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Abstract

Uncertainty about future spread of invasive organisms hinders planning of effective
response measures. We present a two-stage scenario optimization model that accounts for
uncertainty about the spread of an invader, and determines survey and eradication strate-
gies that minimize the expected program cost subject to a safety rule for eradication suc-
cess. The safety rule includes a risk standard for the desired probability of eradication in
each invasion scenario. Because the risk standard may not be attainable in every scenario,
the safety rule defines a minimum proportion of scenarios with successful eradication. We
apply the model to the problem of allocating resources to survey and eradicate the Asian
longhorned beetle (ALB, Anoplophora glabripennis) after its discovery in the Greater
Toronto Area, Ontario, Canada. We use historical data on ALB spread to generate a set of
plausible invasion scenarios that characterizes the uncertainty of the beetle’s extent. We
use these scenarios in the model to find survey and tree removal strategies that minimize
the expected program cost while satisfying the safety rule. We also identify strategies that
reduce the risk of very high program costs. Our results reveal two alternative strategies: (i)
delimiting surveys and subsequent tree removal based on the surveys' outcomes, or (i) pre-
ventive host tree removal without referring to delimiting surveys. The second strategy is
more likely to meet the stated objectives when the capacity to detect an invader is low or the
aspirations to eradicate it are high. Our results provide practical guidelines to identify the
best management strategy given aspirational targets for eradication and spending.

Introduction

Programsthat are desgned to stop the spread of invasive species often involve the allocation
of resourcesto survey and eradicate the invading individuas[ 1-6]. Although aconsiderable
share of theavailable resourcesisoften devoted to surveys(7], such effortsrarely reved com-
pleteinformation about the presence of the speciesof interest. The resulting uncertainty about
the spread and extent of theinvader meensthat the costs—end likelihood of success—of the
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management actionsto control theinvasion aredso uncertain. Thiscreates problemswith
alocating resources gppropriately to control theinvasions, because critica management dedi-
sons(eg, when and whereto prioritize surveysor eradication efforts) must be made under
uncertain expectations of thelikelihood and outcomes of invasion. A common approach in
thisstuation isto estimate the expected cost of eradicating the species based on probabiligtic
expectations of the species spread in theareaof concern. These expectations are uncertain but
can berepresented asalarge st of plausible stochagtic scenariosthat help estimate the bounds
of uncertainty on those expectations[8-14]. However, the true costs of the actionsthat ulti-
mately must betaken to managetheinvasion remain unknown, because the decisions based
on the expected costscould bewrong and lead to extremely high management costs

Detection and control of biological invasions can be gregtly improved through application
of spatia-dynamic optimization modelsthat predict economically optima strategies for sur-
veillance and eradication of invasive species The models depict thedlocation of resourcesto
control an invasion asan optimization problem, with someimportant parametersand decision
varigblesdepicted in tempora and spatia domains Epanchin-Nidll et d. [15] developed a
dynamic model of pest colony establishment and growth and designed optimal long-term
equilibrium surveillance and eradication programsto minimize program costs They used the
model to optimizelong-term surveillance effort across heterogeneous landscapes subject to
region-wide surveillance budgets Hauser and McCarthy [ 16] proposed a static mode to opti-
mize one-time surveillance effort across multiple steswhen a species presenceisuncertain
prior to detection and probability of occurrence varies across sites In contrast to theequilib-
rium anaysis of Epanchin-Niéll et d. [15], the static model of Hauser and McCarthy [16] is
appropriate for optimizing surveillance when many local populaionsare thought to have
established prior to theinitiation of asurveillance program. Horieet d. [17] and Yemshanov
et d. [14] developed modelsto optimize one-time surveillance effort across multiple sites given
uncertainty about the extent (rather than simply the presence) of theinfestation in each site
They handled thisuncertainty by splitting the management decision into two stages In the
first stage, stesare selected for surveillance given their expected levelsof infestation, and in the
second stage, eradication trestments are prescribed within the surveyed sitescontingent on the
levels of infestation found. The objectiveisto minimize the expected growth of theinfestation
subject to the tota budget for surveillance and tregment. Epanchin-Nidl e d. [18] developed
amechanistic bioeconomic mode that relates surveillance intensity end invasion sizeto prob-
abilities of detection and control. Their model determined, in ageographic domain, the opti-
mal investment in surveillance, in termsof the numbersand distributions of traps, to
minimizethetota invasion impact. Mooreand McCarthy [ 19] proposed amodd that opti-
mizesthe alocation of surveillance effortsin both spatia and tempora domainsand acoounts
for stochadticaly varying detection ratesin geographica space.

