
O
m

S
a

b

c

U

a

A
R
R
A
A

K
S
P
V
A
M
S

h
R
P
R
r
a

l

e
(

h
0

Ecological Modelling 335 (2016) 24–34

Contents lists available at ScienceDirect

Ecological Modelling

journa l homepage: www.e lsev ier .com/ locate /eco lmodel

vercoming challenges of sparse telemetry data to estimate caribou
ovement

arah Bauduina,∗, Eliot McIntirea,b, Martin-Hugues St-Laurentc, Steve Cumminga

Université Laval, Pavillon Abitibi-Price, 2405 Rue de la Terrasse, Québec, QC G1V 0A6, Canada
Pacific Forestry Centre, Natural Resources Canada, 506 Burnside Road West, Victoria, BC, V8Z 1M5, Canada
Université du Québec à Rimouski, Département de Biologie, Chimie et Géographie, Center for Northern Studies, Center for Forest Research, 300 Allée des
rsulines, Rimouski, QC, G5L 3A1, Canada

r t i c l e i n f o

rticle history:
eceived 13 October 2015
eceived in revised form 4 May 2016
ccepted 6 May 2016
vailable online 21 May 2016

eywords:
patially explicit individual-based model
attern-oriented modeling
HF telemetry data
tlantic-Gaspésie caribou
ovement

imulation

a b s t r a c t

Spatially explicit individual-based models (SE-IBMs) can simulate species’ movement behaviors.
Although such models allow many applications to ecology and conservation biology and are useful for
management purposes, they are difficult to parameterize directly from the kinds of observational data
that are generally available. Coupled with pattern-oriented modeling strategy, SE-IBMs can be param-
eterized and assess alternate hypotheses on movement behaviors by comparing simulated to observed
patterns of movement. We illustrated this with the endangered Atlantic-Gaspésie caribou population
while using sparse Very High Frequency (VHF) telemetry data. We formulated alternative movement
hypotheses built around proximate movement mechanisms and coded them into an SE-IBM to explain
and predict caribou movement. These mechanisms were: a random walk, a biased correlated random
walk, a foray loop to reproduce caribou extra-range movement patterns, and caribou fidelity during mat-
ing season. We combined these to test single- and two-behavior movement models regarding landscape
quality. The best fitted model successfully reproduced most of the movement patterns derived from
the VHF locations. We found that caribou movement in low quality habitat was better reproduced by a
foray loop behavior than by a biased correlated random walk or a random walk. Adding an attraction to
the individuals’ mating area during the mating season also improved the model. We used the selected
model to estimate and map potential landscape use by the Atlantic-Gaspésie caribou. We confirmed areas
of high use seen in the VHF data and identified some potential areas where no caribou locations were
recorded. We also found that large areas of moderate to high quality habitat were unused because they

could not be reached by caribou. We conclude that sparse data sets, such as VHF collar locations, can be
used to fit movement models whose parameters could not be estimated directly from the data. SE-IBMs
coupled with pattern-oriented modeling can reveal new insights about landscape use beyond what can
be defined with habitat selection models, and can identify habitat locations where management actions
could be taken to facilitate species persistence or recovery of endangered populations.
Abbreviations: SE-IBM, spatially explicit individual-based model; VHF, very
igh frequency; GPS, global positioning system; POM, pattern-oriented modeling;
SF, resource selection function; MFFP, Ministère des Forêts, de la Faune et des
arcs du Québec; good-HQ, good habitat quality; low-HQ, low habitat quality; hm-
W, habitat-mediated random walk; hm-BCRW, habitat-mediated biased correlated
andom walk; hm-FL, habitat-mediated foray loop; M1–M6, model 1–model 6; AD,
bsolute deviation; MAD, mean absolute deviation.
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1. Introduction

Quantitative models of animal movement and landscape use
can make important contributions to our understanding of ani-
mal fitness (Cagnacci et al., 2010). Individuals must move through
their landscape to access food resources (Turner et al., 1994), to
find a mate (Hooker et al., 2002), to reach suitable natal habitat
(Richardson et al., 2005), or to escape predators (Forester et al.,
2007). Understanding the mechanisms behind animal movement,
quantifying how the landscape is used, and identifying potential

movement corridors or barriers are therefore key understandings
on how species interact with their environment (Gibeau et al., 2002;
Marucco and McIntire, 2010). This information is crucial when land
management is aimed at the protection or recovery of endangered
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opulations (Dyer et al., 2002; Gibeau et al., 2002). In this context,
deeper understanding of animal movement and spatial estimates
f population landscape use, would allow managers to identify,
ore precisely or with greater certainty, areas in need of protection

rom human disturbances, or of restoration to enhance individual
ovement and thereby population viability. One way to gain such

nderstanding is through movement models.
Individual-based models treat individuals as unique,

utonomous entities with state-dependent behaviors, which
nteract with their environment and/or with each other.
opulation-level patterns emerge from these interactions
Railsback and Grimm, 2012). Spatially explicit individual-based

odels simulate individual movements over landscapes (Grosman
t al., 2011; McIntire et al., 2007) and are particularly useful in
orecasting landscape use (Gustafson, 2013). SE-IBMs are abstract
epresentations of movement in terms of statistical processes gov-
rning the distances moved and the choice of direction between
onsecutive moves. These components need to be parameterized
orrectly. Usually, only some parameter values are known in
dvance, and others must be estimated from data (Marucco and
cIntire, 2010; Wiegand et al., 2004).
For many animal populations, the data available are telemetry

ata obtained from transponders attached to the individuals (col-
ars), with locations estimated by triangulation of the Very High
requency radio signal or, more recently, from Global Positioning
ystem fixes taken by the collars themselves. VHF location recor-
ing requires observers to find collared animals in the field (e.g.,
y aerial survey) which leads to several complications. Individuals
utside the usual population range at the time of survey will rarely
e detected because observers survey the commonly used areas
or reasons of cost. Observers need to see the animals to record
heir position, but environmental conditions (e.g., landscape cover,
eather, low light) can hide some of them. Then, because sur-

