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Abstract: Wildfires are a dominant disturbance to boreal forests, and in North America, they typically
cause widespread tree mortality. Forest fire burn severity is often measured at a plot scale using
the Composite Burn Index (CBI), which was originally developed as a means of assigning severity
levels to the Normalized Burn Ratio (NBR) computed from Landsat satellite imagery. Our study
investigated the potential to map biophysical indicators of burn severity (residual green vegetation
and charred organic surface) at very high (3 cm) resolution, using color orthomosaics and vegetation
height models derived from UAV-based photographic surveys and Structure from Motion methods.
These indicators were scaled to 30 m resolution Landsat pixel footprints and compared to the
post-burn NBR (post-NBR) and differenced NBR (dNBR) ratios computed from pre- and post-fire
Landsat imagery. The post-NBR showed the strongest relationship to both the fraction of charred
surface (exponential R2 = 0.79) and the fraction of green crown vegetation above 5 m (exponential
R2 = 0.81), while the dNBR was more closely related to the total green vegetation fraction (exponential
R2 = 0.69). Additionally, the UAV green fraction and Landsat indices could individually explain
more than 50% of the variance in the overall CBI measured in 39 plots. These results provide a
proof-of-concept for using low-cost UAV photogrammetric mapping to quantify key measures of
boreal burn severity at landscape scales, which could be used to calibrate and assign a biophysical
meaning to Landsat spectral indices for mapping severity at regional scales.

Keywords: forest fire; burn severity; composite burn index; normalized burn ratio; unmanned aerial
vehicle; UAV; UAS; Landsat

1. Introduction

Wildfires are a major cause of disturbance in North American boreal forests, burning an annual
average of approximately 10,000 km2 in the 1960’s and more than 31,000 km2 in the 1990’s [1]. There is
high interannual variability in the area burned [2], and boreal fires can exert a considerable influence
on the species composition, diversity, and stability of many forest ecosystems [3]. Fires can cause
large fluxes of carbon within an ecosystem [4] and release a tremendous quantity of carbon to the
atmosphere [5]. This can lead to a boreal forest becoming a significant net carbon source, particularly
when combined with severe insect disturbances [2]. The near-complete mortality of forest vegetation
after boreal fires in North America has modified wildlife habitats, including the elimination of lichen that
caribou forage upon [6]. In colder permafrost environments, the active layer depth also often shows a
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long-term increase after a fire, due to the removal of the insulating surface organic layer [7]. Of particular
concern is the projected increase in the area, frequency, and severity of fire under a changing climate, and
its potential to exacerbate changes in vegetation succession and ecosystem function [8–10].

Burn severity is a term used to describe the magnitude of ecological change caused by fire [11].
Knowledge of burn severity is important for predicting the post-fire vegetation community [12],
assessing the availability of residual seed sources to promote regrowth [13], predicting long-term
forest successional patterns [13], and determining changes in bird abundance [14]. Boreal burn severity
has been assessed in North America using a variety of methods that span spatial scales from plot
measurements [15–17], to high resolution air photos [18], airborne hyperspectral imagery [19], airborne
Lidar [20], and satellite imagery for mapping at landscape to regional scales [21].

A commonly applied field method for assessing burn severity in forests is the Composite Burn
Index (CBI) [22]. The CBI provides a numerical index of vegetation damage from fire by integrating
visual estimates of damage, stratified by five vertical layers (substrate, herbs and low shrubs < 1 m, tall
shrubs and saplings 1–5 m, sub-canopy trees, and canopy trees), using a scale of 0 (unchanged) to 3
(high severity). The CBI provides a rapid means of assessing burn severity that integrates a variety
of ecologically significant burn severity indicators. Some limitations and challenges in applying the
CBI include: (1) the qualitative nature of its assessments, which could vary among observers [23];
(2) the difficulty and cost involved in accessing remote burn sites on the ground; (3) the potentially
large number of plots required to represent the range of conditions in a large, heterogeneous burned
area; (4) a need to infer pre-fire fuel conditions for assessing consumption and mortality [23]; and
(5) a limited ability to quantify organic layer consumption [24], which is an important measure of
severity in northern boreal forests. Despite these limitations, the CBI is a widely used field method in
burn severity assessment [23].

