLS from eight seedlings (eight replications) per rate per

sampling date, but losses typical during processing reduced

sample size on some sampling dates.

Each shoot tip was photographed through a 10X

objective with a Sony CDD-IRIS/RGB digital camera

(Sony of Canada Ltd., Toronto, Mississauga, ON) on the

Nikon Labophot compound microscope. On the resultant

micrograph, the last-initiated foliar-appendage primordium

(Fig. 1) was identified as neoformed needle (sensu Hallé

et al. 1978), bud scale, or needle primordium. However,

bud scales are not reported on further in this paper. Neo-

formed needles were distinguishable because they and their

subtending internodes elongated immediately. In contrast,

needle primordia remained rudimentary, and their sub-

tending internodes did not elongate, thus giving rise to

nascent embryonic shoots. The occurrence of neoformed

needle primordia was used to denote shoot neoformation

(sensu Hallé et al. 1978) and needle primordia to denote

embryonic shoot formation. Needle primordia were coun-

ted on the left and right flank of the developing embryonic

shoot, and the mean number per flank was then calculated.

For certain rates, as embryonic shoot development pro-

gressed, it was necessary to take one photograph per flank

to quantify primordium number.

In addition, the shoot apical meristem, the dome of

tissue above the last-initiated primordia (Fig. 1) (Esau

1977), of each shoot tip, was photographed through a 40X

objective. On the resultant micrograph, a line was drawn

between the last-initiated primordia to delineate the base of

the meristem. Then, cells along this line were counted,

denoting meristem width. Next, a second line was drawn

from maximum height of the meristem to the line delin-

eating the base of the meristem and cells along this line

were counted, denoting meristem height. Then, the

remaining cells in the meristem were counted. Next, the

three cell counts were summed, denoting meristem size.

Finally, using a compound microscope, cells with mitotic

figures (Fig. 1), denoting mitotically active cells, were

tallied by cytohistological zone (sensu Foster 1938). In

Picea, this zonation has been simplified into three zones:

apical zone (comprising apical initials and central mother

cell zone), rib meristem, and peripheral zone (Owens et al.

1977) (Fig. 1). Relative to this paper, the functions of each

zone (Sacher 1954; Esau 1977; Lyndon 1998) were sim-

plified as follows. Divisions in the peripheral zone give rise

to foliar-organ primordia. The apical zone provides cells to

the peripheral zone. The rib meristem gives rise to pith. An

absence of mitotic activity in all cytohistological zones

after completion of needle-primordium initiation was used

to delimit bud endodormancy (MacDonald 2000).

Needle primordia initiated during terminal bud

development

Mature needles on shoots arising from buds were counted

to quantify needle primordia initiated on embryonic shoots

during terminal bud development after PBZ application.

After overwintering seedlings, eight containers (two per

rate) were moved to Natural Resources Canada’s Research

Greenhouse in Mount Pearl, NL (47�31N, 52�47W). There,

16 seedlings per container per treatment were randomly

sampled. Three-liter pots were loosely filled with a com-

mercial 3 peat:1 vermiculite:1 perlite substrate mix; then,

rm

pzpz

az mf

pP

Fig. 1 Light micrograph of median longitudinal section through

shoot tip in first-year Picea mariana seedling showing shoot apical

meristem (above solid line drawn between last-initiated primordia) in

primordium (p) initiation. Cytohistological zonation, comprising

apical zone (az), rib meristem (rm), and peripheral zone (pz), is

evident. The platter-shaped apical zone is composed of lightly

stained, irregularly arranged cells. The rib meristem is a concave band

of darkly stained cells arranged in files. The peripheral zone,

bordering the apical zone and rib meristem, has darkly staining cells.