eys are costly and time consuming, time lags between consecutive
HF locations are often long and irregular. For these reasons, VHF
ollar data are usually too sparse in time to permit direct estima-
ion of movement parameters. That is, the frequency with which
ndividual locations are obtained is too low compared to the rates
f movement. Sparse data are problematic when used with some
ovement models. For example, step selection functions assume

traight line steps between consecutive observed locations (Fortin
t al., 2005) and state-space models require observed movement
etrics like speeds or turning angles (Patterson et al., 2008). Such

rerequisites cannot be fulfilled with such data. GPS collar data can
ave a much higher frequency of data capture but are still limited
y relatively small sample sizes (Hebblewhite and Haydon, 2010).
espite their more advanced technology and greater capacity, GPS
ollars remain more expensive than VHF collars, and they have a
horter battery life (Latham et al., 2015). Also, not all studies require
PS locations; for some ecological questions, VHF locations are suf-
cient (Latham et al., 2015), so the method is expected to remain

n use for some time. Finally, VHF technology is decades older than
PS technology. Thus, we have access to animal behavior for time
eriods before the advent of GPS collars (Hebblewhite and Haydon,
010). Historical VHF data are available for many species (e.g.,
rraut et al., 2010; Forero-Medina et al., 2011; Gibeau et al., 2002;
ewis et al., 2014; Weerakoon et al., 2004) and despite their above-
entioned limits, they represent an important resource for conser-

ation applications. For example, they could be used to infer move-
ent behaviors under historical landscape conditions less affected

y human disturbances than today, provided that the challenges of
stimating movement parameters from sparse data are overcome.
Pattern-oriented modeling is a strategy to estimate unknown
odel parameters that could not be directly measured, by adjusting
model to reproduce patterns which are features of the available
ata (Grimm and Railsback, 2012; Grimm et al., 2005). The first step
delling 335 (2016) 24–34 25

is to identify suitable patterns from the data. Large numbers of sim-
ulations are then run, sampling values from expected ranges of the
unknown parameters. For each simulation, the selected patterns
are derived from model outputs. Finally, best parameter values are
identified by minimizing a measure of the difference between the
simulated patterns and the patterns in the data. The POM strategy is
particularly useful to parameterize SE-IBMs from sparse data when
paired with a robust, hypothesis-driven methodology (McIntire
and Fajardo, 2009). However, temporal or spatial resolution of the
model, or sought in the results, should not be overwhelmingly dif-
ferent from the data.

We built SE-IBMs to understand the movements and to predict
the potential landscape use of an animal population from sparse
VHF telemetry data. Our case study was the Atlantic-Gaspésie cari-
bou population, Rangifer tarandus caribou, in Québec, Canada. First,
we proposed several movement hypotheses based on the literature,
representing different movement mechanisms. We translated each
hypothesis into a SE-IBM and calibrated each model with the VHF
data using a POM strategy. We then selected the best model using a
similar POM strategy, and validated the model against the VHF data.
The model was then used to simulate individual movements from
which we estimated and mapped the population’s potential land-
scape use. Finally, we compared the estimated landscape use with
a habitat selection study done for the same caribou population.

2. Material and methods

2.1. Case study: the Atlantic-Gaspésie caribou population

Our study area was the Gaspésie peninsula in Quebec, Canada
(Fig. 1), defined as the Gaspésie natural region (MDDEP, 2012).
The area is mountainous and forms the northeastern limit of the
Appalachian range. The study area falls within the boreal biome
(Brandt, 2009) and, except for the coast, is part of the balsam fir-
white birch bioclimatic domain (Saucier et al., 2003). The area
is home to the small, relict Atlantic-Gaspésie caribou popula-
tion (“caribou”, hereafter), which is associated with alpine tundra
habitats on high-elevation sites. The study area is surrounded by
water on three sides while the western boundary adjoins a region
highly modified by agriculture, industry and urban areas (Wildlife
Conservation Society Canada, 2015) which we considered effec-
tively impermeable to caribou movement. This caribou population
is thus effectively isolated.

The caribou population belongs to the mountain ecotype
(Hummel and Ray, 2008) of the woodland caribou subspecies
(Banfield, 1961). When population surveys began in the 1980s,
the population size was estimated to be around 200 (Fournier and
Faubert, 2001). Numbers have declined steadily since that time,
and, as of 2014, the estimated herd size was 94–100 individuals
(Lalonde, 2015). The population was designated as endangered in
2000, a status re-examined and confirmed in 2002 and in 2014
(Environment Canada, 2014). The population was recently iden-
tified as a Designatable Unit for the caribou species in Canada,
which is a “both discrete and significant unit that is an irreplaceable
component of Canada’s biodiversity” (COSEWIC, 2011). This status
confers on the population priority for conservation action.