A wide range of satellite-based approaches have also been developed to map burn severity over
larger forested areas [11,25,26]. A common method is to compute the difference between the pre-fire
and post-fire Normalized Burn Ratio (NBR), which is based on the near-infrared and shortwave
infrared bands from 30 m resolution Landsat imagery [21,22]. The difference in the NBR (dNBR) has
been effective for mapping burn severity in Canadian forests [16,27,28], but less so for Alaskan spruce
forests [29,30], where the severity strongly depends on the depth of burning in the surface layer [29].
Since dNBR only measures a spectral response change, it is the calibration with the plot-based CBI that
provides the ability to transform larger-area dNBR values into maps of varying burn severity [22]—an
approach that has been applied across different regions of boreal forest [21]. For example, a non-linear
relationship between CBI and dNBR was derived for several boreal fires within Western Canada,
by Hall et al. [16]. Some considerations for applying this CBI-Landsat calibration approach include:
(1) the requirement to identify CBI plots that should be relatively homogeneous at a 90 m, 3-by-3
Landsat pixel scale; (2) the need for cloud-free, post-burn Landsat imagery that closely matches the CBI
sampling date; and (3) an understanding of the complex physical relationship between CBI’s multiple,
integrated measures of severity and spectral changes, measured using satellite-based indices [11,23,31].

Driven by a need to acquire highly detailed information over larger areas, relative to field
plots, unmanned aerial vehicles (UAVs) have been growing in popularity as a means of conducting
inexpensive, on-demand remote sensing that can bridge measurement scales between field plots and
satellite imagery [32]. While there have been a number of applications of thermal sensors on UAVs to
map actively burning fires [26], there has been a limited use of UAVs for assessing vegetation burn
severity. One application involved the use of a multispectral imager mounted on a large, military-grade
UAV system, to generate NBR maps in the Western US [33]. More recently, a post-fire digital terrain
model (DTM) derived from a UAV survey was differenced with a pre-fire DTM from airborne LiDAR,
to estimate the depth of surface burning in a tropical peatland [34]. The purpose of our study was
to assess the potential for using a small, multicopter UAV to map indicators of boreal forest burn
severity at landscape scales, and to up-scale this information to calibrate Landsat spectral indices,
thus representing biophysically meaningful measures of severity over larger areas. As a result, we
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also conducted a limited comparison of plot-based CBI values with both UAV and Landsat indices of
burn severity.

2. Materials and Methods

2.1. Study Area and Fires

This study was conducted 120 km southwest of Yellowknife, NWT, Canada, at three sites within
3 km of each other that burned during summer 2014 (Figure 1). The affected forest lies within the
Great Slave Plain High Boreal Ecoregion, which contains closed to open canopy stands of pure and
mixed tree species, comprising jack pine (Pinus banksiana Lamb.), white spruce (Picea glauca (Moench)
Voss), black spruce (Picea mariana (Mill) B.B.P.), and trembling aspen (Populus tremuloides Michx.) [35].
A widespread fire outbreak occurred in NWT in 2014, during extreme fire danger conditions that
affected 3.4 million ha of forest lying primarily in the region surrounding Yellowknife. CBI plot
measurements collected by the Canadian Forest Service and Government of NWT at select burned sites
(n = 54) in the larger region, had an average combined CBI score of 2.03, indicating a moderate-to-high
average burn severity. These plots were surveyed in summer 2015 and 2016, according to the methods
described in Hall et al. [16]. Similar to [36], we believe that the sampling of some sites two years after
the fire did not negatively impact our ability to determine burn severity in this moderate-to-high
severity burn. The CBI estimates of both years were combined into a single dataset for analysis with
the remote sensing indices. We used UAV and satellite sensor data collected in the summer following
burning to provide an extended assessment of severity that accounted for delayed mortality and early
vegetation regeneration [22].
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Figure 1. Location of study area in Northwest Territories (blue circle) showing the extent of regional
burning in 2014 (dark red patches), visible in a Proba-V satellite image composite from September 2014.