In thisstudy, we addressaproblem in which adecision maker must select a program for
delimiting surveysand eradication tha minimizesoveral program costsand atainsadesired
level of eradication success despite uncertainty about the current and future extent of an inva-
sion. Smilar to Horieet d. [17] and Yemshanov et d. [ 14], we split the management decision
into two stagesrepresenting the placement of surveillancein thefirg stage and theintensity of
trestment given the outcome of surveillancein the second stage. Rather then atempting to
minimize expected invasion expansion, weinclude probabilistic constraints for ataining erad-
ication successasaway to limit the damage from theinvader populationsthat have been estab-
lished in theareaof interest. Theseconstraints are consstent with a safety-rule approach to
addressing uncertainty in environmental regulation [20-22]. A safety ruleincdudesarisk stan-
dard representing aminimum probebility of attaining adesrableenvironmenta outcome
(eg., eradication of an invasive species population). The safety ruleincludes a probability that
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management action(s) will not achieveadesired outcome This probability vaue (also known
asmargin of safety) representsthe decison-maker'saversion to uncertainty about theatain-
ingtherisk standard.

We gpply our safety-rule approach to the case of managing theinvasion of aforest pest, the
Asien longhorned beetle (ALB), Anoplophora gabripennis (Motschulsky), in the Gregter
Toronto Areaof Ontario, Canada Thiswoodborer isanative of Chinaand the Korean Penin-
sulaand islisted among the world’sworst invasive species[23]. In invaded landscapes itspre-
ferred host ismaple (Acer spp.); other suitable hostsinclude, but arenot limited to, birches
(Betula spp.), poplars (Populusspp.), willows (Salix spp.), and éms (Ulmusspp.) [24-29]. East-
ern North America ssemsespecialy vulnerableto infestationsby this beetle because of its
abundance of maple and of suitable habitat conditions[30]. Breeding populaionsof ALB have
been found at severd locationsin eastern North America[28, 31, 32] and in Europe[33-35].
Most of thessintroductionsinvolved beetlesthat had originated from the species nativerange
[36-38]. In most countriesoutside of itsnative range, discovery of ALB leadsto theimplemen-
tation of an eradication program [39, 40]. Such programstypicdly festure addimitation phase
of theinvaded areg, which leadsto the establishment of aquarantine zoneto limit the spread
of the beetle aswell asatreatment phase[41]. Remova and destruction of dl infested tressand
removal or trestment of high-risk suitable host trees a strategy that takesadvantage of ALB's
dow ratesof spread [42, 43], represents an effective method to eradicate ALB. Indeed, this
strategy hasled to successful eradicationsin North America[44, 45].

Materials and methods
Scenario-based invasion management model

Wedevelop atwo-stage, spatia optimization model in which uncertainty about the presence
and extent of theinvader (i.e, ALB or another forest pest) isrepresented by a st of probabilis-
tic scenarios We assume at the beginning of the first stage that theinvader isknown to be
present in asingleareaand aquarantinezoneisestablished around that invaded area The
areaunder quarantine contains Jsiteswheretheinvader may aso be present, but which of
these stesareactudly infested isunknown. Defining aquarantinezone (“regulated areg” here-
after) surrounding known infestationsis acommon phytosanitary practice amed a contan-
ing expanding invader populations[41]. Thesize of the area Jisdefined by decision makers
basad on expectationsof future spread and new introductions Each sitej, j 2 J in theregulated
area Joontains N; suiteble host treesthat can be used by theinvader to completeitsdevelop-
ment and reproduction (see Table 1 for asummeary of model parameters). The proportion of
host trees & stej that areinfested is8, § 2 [0,1]. Whilethetrue proportion of infested trees
8, isunknown, the 8, vaueat each survey siteisestimated based on theinvader's historicd pat-
terns of spread and the numbersof infested treesfound in surveyed sitesduring previous sur-
veillance campaigns These estimates are used to develop alarge set of probabilistic scenarios,
§ whereech sitej in scenario s s= 1,. . ., § ischaracterized by the proportion, 8 of treesthat
areinfested at the site under that scenario. Weassume each invasion scenario shasan equd
probability of occurrence, /S

Themodel hasone set of decision variablesin each stage. In thefirst stage, the binary dedi-
sion verigblesx;, x; 2{0,1} and j 2 J represent whether or not to slect sitej for survey. While
sitesare sglected for survey with knowledge that they could potentialy beinvaded, the sdlec-
tion isdonewithout knowing which stesare actualy invaded, and if so, to what extent. In the
second stage, thedecision variablesRg j 2 Jand s2 § represent the number of tressto remove
in each stej under scenario § which iscontingent on the proportion of infested treesthat are
found to be present under the scenario.
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Table 1. Summary of the model parameters and variables.