The proximate cause of the Atlantic-Gaspésie caribou decline
is predation, mostly by coyotes (Canis latrans) and bears (Ursus
americanus) (Crête and Desrosiers, 1995), but the ultimate cause
is land-use changes, primarily due to forest harvesting. Forest har-
vesting increases the area of young forests, leading to increased
abundances of alternate prey species such as moose (Alces amer-

icanus) and their predators (St-Laurent et al., 2009). Caribou
telemetry locations suggest that individuals are mostly restricted
to the Gaspésie National Park (Fig. 1). The population appears to
be divided into three groups, gathered on Mts. Logan, Albert and
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Fig. 1. Left inset: The province of Quebec (Canada), with study area, the Gaspésie natural region, outlined. Lower map: Summer resource selection function for the Atlantic-
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aspésie caribou (Gaudry, 2013) applied over our study area. Paved roads are show
owns nearest to recent caribou sightings distant from the park are indicated (St-La
HF locations, with the park boundary and subpopulation ranges outlined.

cGerrigle (Mosnier et al., 2003) (Fig. 1), with very few individual
xchanges. There is no evidence that the Atlantic-Gaspésie caribou
s a metapopulation (sensu Hanski and Hanski, 1999) but, for the
urpose of this study, we considered these groups as three sub-
opulations. We referred to them as the Logan, the Albert and the
cGerrigle (caribou) subpopulations. Recent caribou sightings at

nexpectedly distant locations (Fig. 1) and the 1997 colonization
f Mt. Logan, probably by Albert caribou (Fournier and Faubert,
001), show that long-distance movements and re-establishments
re possible. A mechanistic understanding of caribou movements
s essential to understand and facilitate colonization processes to
ecure the recovery of this population.

To develop movement models, we used VHF telemetry data from
5 caribou that were collared and followed from 1998 to 2001
Mosnier et al., 2003). Periodic aerial surveys of the known pop-
lation range located collared animals by their signal and recorded
heir position. Flights were conducted, on average, every two weeks
mean = 17 days, SD = 17 days). The mean number of locations per
ndividual was 45 (SD = 20). We used a kernel density at 80% on
he VHF locations to delineate subpopulation ranges (Fig. 1). Due
o the low number of individuals per subpopulation, the value of

0% was the largest that identified three subpopulation ranges not
iased by uncommon behavior from a single individual. Ranges for
he Logan and Albert subpopulations are each represented by single
ontiguous areas, whereas the McGerrigle range is represented by
hin lines and the boundary of Gaspésie National Park is the thick outline. The four
unpublished data). Right inset: Caribou movement paths defined from consecutive

two areas, one centered on the McGerrigle mountains and a smaller,
less frequently used one, around the Vallières-St-Réal (Fig. 1).

2.2. Spatially explicit individual-based model

To simulate caribou movement, we built SE-IBMs that incorpo-
rated temporally varying behavioral responses to spatially varying
environmental conditions (Hanks et al., 2015, 2011). The models
run on a grid of 75 × 75 m cells covering the study area. Model
time steps are daily, indexed by calendar days; the large tem-
poral scale of the telemetry dataset precluded finer resolution.
Simulated individuals have a fixed name and mating area associ-
ated, two movement states, and a behavioral state. The movement
states are the coordinates of the individual current positions on the
landscape (i.e., the currently occupied cell) and a heading or direc-
tion of last movement. The behavioral state can change depending
on time and location. All individuals move once per time step
according to the current landscape conditions and their behavioral
state. Alternate hypotheses on the processes governing movement
in this population were expressed as alternate model formula-
tions (McClintock et al., 2012) or spatial constraints on movement.

A complete description of the SE-IBMs following the Overview,
Design concepts, and Details protocol of Grimm et al. (2010, 2006)
is available in Appendix A in Supplementary material. The model
was written in R 3.1.0 (R Core Team, 2014).
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Each landscape cell had three spatial characteristics that drive
ovement: the habitat quality, the presence or absence of paved

oads and whether or not it is located within a seasonal mating
rea. Habitat quality was predicted using two seasonal resource
election function models (Manly et al., 2002) developed for the
tlantic-Gaspésie caribou (Gaudry, 2013) (Fig. 1). The RSF mod-
ls were built with four habitat types (alpine tundra, mature fir
tands, regenerating stands and other forest stands) and three lin-
ar anthropogenic features (paved roads, gravel/secondary roads,
nd hiking trails). One RSF was developed for the winter period
November 16th–April 30th) and the other RSF for the snow-free
eriod, hereafter called “summer” (May 1st–November 15th). As in
audry (2013), we classified forest stands in our study area using

he 1:20,000 digital ecoforestry map of the 3rd forest inventory
rogram (source: Ministère des Forêts, de la Faune et des Parcs du
uébec) updated in 2001 and the linear anthropogenic structure
ata published by the MFFP. Using the RSF models developed by
audry (2013), we obtained two seasonal maps of relative probabil-

ties of caribou occurrence. We use these probabilities as surrogates
or habitat quality (Hebblewhite et al., 2011). Roads are known to be
ignificant barriers to caribou movement (Beauchesne et al., 2013;
yer et al., 2002) so we defined the major paved roads (Fig. 1) as

emi-permeable barriers to movement (Kramer-Schadt et al., 2004;
iegand et al., 2004). The presence or absence of paved roads
as determined at the cell level. Finally, many caribou popula-

ions exhibit fidelity to various sites, among which breeding and
ating sites (Faille et al., 2010; Metsaranta, 2008; Schaefer and
ahoney, 2013). The mating season for the Atlantic-Gaspésie cari-

ou is defined from September 15th to November 1st (Bergerud,
973; Lalonde and Michaud, 2013). VHF data showed caribou clus-
ering at high-elevation sites during the peak of the mating season.

e defined three mating areas, using a 50% kernel density on sub-
opulation locations during the mating season.

Many ungulates exhibit at least two movement behaviors which
an be distinguished as intra-patch or inter-patch movements
Johnson et al., 2002), possibly corresponding to “encamped” and
exploratory” behavioral states (Morales et al., 2004). We assumed
hese behaviors to be related to habitat quality and accordingly we
istinguished “good habitat quality” movements from “low habitat
uality” movements. Empirical kernel density functions of qual-

ty values at recorded VHF locations were bimodal within seasons
Fig. 2). We defined the minimum density between the two peaks as
he quality threshold between the low-HQ and the good-HQ behav-
ors. The estimated summer and winter thresholds were 0.290 and
.382, respectively (Fig. 2). During the simulation, at locations with
uality value above or equal to the threshold, individuals followed a
ood-HQ movement behavior; otherwise individuals follow a low-
Q movement behavior. Above-threshold quality habitat is mostly

ound within the subpopulation ranges (around 67% of it), although
t does exist elsewhere in the area.