2.2. UAV Imagery and Processing

UAV-based photographic surveys of the burned study sites were conducted on the 4–5 August 2015
using a PX8 octocopter developed by Xpedition Robotics. This octocoper carried the Pixhawk flight
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controller running Arducopter 3.2 software and a 24 megapixel Sony a6000 mirrorless camera with a
20 mm Sony pancake lens. Mission Planner software was used to plan autonomous flights at 90 m
above ground level in a grid pattern, to capture nadir imagery with ~2 cm resolution (Figure 2), 85%
forward overlap, and 68% side overlap. Three separate burned sites containing a range of severities
and fuel types were surveyed (Table 1). A recent forest inventory by the Government of NWT, based on
2013 air photos, was used to identify the dominant pre-burn tree species within each survey area.
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Figure 2. Portion of a 24 megapixel photo taken over survey area #3 using a Sony a6000 camera
mounted to an octocopter UAV. Portions of the fire completely consumed the surface organic layer,
exposing the bright underlying mineral soil.

Table 1. Details of the 2014 burned sites surveyed using an octocopter UAV in early August, 2015.
The dominant tree species are listed in decreasing order of percent cover, where Sw = white spruce,
Sb = black spruce, A = trembling aspen, and Pj = jack pine.

Survey ID Surveyed
Area (ha)

# UAV
Photos

# 30 m Landsat
Pixels

# Forest
Inventory Units

Dominant
Tree Species

# CBI Plots
(2015, 2016)

1 49.7 1401 462 12 Sw, Sb, A 3, 24
2 9.3 285 66 2 Pj 1, 7
3 10.1 280 77 5 Pj, Sw, Sb 1, 3

The highly overlapping UAV photos were processed into dense 3D point clouds, 3 cm resolution
digital surface models (DSMs), and 3 cm resolution colour orthomosaics, using Pix4d mapper v2.0
software. Pix4d uses proprietary Structure from Motion (SfM) algorithms in an automated workflow to
match common features (keypoints) between corresponding images, apply a photogrammetric bundle
adjustment, and create dense 3D point clouds using multiview stereo matching [37]. The specific
settings used for Pix4d point cloud generation were: a half image-scale, optimal point density, and
a minimum of two matches, which resulted in point cloud densities of about 200 points per m3.
The point clouds were used in Pix4d to create DSMs representing the upper surface of all scene features,
which could then be applied to ortho-rectify and mosaic the photos, thus generating orthomosaics.
LAStools software was used to denoise and classify the point clouds into ground and non-ground
objects, before triangulating and then rasterizing the ground points into a bare earth (or digital terrain)
model. The heights of non-ground objects (e.g., all shrubs, dead-standing boles, green canopies)
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were normalized, relative to the bare earth elevations (e.g., mineral soil, scorched moss, completely
horizontal deadfall), which were subsequently triangulated and rasterized into a vegetation canopy
height model that represents the heights of all objects above ground level.

We focussed on two basic indicators of burn severity (residual green vegetation and charred
organic surface) that could be readily separated using UAV-based colour photographs and are known
to have a strong relationship to remotely sensed reflectance [19,38]. These UAV-based indicators are
also analogous to the subset of CBI factors that measure the surface duff condition (i.e., charring),
the frequency of surviving vegetation, and the percentage of unaltered crown foliage [22]. Several
visible-channel spectral indices were computed from the UAV orthomosaic digital numbers [39]
(Table 2), to classify charred surface and green vegetation, which may represent either residual
unburned moss and other vegetation, or early regeneration one year after a fire. A reference sample
representing burned areas (100 polygons containing 5311 pixels), and green ground and tree canopy
vegetation (100 polygons containing 3792 pixels), was manually digitized within the largest survey
region (#1), with the aid of the raw 2 cm resolution UAV photos and ground photos from three CBI
plots. These samples were used to compare the effectiveness of the different UAV indices for separating
green vegetation.

2.3. Satellite Imagery and Processing

Pre- and post-fire 30 m resolution Landsat-8 images were used to compute the post-fire NBR
(post-NBR) and the differenced Normalized Burn Ratio (dNBR) [22] (Table 2). Two Level-1T images
from Path 48 Row 17 were acquired from USGS GloVis for 17 July 2013 and 23 July 2015, that
provided near-anniversary, cloud- and smoke-free coverage of the surveyed sites. Radiance values
were calibrated and converted to top-of-atmosphere reflectance channels using USGS coefficients
following [40], and these were used to compute the burn severity indices.