Symbol Parameter / variable name Description
Parameters: )

j Potential survey sites in a defined regulated area j2J

J Size of the defined regulated area J>0

] Stochastic spread scenarios s28S

S Total number of stochastic spread scenarios 2400

N, | Number of host trees at a site j N; B+

Bis Proportion of trees at a site j in a scenario s that are infested 6s2[0; 1]"**

B Proportion of a site’s area that is surveyed B2[0;1]

% Pest detection rate after inspecting a tree y2]0; 1]
d, 1—D | Probability of eradication success d2]0;1]

do Probability value that denotes eradication failure 1e-64

p Minimum proportion of the scenarios where eradication is expected to succeed | P 2]0; 1]
with the probability d (safety margin)

a Confidence level that defines the value in the program costs distribution that can | 0.99
be exceeded only in (1 —a)- 100% of worst scenarios

L ig Tree survey cost A $6.83 tree™’
_t | Tree removal cost $1000 tree™
7 Weighting parameter that defines decision-making preferences towards F2 [0; 1]

minimizing the expected cost vs. minimizing the cost in the right tail of the cost
distribution in the objective function equation

Decision variables:

X Binary survey selection of a site j %2 {01}
R; Number of host trees removed at a surveyed site j in a scenario s Ris 2 [0 N~
9s Binary indicator variable that specifies eradication success (or failure) for a gs2 {01} ***
scenario s
W Aucxiliary decision variable for a linearized formulation of CVaR, Wg
Z Auxiliary decision variable for a linearized formulation of CVaR, 72<

* The number of scenarios was chosen based on the optimality gap analysis.
** The parameter / variable value is site-specific.

*** The parameter/ variable value is site and scenario-specific.

**** The parameter/ variable value is scenario-specific.

https://doi.org/10.1371/journd. pone.0181482.t001

The manager’s objectiveisto minimize the expected cogt of survey and treeremovd in the
regulated area Jover Sinvasion scenerios, i.e:

R
t Amlné ®Ncx p tR P ok

VA

whereg and t; are the costs of ingpecting and removing host tressin sitej end 3, B2 [0;1], is
the proportion of asitesarea(in our formulation, equivdent to the proportion of host treesa
aste) that hasbeen surveyed. Notethat our model considered asinglelevel of survey intensity
a dl stes |dedly, the proportion of astesareatha issurveyed (B) should beadecison vari-
able, but the model formulation would become non-linear in that case. Whileit may be poss-
bleto reformulate the mode to addressthisnon-linearity it would sgnificantly increasethe
computationad complexity of the problem.
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We definetwo constraints on the number of treesthat can beremoved from each ste The
number of removed treescannot exceed the tota number of treesat asurveyed sitej:

R.ENX 8s2§j2 @F

Tressareonly removed (Rs) a steswhich aresdlected for surveys(x; = 1). If atreeis
infested, it can befound with thedetection ratey, y 2 [0,1], and each treethat isfound to be
infested must be removed. Because the survey coversonly aproportion B of asite, the mini-
mum number of infested treesto removefrom sitej in scenario sis

R.[ENbgy,x 8s2§j2.J &k

Eq 3 impliesthat dl detected infested treesmust be removed. A specid casewith B=0
describesa situation when adecison-maker choosesto skip theddimiting survey stageand
procesd with preventive treeremoval a a selected siteinstead.