We created 35 individuals to represent the VHF-collared caribou
nd randomly placed them inside their own mating area. A com-
lete simulation lasted four years of 365 days. In each time step,

ulian date was incremented and landscape quality values were
pdated if the season changed. Individuals were then assigned a
ovement model according to their location, and the hypothe-

is under test (see Section 2.3). Then, a step length was sampled
ndependently for each individual from a lognormal distribution

ith state-dependent parameters; the parameter for mean step
ength varied with habitat quality (Table 1). In order to minimize the
umber of parameters to be estimated, we assumed that standard
eviation for step lengths did not vary with habitat quality (Table 1).

o avoid unrealistically large daily movements, step lengths were
runcated at 20 km. Each individual identified all unique locations
t the selected step length from its current position (Fig. 3a), and
hus the potential straight-line pathways it could follow (Fig. 3b).
delling 335 (2016) 24–34 27

Each pathway was evaluated with respect to each characteris-
tic (Table 2) of the model being evaluated (see Section 2.3) and
assigned a numeric value (Table 2). For each characteristic, the val-
ues were rescaled across all pathways to sum to 1 (see Appendix
A in Supplementary material for more details). These rescaled val-
ues were interpreted as the probabilities that the individual would
choose a given pathway with respect to the given characteristic
(e.g., habitat quality, paved road presence). The product of the
rescaled values was then calculated for each path, and rescaled
again to sum to 1 over all paths. The results were finally interpreted
as per-pathway movement probabilities, assuming that each char-
acteristic was assessed independently. Finally, one pathway was
randomly drawn based on these probabilities (Fig. 3c) and the indi-
vidual moved to the pathway endpoint (Fig. 3d). This straight line
was not intended to represent an exact caribou trajectory at fine
scale, but rather an emergent net displacement over a day with
habitats that caribou potentially went through (Fortin et al., 2005).
At the end of a run, we produced a map of landscape use as the
number of caribou visits per cell over the last three years of the
simulation. The maps were created by counting all cells intersect-
ing the straight-line pathways of each movement. The first year of
movement was not included in the map generation so as to limit
the effect of initial conditions.

2.3. Movement models

We simulated good-HQ movement behavior using a habitat-
mediated random walk model to represent low correlation
movements (e.g., foraging; Morales et al., 2004). To explain the
caribou low-HQ movement behavior we tested three alterna-
tive movement hypotheses: a hm-RW, the same as the good-HQ
movement to represent a single-behavior movement strategy; a
habitat-mediated biased correlated random walk (Van Moorter
et al., 2009); and a habitat-mediated foray loop (Conradt et al.,
2003). To test these as alternative models, one of the three low-
HQ movement behaviors was chosen to apply to all individuals
throughout a simulation run.

To test which mechanism best represents the caribou move-
ment displayed in our telemetry data, we created six different
SE-IBMs (M1–M6). M1 was a single movement-behavior model
where individuals followed a hm-RW for the good-HQ and low-HQ
movement behaviors. M3 and M5 were two-behavior movement
models; individuals followed a hm-RW for the good-HQ movement
behavior and either a hm-BCRW (M3) or a hm-FL (M5) for the low-
HW movement behavior. M2, M4 and M6 were respectively the
same as M1, M3 and M5 where we added the mating area attraction.
Pathway characteristics (Table 2) used in the alternate movement
models were as follows:

• M1 ∼ habitat quality + paved road presence
• M2 ∼ M1 + mating area attraction
• M3good ∼ M1;

M3low ∼ habitat quality + paved road presence + correlation + bias

• M4good ∼ M3good + mating area attraction;

M4low ∼ M3low + mating area attraction

• M5good ∼ M1;
M5low ∼ habitat quality + paved road presence + foray loop

• M6good ∼ M5good + mating area attraction;
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Fig. 2. Kernel density estimates of habitat quality values at VHF locations for summer (800 locations) and winter (770 locations). The thresholds separating good and low
habitat quality behaviors are shown.

Table 1
Model parameters to be estimated with the range of values tested within the POM strategy and their unit.

Parameter to be estimated Range tested Unit

�sl.good Mean of the lognormal distribution for the step length simulation in good quality habitat [3;8] Log(m)
�sl.low Mean of the lognormal distribution for the step length simulation in low quality habitat [3;8] Log(m)
�sl Standard deviation of the lognormal distribution for the step length simulation [0.5;1.5] Log(m)
pcross Probability for a caribou to cross a paved road [0;1]
�ma Standard deviation of the truncated Normal distribution for the mating area attraction [0;180] Degree
�c Standard deviation of the truncated Normal distribution for the correlation movement [0;180] Degree
maxdist.bias Maximum distance for the bias to occurs between the individual position and the closest area of good quality [0;50] Km
�b Standard deviation of the truncated Normal distribution for the biased movement [0;180] Degree
maxsteps.loop Maximum step length of the outward portion of the foray loop [0;20] Step
�fl Standard deviation of the truncated Normal distribution for the foray loop movement [0;180] Degree

Fig. 3. Movement illustrations of one daily time step for one individual. (a) A step length is sampled. (b) All unique pathways are identified, going from the individual current
position to every unique cell of the gridded landscape at the sampled distance. (c) One pathway is selected (thick line) based on probabilities derived from the pathway
characteristics of the movement model followed by the individual. (d) The individual moves to the end of the selected pathway.



S. Bauduin et al. / Ecological Modelling 335 (2016) 24–34 29

Table 2
Pathway characteristics and index values used to assign pathway probabilities (see Appendix A in Supplementary material for more details).