Mitotic figure (mf) (at arrow) is apparent. Scale bar 5 lm
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four seedlings were dibbled to each pot, maintaining

equidistance between seedlings. On 28 Apr., pots were

placed in a complete randomized block design on one

bench in a polycarbonate-glazed compartment under nat-

ural photoperiod. Day/night temperatures were initially

maintained at 20/20 �C and lowered to 20/16 �C on 15

May. No fertilizer was used to minimize conditions

favorable for neoformed shoot growth, which can occur in

Picea (Jablanczy 1971). Initially, pots were watered to

saturation and then watered such that substrate mix was

kept moist to the touch. After needle and shoot elongation

was completed, leading shoots were clipped off and oven

dried to facilitate needle counting.

Data presentation and statistical analysis

For simplicity in visualizing trends in shoot apical meris-

tem parameters overtime, means are presented without

standard error bars. This practice is typical of conifer

anatomical studies, which out of necessity have small

sample sizes of highly variable material and have zero

values that are biologically meaningful (e.g., Owens et al.

1985; Owens and Simpson 1988). Means with standard

error bars are presented for number of needle primordia

initiated on embryonic shoots during terminal bud devel-

opment after PBZ application where the sample size was

larger. In addition, these data were tested for distribution

and normality using Shapiro–Wilk and Anderson–Darling

tests, as well as graphical display of data. Data for pot

means were subjected to an analysis of variance for bal-

anced data. Next, where treatment was statistically signif-

icant at a = 0.05, the Tukey–Kramer multiple-comparison

test was run to detect specific differences, and these results

are presented. NCSS statistical software (Hintze 2007) was

used for the analyses.

Results

Changes in organogenesis occurred at shoot apical meris-

tems in first-year Picea mariana seedlings during the

sampling period. The day before PBZ application, all

meristems were initiating neoformed needles. Meristems

began rapidly initiating needle primordia 2–3 weeks after

PBZ application (Fig. 2). In treated seedlings, needle-pri-

mordium initiation slowed 5 weeks after PBZ application

and was completed after 8 weeks (Fig. 2). In control

seedlings, needle-primordium initiation remained rapid

until completed 9 weeks after application (Fig. 2).

Differences in mitotic activity (number of mitotically

active cells) within cytohistological zones of shoot apical

meristems in treated and control seedlings were apparent.

Mitotic activity within the peripheral zone of meristems in

treated seedlingswas lower 5–9 weeks after PBZ application

compared with the control (Fig. 3a). This reduction in

mitotic activity (Fig. 3a) coincided with the slowing of

needle-primordium initiation and its eventual completion in

treated seedlings (Fig. 2). An absence of mitotic activity

within the apical zone and the rib meristem of shoot apical

meristems was observed 1, 2, or 3 weeks and 4 or 5 weeks

after application, respectively, in treated seedlings compared

with control seedlings (Fig. 3b–c). No trends related to PBZ

ratewere apparent. The absence ofmitotic activitywithin the

peripheral zone, rib meristem, and apical zone in treated

seedlings 7–11 weeks after PBZ application was associated

with onset of bud endodormancy (Fig. 3a–c). In control

seedlings, mitotic activity was markedly slowing within the

peripheral and apical zones and was absent within the rib

meristem 11 weeks after PBZ application (Fig. 3a–c).

A trend was evident in shoot apical meristem size, width,

and height (determined by cell counts) 5–9 weeks after PBZ

application (Fig. 4a–c). Meristems of treated seedlings were

smaller in size, being both narrower and shorter than those of

control seedlings (Fig. 4a–c). These reduced meristem

parameters (Fig. 4a–c) were associated with slowing rates

and eventual earlier completion of needle-primordium ini-

tiation in treated seedlings compared with control (Fig. 2).