Table 2. Description and formulation of UAV burn severity spectral indices, UAV burn severity
indicators derived from the UAV indices, and Landsat spectral burn severity indices investigated in
this study. NIR refers to Landsat’s near infrared channel and SWIR2 refers to the second shortwave
infrared channel centered at 2.2 µm.

Burn Severity Indices and Attributes Channel Combination/Description

UAV spectral indices

Excess Greenness (ExG) 2G − R − B
Normalized Greenness (NormG) G/(R + G + B)
Normalized Green-Red Ratio (NormG-R) (G − R)/(G + R)
Brightness R + G + B
Maximum RGB Difference (MaxDiff) Max(|B − G|, |B − R|, |R − G|)
Char Index (CI) Brightness + (MaxDiff × 15)

UAV burn severity indicators

Green Vegetation From thresholding ExG index
Green Crown Vegetation Green Vegetation above 5 m
Charred Surface From thresholding Char Index

Landsat spectral indices

Normalized Burn Ratio post-fire (post-NBR) (NIR − SWIR2)/(NIR + SWIR2)
Differenced NBR (dNBR) NBRpreburn − NBRpostburn

2.4. Data Analysis

The first three UAV spectral indices in Table 2 were assessed for their ability to discriminate
green vegetation from all other surface types, using a simple statistic (S) that provided a measure of
the index signal-to-noise ratio. A value greater than 1 indicates that the standard deviations of an
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index for separating burned surfaces and green vegetation do not overlap, allowing reasonable class
separation [41].

S = |xb − xg|/sb + sg (1)

where S = separability statistic, xb = mean UAV index value from burned surfaces, xg = mean UAV
index value from green vegetation, sb = standard deviation of index from burned surfaces, and
sg = standard deviation of index from green vegetation.

A simple Jenks classifier was applied to the spectral index that provided the highest separability,
to create a binary burned/green vegetation map. The Jenks classifier determined a class break value
that produced two natural groupings by minimizing each class’s average deviation from its mean,
while maximizing each class’s deviation from the other class’s mean.

A new UAV-based index called the Char Index was formulated, to highlight charred organic
surfaces (Table 2). This is a composite index based on the observation that charred surfaces have a very
low visible reflectance (quantified using a Brightness Index) and a flat visible reflectance spectrum
that produces the characteristic lack of colour [42] (quantified using a Maximum RGB Difference Index
or MaxDiff). A multiplier of 15 was applied to the MaxDiff term to give it a similar weighting in the
additive index. A threshold value of the Char Index was derived interactively, using the UAV imagery
as a reference to create a binary map of dark, charred surfaces. A tree shadow mask was applied
to the index to exclude shadows, which also have low Char Index values. We found that shadows
could be effectively separated from all other cover types, including the charred surface, when applying
a two-class Jenks classifier to the red channel (Figure 3d).

The 3 cm resolution map of green vegetation derived using the optimal greenness index was
aggregated within the footprints of overlapping 30 m resolution Landsat pixels, to compute a fraction
of green vegetation cover (i.e., Green Fraction). Similarly, the charred vegetation classification was
aggregated to derive a 30 m char fraction (i.e., Char Fraction). Of interest was a statistical comparison
of the up-scaled UAV-based indicators of burn severity and the Landsat burn severity indices. The UAV
vegetation canopy height model was also used to separate green tree crown vegetation (>5 m) in
the binary green vegetation classification (i.e., Green Tree Fraction). It is worth noting that direct
georeferencing of UAV photos using the onboard GPS typically provides 1–2 m accuracy in the
generated orthomosaic [43], compared to 12 m CE90 registration accuracy for Level-1T Landsat-8
imagery. Therefore, co-registration of the two datasets should normally be within 14 m, or one-half of
a Landsat pixel.

The 30 m pixels that comprised each of the three study areas (Table 1) were randomly partitioned
into model calibration (70%) and validation (30%) data sets. These data sets were then compared using
a two sample Kolmogorov-Smirnov test, to determine whether the empirical distribution functions
were statistically similar [44]. Several non-linear regression functions were examined using Data-Fit,
a curve fitting and data plotting software tool by Oakdale Engineering, to find the optimal model form
of best fit throughout the range of data, for both post-dNBR and dNBR as predictors of the UAV burn
severity indicators (i.e., by comparing the coefficient of multiple determination—adjusted R2, root
mean square error—RMSE, significance of model coefficients, simplicity of model form, and graphical
plots of model functions). The selected model was applied to the validation data set, from which the
predicted values were evaluated using the Wilcoxin signed-rank test to test for statistical differences
at the 5% level of significance. Standardized residual plots using the validation sample were also
constructed, to obtain insights into the distribution of the residuals over the range of post-dNBR
and dNBR.