Pathway characteristic Index value

Habitat quality Mean quality value for the cells composing the pathway
Paved road presence Probability pcross of crossing a paved road for a caribou raised to the number of road crossing the pathway
Mating area attraction Probability from a truncated Normal distribution (−180◦ and 180◦) with mean equal 0 and standard deviation �ma of

the angle between the pathway direction and the direction towards the individual mating area
Correlation Probability from a truncated Normal distribution (−180◦ and 180◦) with mean equal 0 and standard deviation �c of

the angle between the pathway direction and the individual current heading
Bias Probability from a truncated Normal distribution (−180◦ and 180◦) with mean equal 0 and standard deviation �b of
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the angle between the pathway
Foray loop Probability from a truncated No

the angle between the pathway

M6low ∼ M5low + mating area attraction
As explained in the previous section, all pathway characteris-

ics included in a given model were considered to be independent.
sing these models, we tested three different mechanisms to
xplain caribou range fidelity and extra-range movement: an
ttraction to a mating area during mating season, a bias toward
lose areas of good quality and a foray loop movement. If mating
rea attraction occurred (M2, M4 and M6), we assumed that indi-
iduals favored pathways leading towards their mating area during
ating season. Under the bias models (M3 and M4), pathways

eading individuals towards the closest area of good quality were
referred. The bias relies on some combination of habitat sensing at
horter ranges and of memory at longer ranges. Because the biases
re implemented as probability distributions on movement angles,
here is no supposition that sensing is necessarily of high accu-
acy or that recall is total. We included a parameter maxdist.bias for
he maximum distance from good habitat for which bias occurred
Schultz and Crone, 2001). We further included a correlation in the
iased movement; individuals should also tend to continue moving

n the same direction by favoring pathways minimizing rotation
f their current heading. Under the foray loop models (M5 and
6), individuals explore their surroundings by orienting away from

heir last visited good habitat. If a good habitat is not found on the
utward path within the maximum number of steps, maxsteps.loop,
ndividuals close the loop by reorienting subsequent steps towards
heir last known good habitat location.

.4. Model parameterization

We estimated the unknown parameters for each model (Table 1)
ith a POM strategy. POM requires the identification of emergent
atterns produced by the model which can be compared to the
bserved data. We identified three such patterns: emergence of
ubpopulations, frequency of road crossings, and distributions of
istances moved. These three patterns were not spatial per se. We
onsidered them pseudo-spatial as they represented specific fea-
ures of the Atlantic-Gaspésie caribou movement, derived from the
patial VHF telemetry data in combination with the location of tun-
ra habitats and roads. They are considered primary patterns as
hey represent important characteristics of the caribou movement
hat we sought to reproduce (Latombe et al., 2011). Simulated cari-
ou locations were extracted at time steps corresponding to the
ates of VHF locations for each individual to define the patterns for
he simulation runs.

Each simulated caribou had a mating area associated and
herefore belonged to the subpopulation which had its range con-
aining the individual mating area. For each subpopulation range,
e counted the number of simulated locations from individuals

elonging to that subpopulation which occurred inside the associ-

ted range. These were compared with the corresponding values
rom the observational VHF data by taking the absolute deviations
ADs = |x − y|) We obtained four ADs for this pattern, one for the
ogan caribou, one for the Albert caribou and two for the two parts
tion and the direction towards the closest area of good quality
istribution (−180◦ and 180◦) with mean equal 0 and standard deviation �fl of

tion and the direction away or towards the last visited habitat of good quality

McGerrigle range (Fig. 1). Similarly, we calculated three ADs of the
number of road crossings events, one for each subpopulation. A
crossing was defined when consecutive locations were on oppo-
site sides of a paved road (Fig. 1). As an AD statistic approached
zero, the pattern emerging from the simulation approached the pat-
tern in the observed data. Finally, we compared the distributions
of distances between consecutive locations for each subpopula-
tion, as follows. We first calculated the POMDEV statistics between
the distributions of simulated and observed distances. A POMDEV
statistic indicates a relative deviance between two distributions
“[correponding] to twice the sum of the log of an approximate like-
lihood given by the approximating function of density from the
simulation results applied on the field data” (Piou et al., 2009).
We then calculated null indices by comparing the distributions
of observed movement distances with distributions obtained by
drawing random points inside the 100% minimum convex polygon
of the telemetry data. To allow model comparisons, we calculated
three McFadden’s R2 as 1 minus the ratio of simulated and null
deviance statistics (McFadden, 1974), one for each subpopulation.
As McFadden’s R2 statistic approached 1, the pattern of distances in
the simulation approached the equivalent pattern in the observed
data.

We used a best-fit calibration method (Railsback and Grimm,
2012) to estimate model parameters (Table 1). We ran 100,000
simulations for each model using a HTCondor cluster (Thain et al.,
2005). While more simulations may have resulted in more precise
parameter estimates, ours appeared adequate to obtain param-
eter estimates with reasonable confidence intervals regarding
computation time. For each simulation, parameter values were
sampled independently from uniform distributions (Table 1). For
each model, we selected a subset of the runs whose outputs best
reproduced all the patterns simultaneously. We used thresholds
to define that a pattern was reproduced. We created a quantile
value Q which we incremented from 0 to 1 by 0.01. At each Q value
tested, we identified, independently for each pattern, the Q-ile sim-
ulation run and its pattern statistic associated which stood for the
pattern threshold. For example, at Q = 0.01, the threshold for the
Logan subpopulation emergence pattern is equal to the AD statis-
tic of that pattern for the (Q × 100,000) 1000th simulation when
ranked for this particular statistic from low to high. For a simula-
tion to be selected, the AD statistic for each subpopulation range
patterns (n = 4) and for each road crossing patterns (n = 3) must be
lower than the defined thresholds and the McFadden’s R2 statistics
for each distance moved patterns (n = 3) must be above the thresh-
olds. We increased Q until at most 500 of the 100,000 simulations
were selected. The number of simulations selected was a trade-off
between too few simulations to obtain reliable parameter estimates
and too many that included noise. From this selection, we removed
simulations where individuals were stuck on a single landscape

cell, an infrequent occurrence. We identified these situations from
the output maps of landscape use. We defined a cell in a map as
an outlier when its number of visits was greater than 10 times the
0.975 quantile number of visits for that map. We removed simula-
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Table 3
Parameter estimates with 95% confidence intervals for each model.