Whereas needle-primordium counts along both flanks of

nascent embryonic shoots quantified rate and duration of

needle-primordium initiation, needle number on shoots

arising from those buds quantified number of needle pri-

mordia initiated during terminal bud development. An

analysis of variance of needle number detected significant

treatment differences. Specifically, fewer needles were ini-

tiated in terminal buds of PBZ-treated seedlings compared

with control seedlings, but no significant difference was

detected among the 1.0, 2.5, or 5.0 mg rates (Fig. 5).
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Fig. 2 Number of needle primordia per flank of nascent through

mature embryonic shoot within terminal buds in first-year Picea

mariana seedlings after one application of various paclobutrazol rates

in September. Symbols represent means
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Discussion

It was hypothesized that shoot apical meristem activity during

terminal buddevelopmentwould be reduced inPiceamariana

seedlings treated once with PBZ. Indeed, mitotic activity was

absent within the apical zone of shoot apical meristems

1–3 weeks after application in treated seedlings, whereas

mitotic activity within the apical zone continued in control

seedlings (Fig. 3b). Furthermore, mitotic activity within the

peripheral zone in treated seedlings was reduced 5–9 weeks

after application compared with the control (Fig. 3a). As the

apical zone replenishes cells to the peripheral zone (Lyndon

1998) and localizedmitotic activitywithin the peripheral zone

gives rise to foliar-appendage primordia (Esau 1977), it was

not surprising that these reductions in mitotic activity coin-

cided with decreased rate and duration of needle-primordium

initiation in treated seedlings (Fig. 2). In contrast, applying
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meristem of shoot apical meristems in first-year Picea mariana

seedlings after one application of various paclobutrazol rates in
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GA3 during terminal bud development in Pinus sylvestris

seedlings elevated mitotic activity within the apical and

peripheral zones longer and coincided with increased rate and

duration of cataphyll-primordium initiation compared with

the control (MacDonald and Little 2006). Exogenous GA3

also increasedmitotic activity within the apical and peripheral

zones ofPerilla nankinensis (Lour.) Decne. resulting in faster

leaf-primordium initiation (Bernier et al. 1964).

These reductions in mitotic activity within the apical

and peripheral zones resulted in reduced meristem size,

height, and width in PBZ-treated Picea mariana seedlings

compared with the control (Fig. 4). Likewise, PBZ reduced

mitotic activity in root apical meristems of Arabidopsis

thaliana (L.) Heynh. (Ubeda-Tomás et al. 2009) and Oryza

sativa L. (Li et al. 2015), resulting in fewer cells and

smaller meristems, respectively. In contrast, applying GA3

during terminal bud development in Pinus sylvestris

seedlings increased mitotic activity within the apical and

peripheral zones, resulting in higher and wider meristems

that coincided with increased rates of cataphyll-pri-

mordium initiation (MacDonald and Little 2006). Fur-

thermore, in Picea sitchensis (Bong.) Carrière seedlings,

rapid rates of needle-primordium initiation during terminal

bud development coincided with increased meristem size,

being more closely associated with meristem width than

meristem height (Cannell and Cahalan 1979).

The reduced rate and duration of needle-primordium

initiation (Fig. 2) resulted in fewer needle primordia on

embryonic shoots within terminal buds of PBZ-treated

Picea mariana seedlings compared with the control

(Fig. 5). Similarly, adding PBZ to the culture media of

Prunus armeniaca L. nodal sections also decreased leaf

number on axillary shoots (Padilla et al. 2015). In contrast,

GA3 application increased cataphyll number because of

increased rate and duration of cataphyll initiation during

terminal bud development in Pinus sylvestris seedlings

(MacDonald and Little 2006). Finally, of the PBZ rates

applied in our study, there was no rate effect on needle-

primordium number (Fig. 5). Thus, these results support

the similar trends observed for shoot apical meristem

parameters among the three rates (Figs. 2, 3, 4).

In conclusion, these results in Picea mariana seedlings

treated with PBZ infer the role of GA in controlling shoot

apical meristem activity during terminal bud development.

Furthermore, they provide a developmental explanation for

earlier results that GA1, GA3, and GA4 increased needle-

primordium number within terminal buds in Picea glauca

seedlings (Little and MacDonald 2003).
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