The binary, UAV-based maps of green vegetation, green crown vegetation, and charred surface,
were also separately aggregated within the 30 m extents of the 39 of 54 CBI plots that were collected
within the study burns. This allowed for a separate comparison of the UAV metrics and Landsat
indices to the CBI burn severity scores, by again examining a range of non-linear regression functions.
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Figure 3. Portion of study area #1 showing (a) a 3 cm UAV photo-orthomosaic within study area #1
with burned and green vegetation; (b) the UAV Excess Greenness Index; (c) a binary classification of
green vegetation derived from thresholding the Excess Greenness Index; and (d) the Char Index, where
more highly charred areas with a low index value appear orange-red and masked tree shadows are
shown in black.

3. Results

The separability statistic (S) derived for each UAV index indicated that the Excess Greenness
(ExG) index (Figure 3b) provided the best discrimination of the burned and green vegetation samples
(S = 2.2), followed by NormG (S = 1.9) and NormG-R (S = 1.0). We therefore applied the binary classifier
to ExG and assessed the resulting map accuracy (Figure 3c) using the reference samples. The natural
breaks (Jenks) classification produced a very high accuracy, with only 68 of 5268 (1.3%) burned samples
and 5 of 3794 (0.13%) unburned samples being classified incorrectly. This high accuracy is the result of
the two classes’ ExG mean values being separated by more than two standard deviations (S = 2.2), and
the fact that reference samples were selected with a relatively high confidence and did not include
borderline cases, such as partially scorched crowns.

The two-sample Kolmogorov-Smirnov test indicated that the probability distributions of UAV and
Landsat index values from the model calibration (70%) and validation (30%) datasets were significantly
similar (p-values 0.32–0.64). A non-linear, exponential function in the form Y = abx was found to
be suitable for modeling the relationships between the two Landsat severity indices (post-NBR and
dNBR) and three UAV severity indicators (percent green fraction, percent green fraction above 5 m,
and percent char fraction).

Figure 4 shows the scatterplots, best-fit exponential equations and lines, coefficients of determination
(R2), and root mean squared errors (RMSE) for these six modeled relationships. The post-NBR showed
stronger relationships with both the green tree fraction (Figure 4b; Adjusted R2 = 0.81) and char fraction
(Figure 4c; Adjusted R2 = 0.79), while the dNBR was more closely related to the total green fraction
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(Figure 4d; Adjusted R2 = 0.69). Initial visualizations of the scatterplots in Figure 4 may suggest that
there is a possible pattern of increasing residual error with changing post-NBR or dNBR values, but
standardized residual plots proved otherwise. Example standardized residual plots for Figure 4e,f,
where this pattern appeared most obvious, do not depict a pattern of increasing variance across the
range of dNBR (Figure 5a,b, respectively). The Wilcoxin signed-rank test also showed no statistical
differences (p > 0.05) in the predicted versus actual green and char fractions from the 30% validation
sample (n = 167), when these were predicted using the models developed from the 70% training sample
(n = 388) (Table 3). However, green tree fraction predictions were statistically different (p < 0.05) from
either Landsat predictor (Table 3).
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indices (x-axes) and three UAV-based severity indicators (y-axes), aggregated within the 30 m resolution
Landsat pixel footprints. The best-fit exponential regression lines and equations are also shown for
each relationship. The individual plots are post-NBR vs. green fraction (a), post-NBR vs. green tree
fraction (b), post-NBR vs. char fraction (c), dNBR vs. green fraction (d), dNBR vs green tree fraction
(e), and dNBR vs. char fraction (f).
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Table 3. Test predictions for statistical differences (p = 0.05) from non-linear models employing
independent validation samples using a Wilcoxin signed-rank test.