�sl.good �sl.low �sl pcross �ma �c maxdist.bias �b maxsteps.loop �fl

M1 5.00
[4.68;6.09]

4.11
[3.92;4.27]

1.31
[1.03;1.36]

0.14
[0.10;0.79]

M2 5.66
[5.39;6.35]

4.09
[3.90;5.27]

1.10
[0.89;1.31]

0.51
[0.09;0.57]

31.00
[21.49;51.43]

M3 5.48
[5.29;6.20]

4.41
[4.23;4.59]

1.14
[0.78;1.37]

0.20
[0.12;0.51]

86.65
[79.96;98.28]

25.64
[11.84;41.39]

87.01
[58.47;143.37]

M4 5.97
[5.17;6.38]

4.59
[3.68;5.25]

1.34
[0.96;1.37]

0.17
[0.13;0.35]

85.95
[20.08;105.68]

113.42
[91.94;139.14]

20.45
[18.30;43.54]

121.53
[97.93;153.94]

M5 5.53 3.85 1.26 0.14 3.53 124.70
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[5.26;6.72] [3.54;5.19] [1.05;1.33] [0.10;0.20]
M6 5.98

[5.81;6.39]
4.92
[3.87;5.17]

1.36
[1.02;1.39]

0.12
[0.09;0.18]

144.77
[26.42;

ions from the previous selection where their output map contained
uch outlier cells. We used kernel density estimators to determine
he mode of the parameter values from the selected simulations.

e interpreted these modes, which are values close to the ones
ost commonly used in the selected simulations, as the parameter

stimates. We estimated 95% confidence intervals of the parame-
er estimates with an Efron bootstrapping method. We re-sampled
ith replacement the parameter values from the selected simu-

ations and defined the new mode. We iterated this step 10,000
imes for each parameter. The 2.5th and 97.5th percentiles of the

ode distributions obtained by bootstrap defined the confidence
ntervals of the parameters.

.5. Movement hypothesis testing

Using the six fitted models, we assessed which model, and which
orresponding hypothesis was best supported by the observational
ata, again using a POM strategy (Railsback and Grimm, 2012).
e ran each model 10,000 times, sampling parameters from the

mpirical density functions defined over the 95% confidence inter-
als of the bootstrapped estimates. Fewer simulations were needed
han for model parameterization. We used the same 10 compari-
on statistics described above and we calculated the mean statistic
alues across the 10,000 runs for each model. Then, we summed
he statistic means for each global pattern. We selected the model
ith the lowest MAD sum for the emergence of subpopulations,

he lowest MAD sum for road crossing frequency and the highest
um of McFadden’s R2 means for the distances moved as the model
est supported by the data.

.6. Model validation

We conducted an internal validation to test the ability of the
est model to reproduce the data with which it was parameterized.
e ran the model 10,000 times and, for each simulation, recorded

he values for the subpopulation emergence and road crossing pat-
erns. That is, we recorded the actual pattern values (e.g., number
f location inside a range), not the AD statistics. AD statistics were
seful to compare models but cannot be used to test for the robust-
ess of a single model. We tested if the empirical pattern values

ell within the pattern’s simulated 95% coverage (Kramer-Schadt
t al., 2007; Wiegand et al., 2004). The distances moved recorded
er simulation were distributions, not single values. We could not
pply the coverage test used for the other two patterns, and so did
ot use the distances moved pattern in model validation.

.7. Landscape use estimate and comparison with habitat

election model

Using the selected best movement model, we ran 10,000 simula-
ions, with 20 individuals created in each subpopulation to reduce
[2.82;14.09] [76.09;141.25

]
5.68
[4.64;16.80]

134.91
[74.32;151.12

dependency on the current population distribution. We summed
the resultant landscape use maps to represent the potential land-
scape use by caribou during the period of the VHF surveys. A
seasonally averaged map of relative occurrence probabilities from
the two RSF models was constructed as an alternate estimate of
potential landscape use. To summarize the differences between the
two measures, we calculated the mean landscape use as a function
of distance from the nearest subpopulation range (results within
the ranges were not included). We rescaled values to the range
[0,1] to facilitate comparisons.

3. Results

3.1. Model parameterizations and selection

The Q values used to select the simulations best reproducing the
data were: 0.43, 0.45, 0.46, 0.48, 0.47, and 0.46 for models M1–M6,
respectively. For all six models, estimates of mean step length were
higher in good habitats than in low quality habitats (Table 3). In
good habitats, mean daily net distance moved ranged from 350.0 m
to 997.1 m whereas in low quality habitats, estimates ranged from
103.9 m to 345.4 m. Estimated road crossing probabilities were low
for all models, ranged from 0.12 to 0.51 (Table 3).

Model M6, with a foray loop behavior in low quality habitat and
a mating area attraction was the most consistent with the caribou
VHF data. M6 yielded the lowest MAD sum for the subpopulation
range pattern, the second lowest MAD sum for road crossings, and
the highest McFadden’s R2 mean sum for the distribution of dis-
tances moved (Table 4). M5, with the foray loop behavior as in M6,
but without mating area attraction, also performed well (Table 4).
It was the best model with respect to road crossings and the second
best for the subpopulation range pattern.

3.2. Model validation

The best model (M6) was consistent with the data, according to
our internal validation tests. For six out of the seven patterns tested,
values derived from the VHF data fell within the 95% coverages of
the simulation output values (Table 5). The presence of McGerrigle
caribou in the Vallières-St-Réal part of the subpopulation range was
under-represented by the simulations; simulated 95% coverage of
[0;34] did not include the total of 56 occurrences in the VHF survey
data (Table 5). However, some of the 10,000 simulations did repro-
duce or exceed this indicator; the maximum number of McGerrigle
caribou locations simulated in the Vallières-St-Réal area was 93.

3.3. Landscape use estimate
The highest simulated landscape use rates were concentrated
in the center of each subpopulation range, with a very low poten-
tial landscape use outside these ranges (Fig. 4). Potential landscape
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Table 4
Pattern statistics for the model selection process. White columns are the statistic means over the 10,000 simulations and grey columns are the sum of these statistic means
over each of the three global patterns. Bold values highlight the model which performed the best for that statistic.

MAD
SRL

MAD
SRA

MAD
SRMcG

MAD
SRVall

Sum
MADs
SR.

MAD
XingL

MAD
XingA

MAD
XingMcG

Sum
MADs
Xing

McF.R2
L

mean
McF.R2

A

mean
McF.R2

McG

mean
Sum means
McF.R2

M1 134.99 71.48 85.85 49.82 342.14 0.04 2.36 0.35 2.75 0.55 0.58 0.49 1.62
M2 81.11 54.49 84.70 52.53 272.83 0.08 2.27 0.55 2.90 0.58 0.62 0.52 1.72
M3 84.48 95.16 115.32 47.96 342.92 0.04 2.15 0.88 3.07 0.57 0.61 0.51 1.69
M4 74.22 70.87 98.87 47.60 291.56 0.04 2.10 0.82 2.96 0.59 0.63 0.53 1.75
M5 77.46 60.06 72.04 50.16 259.72 0.02 2.14 0.20 2.36 0.59 0.62 0.53 1.74
M6 80.07 53.09 60.69 48.86 242.71 0.04 2.04 0.30 2.38 0.60 0.63 0.54 1.77

SR = subpopulation range pattern, L = Logan, A = Albert, McG = McGerrigle, Vall = Vallières-St-Réal, Xing = road crossing pattern, McF.R2 = McFadden’s R2.

Table 5
Pattern values from the VHF data and 95% coverages from 10,000 simulations with the best model.

SRL SRA SRMcG SRVall XingL XingA XingMcG

VHF data 266 279 357 56 0 3 0
95% range [77;334] [139;430] [236;592] [0;34] [0;1] [0;8] [0;4]

SR = subpopulation range pattern, L = Logan, A = Albert, McG = McGerrigle, Vall = Vallières-St-Réal, Xings = road crossing pattern.
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se outside the Gaspésie National Park was also low. These results
ere expected and were already displayed by the VHF locations

hemselves. However, there was the suggestion of two corridors
etween the Logan and Albert subpopulation ranges, indicating
ossible movements of individuals between the two subpopula-
ions (Fig. 4). This was not revealed by the VHF data. The model

lso identified areas of high potential use south of the Albert sub-
opulation range, where one VHF location was recorded, and to
he west and north of the Logan subpopulation range where no
ocations were recorded (Fig. 4).
od of the VHF surveys, with the Gaspésie National Park boundary overlaid. Inset:
) shown as thin white lines.

3.4. Comparison of SE-IBM and RSF landscape use estimates

According to both movement and RSF models, caribou landscape
use decreased sharply with distance from the nearest subpopu-
lation ranges (Fig. 5). The models behaved similarly for distances
up to 3 or 4 km. At greater distances, SE-IBM landscape use rates

decreased rapidly, approaching 0 at a distance of 15 km. In contrast,
RSF landscape use estimates remained relatively high, between
0.18 and 0.53, at distances of up to 100 km from the subpopulation
ranges.



32 S. Bauduin et al. / Ecological Mo

F
t

4

a
r
b
b
p
m
t
p
b
t
t
m
r
m
b
p
e
m

i
m
a
i
(
b
h
t
t
t
(
r
W
g
l
l
i
b
i
T
c
t
a

ig. 5. Atlantic-Gaspésie caribou relative landscape use as a function of distance to
he nearest subpopulation range, calculated from RSF and SE-IBM models.

. Discussion

By using spatially explicit individual-based models coupled with
pattern-oriented modeling strategy and spatially and tempo-

ally sparse data obtained from VHF surveys, we were able to
uild a robust movement model for the Atlantic-Gaspésie cari-
ou population and estimate its landscape use. All the movement
atterns defined with the telemetry data, except one, were com-
only reproduced by simulations. The one exception, namely

he number of individual occurrences in a small, disjunct com-
onent of one the three subpopulation ranges, was reproduced
y the best supported model, but with low probability. The pat-
erns used for model parameterization and selection represented
hree distinct and characteristic features of the observed move-

ents of the Atlantic-Gaspésie caribou: distinct subpopulation
anges associated with site fidelity, road avoidance, and daily move-
ent distances. They also seemed the most informative that could

e derived from the VHF locations. Using multiple independent
atterns ensured a strong filtering of the different model param-
terizations and movement hypotheses when selecting our best
odel (Grimm and Railsback, 2012; Latombe et al., 2011).
The VHF location data contained enough information to clearly

dentify habitat-specific movement behaviors. The best supported
odels (M4, M5 and M6) all included distinct behaviors in low

nd high quality habitats, as have been found (based on GPS data)
n another caribou population (Johnson et al., 2002) and for elk
Morales et al., 2004). The VHF data was further able to discriminate
etween two hypotheses on movement behavior in low quality
abitats. Foray loop behavior better reproduced characteristics of
he data than did a biased correlated random walk. This suggests
hat caribou voluntarily moved away from good quality habitats
o explore their surroundings, possibly in search of new resources
e.g., food, space, shelter, other individuals, etc.) embedded within
elatively hostile or low quality habitats (Conradt et al., 2003).