Landsat Severity Index (X) UAV Measure of Severity (Y) p-Values

post-NBR Green Fraction 0.74
Green Tree Fraction 0.00
Char Fraction 0.29

dNBR Green Fraction 0.93
Green Tree Fraction 0.00
Char Fraction 0.28

Non-linear models for predicting the overall CBI using the Landsat indices and UAV severity
indicators are summarized in Table 4. The post-NBR and dNBR Landsat indices could explain similar
amounts of CBI variance (Adjusted R2 = 0.53–0.59), with relationships that were somewhat weaker
(Adjusted R2 = 0.82–0.85) than those reported in [16], based on dNBR. The results also indicated the
UAV green fraction indices were comparable to the Landsat indices in their ability to predict the CBI.

Table 4. Best fit non-linear models for predicting the overall CBI using the Landsat and UAV
severity indices.

Overall CBI Predictor Non-Linear Model
Y = Overall CBI Adj R2 RMSE

Landsat indices

post-NBR Ln (9.47–20.74 post-NBR) 0.59 0.60
dNBR 3.20 dNBR 0.63 0.53 0.64

UAV indices

Green Fraction (GF) 2.60–1.16 GF2 0.52 0.58
Green Tree Fraction (GTF) 2.70 × 0.96GTF 0.60 0.54
Char Fraction (CF) Ln (3.81–0.29 post-NBR) 0.36 0.67
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4. Discussion

Previous studies of boreal forest burn severity have shown that the Landsat dNBR index generally
demonstrates the strongest relationship to the field-based CBI designed to measure overall burn
severity [21]. The NBR exhibits a large drop after burning, owing to the removal of leafy vegetation,
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which decreases NIR scattering, SWIR water absorption and canopy shadowing [22,45]. In this study,
we similarly found that dNBR was effective for predicting CBI (Table 4), but also demonstrated that
Landsat indices were even more closely related to specific indicators of burn severity derived from
UAV mapping (Figure 4). The post-NBR and dNBR indices could each explain a similar amount of
the variation in the UAV-derived green vegetation fraction, while the post-NBR was a better predictor
of the UAV char fraction. These Landsat-UAV relationships are consistent with [38], where Landsat
severity indices were most highly correlated to the green crown fraction and total charred ground
surface from a set of 32 fire effect field measures from Alaska.

It is important to note that the strongest modeled relationship was for the UAV green tree fraction
predicted using the post-NBR (Figure 4b). Despite the strength of this relationship, the high degree
of flattening at low post-NBR values makes it relatively less useful as a means to calibrate the NBR,
compared to the total green fraction or char fraction relationships. The major reason for this is that the
large proportion of crown fire within our study sites led to a majority (57%) of 30 m Landsat pixels
containing less than five percent green tree crown (Figure 6, FP15_21). As a result, this UAV indicator
had a relatively minor influence on 30 m post-NBR values over most of the post-NBR range.

Superimposing a raster of the regression model residuals over the UAV orthomosaic can provide
insight into the specific reasons for scattering in the model results shown in Figure 4. An examination
of the residuals for the first plot (post-NBR vs. green fraction) shows that values are often spatially
clumped, rather than random. While there don’t appear to be consistent causes for either model
over- or under-prediction of the UAV green fraction, some patterns are apparent. For example, some
areas where the actual UAV-derived green fraction is higher than the Landsat-predicted fraction
(i.e., underestimation) are associated with relatively open and unburned canopies that contain fewer
shadows, which may otherwise obscure unburned ground vegetation (Figure 6, FP15_20). This can
result in a higher UAV-mapped green fraction compared to areas where shadows obscure more
of the ground surface. By contrast, some areas where the actual green fraction is lower than
the amount predicted (i.e., overestimation) correspond to standing scorched tree canopies with
brown/orange needles (Figure 6, FP15_19), or with a ground layer of dropped needles (Figure 6,
FP_22). These canopies encountered a less severe fire at the surface and lower canopy strata, but it was
severe enough to scorch the needles through proximal heating, without direct flame contact. The Jenks
classifier was used to create a binary, burned versus green vegetation classification, whereby scorched
crowns were not treated as a separate, less severe vegetation response class.

Most Landsat-based studies of boreal burn severity have applied the dNBR, which is a bi-temporal
index representing spectral changes from pre- to post-fire conditions [16,21,27,28]. However,
investigations in Alaska, where black spruce is the predominant tree species, have shown that the
post-NBR can be more highly correlated than the dNBR to field-measured fire effects [29,38,46].
The choice of a uni- or multi-temporal index to characterise severity should be based primarily on the
accuracy for measuring fire effects, but may also reflect other considerations. For example, an index
that measures spectral changes such as the dNBR, should be theoretically preferable for studies of
burn severity, since, by definition, this term describes the degree of ecosystem change resulting from
fire. The CBI, which was developed as a field measure of severity for calibrating dNBR, is similarly
based on ecological changes, although pre-fire conditions must often be inferred [22,23]. A bi-temporal
index also permits a more accurate mapping of the extent of burning (a pre-requisite for determining
severity), by avoiding commission errors over unvegetated areas that can result from only using a
post-fire index. In our study, the post-NBR and dNBR were comparable in their ability to predict
UAV-based green vegetation fractions, while the post-NBR was a better predictor of the UAV char
fraction. The better performance of the post-NBR may be due, in part, to the char indicator having
little or no dependence on the pre-burn conditions that influence the dNBR values. The inclusion of a
pre-burn NBR to generate the dNBR has the potential to add spectral variability unrelated to fire, due
to image differences in solar illumination, atmosphere, phenology, and spatial registration [31,47], or
differences in the pre-fire forest condition [48]. Based on these results, a potential strategy for upscaling
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the UAV indicators using Landsat imagery may be to use the dNBR for mapping the extent of fires
and green vegetation fractions, followed by the post-NBR to estimate char fractions.
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Figure 6. Portion of the UAV orthmosaic for study area #1 (centered at 69.905◦N, 116.53◦W), showing
the locations of four CBI plots with corresponding inset ground photos.

The strong relationship between the dNBR/post-NBR and the UAV-derived severity indicators,
permits the translation of the Landsat indices into measures of burn severity with a greater biophysical
underpinning. Figure 7 shows the pre- and post-fire Landsat image and predicted residual green
vegetation and char fractions based on the NBR-UAV non-linear regression functions, for a larger
60 km2 area within our study region. Considering the diversity of the fuel types sampled (Table 1) and
the results from the hold-out validation sample, these regression relationships should be applicable to
other areas within in the post-burn Landsat image that burned under similar conditions. However, the
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relationships may not be valid for other images captured at different post-fire regeneration intervals,
and should also be tested for their extendibility over a wider range of forest ecological conditions [16,21].

The area of charred surface was derived from UAV mapping to indicate the extent of burning
in the surface organic layer. A second potentially useful metric of surface burning not investigated
here, is the presence of light coloured ash, which indicates that the fire has completely combusted
organic material, such as large woody debris. The amount of ash cover has been related to surface
fuel consumption in the boreal forest [19,49], and could thus provide a valuable UAV-based measure
of burn severity in the surface layer. The extent of light ash could potentially be derived using a
colour index similar to our Char Index, but by identifying a bright, rather than dark, colourless
surface. However, note that ash, unlike char, could be challenging to separate from other surfaces
such as bright rock, based on colour alone. A very high resolution digital surface model derived
from UAV photogrammetry and/or image segmentation techniques could potentially assist with
this [39]. Ash cover can also be rapidly removed by wind and rainfall, so UAV surveys may need
to be conducted relatively soon after burning. The mapping of light ash would be a more important
consideration for boreal burns containing larger proportions of ash than were encountered in our study
sites [50], and where it would be more likely to influence Landsat burn indices at a 30 m scale [42].
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Figure 7. A 60 km2 area within our study region captured using (a) pre-burn Landsat-8 imagery
from 17 July 2013; and (b) post-burn Landsat-8 imagery from 23 July 2015 (RGB = SWIR, NIR, Red);
Predictions of percent post-burn green vegetation cover and percent charred surface cover, based on
UAV calibration of Landsat burn indices, are shown respectively in (c,d).
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In this study we made limited use of the UAV-based vegetation height model to separate the
portion of residual green vegetation that lies above 5 m in the tree canopy. A vegetation height model
could be further exploited to stratify UAV severity metrics according to the five CBI height classes, in
an attempt to mimic specific factors that form the overall CBI rating. UAV-based colour and height
information could also be investigated, to quantify more complex indicators of burn severity, including
the area of scorched needle-leaf crowns, char height [51], density of standing and downed boles
with no foliage, and the presence of exposed mineral soil arising from the complete combustion of
surface organic material. The calculation of these metrics may require higher resolution UAV photos
with a larger overlap than those collected in this study [39], to facilitate characterizing the detailed
structure of residual dead and living trees. The goal of follow-on research should therefore focus on
a more comprehensive UAV-based protocol for plot-scale assessments of burn severity, which could
include select field-measured attributes, such as depth of surface burning [15,17], that may be difficult
to address using UAV photogrammetry alone. If successful, the major advantage of such a hybrid
protocol would be the ability to conduct more quantitative, repeatable, and objective burn severity
assessments with a closer physical linkage to satellite-based indices, to allow for robust up-scaling.