hen such forays were unsuccessful, individuals returned to the
ood quality areas, which were mostly located inside the subpopu-
ation ranges. The estimated number of daily time steps per foray
oop was six steps (Table 3). Thus, the transit returning to high qual-
ty habitat, the second phase of an unsuccessful foray loop, would be
etter explained by memory rather than a perceptual process lead-

ng to directional bias (Fagan et al., 2013; Van Moorter et al., 2009).

he VHF data also sufficed to identify a temporal component to the
aribou behavior. Adding mating season range attraction improved
he model ability to replicate patterns in the data. The model mech-
nisms suggested that Atlantic-Gaspésie caribou fidelity to their
delling 335 (2016) 24–34

range was based at least in part on intrinsic behavior and not solely
on responses to spatially varying habitat quality (Faille et al., 2010).
Finally, the VHF data led to low estimates of paved road cross-
ing probabilities which is consistent with known road avoidance
behavior for this species (Beauchesne et al., 2013; Dyer et al., 2002;
Leblond et al., 2013), as well for this population (Gaudry, 2013).

Estimated mean step lengths were larger in good quality than
in low quality habitats, which was counter-intuitive. Indeed, sev-
eral sources have shown the opposite pattern; animals remain for
shorter times, and thus to travel faster, within in low quality habi-
tats, and remain longer in good quality habitats to benefit from
better environmental conditions (Johnson et al., 2002; Morales
et al., 2004). However, our findings may reflect characteristics of
the Gaspésie landscape. The tops of the mountains, where much
of the good quality, safer habitats for caribou are found, have very
low tree cover (i.e., alpine tundra) and moving around is easy. Val-
ley bottoms, which are considered low quality habitats, have dense
tree covers of balsam fir and other tree and shrub species (Nadeau
Fortin, 2015), potentially slowing or inhibiting caribou movement.

The landscape use map derived from the movement simula-
tions provides a spatial understanding of where the population
potentially moved through and interacted with its landscape, over
the survey period. High landscape use was predicted, as expected,
for the areas where VHF locations were recorded; in this case, at
high elevation sites where we defined the subpopulations ranges
(Mosnier et al., 2003). But the more interesting results were where
high landscape use was predicted from environmental conditions
and individual movement behavior in areas where no caribou were
observed (Marucco and McIntire, 2010). Such predictions can only
be obtained by simulations. Our models seemed to reveal move-
ment corridors between the Logan and the Albert ranges, even
though no individual exchange was recorded between the two
subpopulations in these data. Clearly, because the current Logan
population was established by recolonization from the Albert pop-
ulation during the late 1990s, such connections exist. A better
connectivity analysis would be needed to explore if individual
exchanges were likely or, even though these areas were likely used,
individuals were still faithful to their subpopulation (Lookingbill
et al., 2010). Some areas outside the Gaspésie National Park, where
no VHF locations were recorded, nevertheless showed a high poten-
tial for landscape use; these areas were reachable by the caribou.
These regions could indicate specific opportunities for expanding
the park or at least for adding some measures of habitat protection
outside the park to improve caribou conservation (as suggested in
St-Laurent et al., 2009).

Defining good quality areas that individuals can actually access
is one of the main differences between the outputs from the spa-
tially explicit individual-based model and the results from the
empirical habitat selection model (i.e., RSF). The RSF model sug-
gested large areas of usable, but sub-optimal, habitats distant from
the current subpopulation ranges. The spatial constraints added
by the individual-based model as well as the spatial and tempo-
ral components of individual movement behavior had the effect
of making it extremely improbable that members of the existing
population would reach these more distant areas (Grosman et al.,
2011; Marucco and McIntire, 2010). Movement simulations there-
fore showed very low potential landscape use at distance above
a few kilometers from the subpopulation ranges. This will be fur-
ther exacerbated because we found two behavioral reasons for this
limitation, namely return to mating area and foray loops. In other
words, they may be compelled to return even if good habitat were
found outside. The movement model, if tied to a demographic pop-

ulation model (Marucco and McIntire, 2010; Wiegand et al., 2004),
could be used on a longer time scale to identify stepping stones that
enable the population to reach more distant, high quality, habitats
within the peninsula.



al Mo

5

p
o
h
b
o
d
q
u
r
c
fi
a
(
t
m
o
e
o
t
i
i
c
s

A

n
a
l
s
P
r
m
m

A

t
0

R

A

B

B

B

B

C

C

S. Bauduin et al. / Ecologic

. Conclusions

Identifying mechanisms of animal movement and estimating
otential landscape use does not necessarily require large amounts
f high resolution telemetry data, provided some basics of species
abitat preferences are known. Using spatially explicit individual-
ased models and pattern-oriented modeling techniques could
vercome the limitations of other movement models with such
ata (e.g., step selection functions). We were able to identify and
uantify drivers of individual movement behaviors, and thus sim-
lated spatial landscape use at the population level, using only
elatively few locations obtained by VHF telemetry. These models
an identify for managers landscape features that could be modi-
ed to improve population movement (e.g., paved roads), as well
s intrinsic behavioral characteristics that must be accommodated
e.g., mating site fidelity). Estimating potential landscape use of
he animal population gives managers a spatial reference of where

ovement is facilitated or impeded, defining priority areas to work
n for the protection or recovery of endangered populations. For
xample it can help to define areas to apply new protection rules
r to design movement corridors for the studied species. Despite
he above-mentioned limits of the VHF data, they represent an
mportant resource for conservation applications, especially when
mmediate actions are needed. The methods used in this study
ould be applied on other populations or species, facilitating con-
ervation studies when observational data are few.
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