Some other potential applications of UAV-based, SfM modeling for studying boreal fires include:
(1) providing reference data for training and validating burned area mapping algorithms that use
Landsat’s or higher resolution satellite sensors; (2) mapping the charred standing bole density to
help guide post-fire salvage logging efforts; and (3) quantifying long-term regeneration rates and
structural changes in recovering burned forest, similar to previous studies that have used LiDAR [20].
Because of the relatively limited extents that can be surveyed using UAVs, relative to manned aircraft
or satellite-based sensors, these applications would have to examine sites that had been carefully
chosen to represent larger-area conditions.

Finally, the development of UAV-based burn severity indices in this study was not without certain
limitations and challenges. Here we highlight several:

(1) Our surveys were conducted under clear, sunny conditions that caused strong shadows to cover
much of the ground in areas with dense residual tree cover. Shadowing could be minimized by
conducting surveys in light, overcast conditions.

(2) Surface char was completely obscured in some areas, due to a dense layer of scorched conifer
needles that dropped from the above canopy.

(3) We did not validate the accuracy of the tree canopy height model and assumed that it was
sufficiently accurate for broadly separating ground-level vegetation and tree crowns that lie
above 5 m. For reference, Wallace et al. [52] created UAV/SfM-based canopy height models that
could estimate 4.7–16.2 m eucalyptus tree heights, with a root mean square error of 1.3 m.

(4) The binary Jenks classifier, used for separating both green vegetation and shadows, was found
to be simple and effective, yet may not be as accurate as more advanced classifiers or those that
include a third, less severe vegetation response class for brown/orange scorched canopies.

(5) A rigorous validation of very high resolution, UAV-derived indicators of burn severity is
challenging, because of the requirement to collect reference data that is at least as detailed and
spatially precise. The approach used in this study for mapping green vegetation and char was to
relate photo-interpreted conditions, based on ground and UAV photos, to a georeferenced UAV
orthomosaic. However, the validation of more advanced and structural measures of burn severity
from UAV photogrammetry will require precisely georeferenced field-based measurements.

(6) We used a consumer-grade RGB camera mounted on a UAV to capture images in JPEG
format, that provided simple digital number intensity values. Note that such data have an
unknown relationship to scene radiance [53], and would be impacted by any changes in solar
illumination during a survey. While we found that such imagery is suitable for separating broad
and distinct classes, such as green vegetation and charred surface, more detailed vegetation
characterization could benefit from using miniaturized multi- or hyper-spectral instruments that
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provide additional spectral information, and where radiance is normalized based on incident
light sensors. Note, however, that such sensors currently provide coarser pixel resolutions (e.g.,
1–2 megapixels) that may make the SfM modeling of a tree structure challenging.

5. Conclusions

Our results demonstrate that UAV-based photographic surveys and SfM processing methods
can provide cost-effective, georeferenced information related to two basic indicators of boreal forest
burn severity: the fraction of green vegetation, which includes both residual and regenerating plants,
and the fraction of charred organic surfaces. These indicators were highly related to Landsat spectral
indices (dNBR and post-NBR) commonly used to assess burn severity, which then permits assigning a
biophysical scale to these indices at regional levels. We also found that the UAV severity metrics were
similarly correlated to the plot-based CBI, compared to Landsat indices. The operational flexibility of
UAVs ensures that mapping can be timed to closely match the acquisition of Landsat satellite imagery
used in an extended post-burn assessment. Follow-on research will investigate additional, more
complex measures of burn severity that make greater use of a vegetation height model to characterize
the post-burn vegetation structure.
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