Wenext defineaprobabilistic consgtraint for successful eradication of the pest from dl of
thesitesin area Junder agiven scenario s The probability that oneor more of theremaining
host treesin area Jisinfested after Rstreeshave been removed & stesj,j 2 Jis

Ys h g
1 &1 [, [Chg=ot [Ebgy V5P . o4

v

Theterm &1 (2 &1 (Ebge=61 [Ebgy, 5™ definesthe probability that the remaining tress
in dtej arenot infested in ascenario s Then, the product sign in Eq 4 represents the probabil-
ity that theremaining tressin all of the sitesare not infested, and oneminusthat probability
equasthe probability that remova failsto eradicate the infestation from area J Thederivation
of Eq 4 can befound in S1 File. A requirement that the probability of eradication failure be
below achosen threshold, D, is

vs h i
1[0 &1 [, 81 [Cbge=o1 gy, NS 8s28 &k

jval

Rearranging terms the probabilistic constraint for successful eradication of the pest is
Y [
&1 [, 1 [Chgb=o1 [Thy, 5VE> 8s2S &k

jva

wherethethreshold d, d = 1-D, definesthe minimum probability for sucoessful eradication in
areaJ Eq6islinearized with respect to thedecision verisblesRg

Xs h i
&N, [ER Ant () ta1 (Ebgp=81 [Chgy, kb [Elnedk 8 s2 8 o7k

jAl

Eq 6 represents adecision-maker's aspiration to satisfy the eradication successthreshold for
each and every invasion scenario. When uncertainty about the extent of theinvasion issignifi-
cant, achieving successful eradication in &l possible scenarios may be cost-prohibitive because
most of the siteswould require tree removal. We addressthisissue by defining amargin of
safety p, representing the minimum proportion of the scenariosthat must satisfy the eradica-
tion successthreshold d. To create aconstraint for the margin of safety, wefirst defineabinary
indicator variable, g, g:2{0,1}, that specifies, for each scenario § whether eradication succeeds
with probability d (i.e, gs= 1) or fals(g,= 0; thefailure condition isdefined with a probability
of eradication success dy, equa or doseto zero. Sncethed, vaueisunder thelogerithm sign
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it wes set to avery low positive value.). We have used the following constraint to set the g,
vaue
XJ h i
&N, (R Hnet (£ &1 [Chgb=61 [(Chgy, b [Elyinadbp &1 Chhned,p 8 s2 S agt

Al

Then, aconstraint that requires attainment of the margin of safety is

Xs

18 g b ok

s¥il
Notethat Eqs 8 and 9 are consistent with a safety-rule gpproach to deding with uncertainty in
environmentd regulation (eg., [20-22]). Eq 8 defineswhether or not arisk standard issdis-
fied for each scenario, wheretherisk standard isthe required probability of eradication, d.
Eq 9 definesthe margin of safety, which istherequired proportion of the scenariosthat satisfy
therisk standard. Themargin of safety p can beinterpreted asa confidence level for ahypothe-
sstest with thevauestypicaly set to 0.9 or 0.95. In summary, the problem isto determine
which stesto survey in thefirst siage and how many treesto removein the sscond stage con-
tingent on the outcome of thefirst stage, in order to minimize the expected cost of surveysand
tresremovasover Sscenarios (Eq 1), subject to upper and lower boundson treeremovals
(Egs2end 3) and constraintsfor satisfying therisk standard for eradication (Eq 8) and the
margin of safety (Eq 9).

Controlling the risk of extreme project costs

Dueto theuncertainty about theinvader’s spread, the actua costsof survey and eradication in
individua scenarios may vary. Some scenarios could be severein terms of invasion extent and
impact, and therefore may require costly eradication. These scenariosarelocated in theright
tal of the cogt digtribution (Fig 1), which the decison-maker triesto avoid. The problem of
controlling theworst (i.e, most cogt-intensive) outcomes essentially amountsto controlling
thecogtsin theright tal of the program cost distribution. Thiscan beachieved with ametric
that characterizesthe upper percentile of thedistribution.

Percentile-based metrics such asmaximum loss[46, 47], Vaue-at-Risk [48] and Condi-
tiond Vaue-a-Risk [49, 50] have been widdly usad to quantify risksof extremelossesin many
disciplines In perticular, Vdue-a-Risk (VaR) and Conditiona Vadue-a-Risk (CVaR), d=0
known as expected shortfal or conditiond tail expectation (CTE), arecommonly used by
financid inditutionsto evauate the potentia for extremelossssin investment portfolios
[51-55]. With respect to our invasive speciesexample, VaR, isdefined, with aconfidenceleve
a, a2 [0;1], asthevaluein thedistribution of the surveillance and eradication program costs
that isexceeded only in (1 —a)x 100% of theworst scenarios (Fig 1). In turn, CVaR,, for acon-
fidenceleve q, isdefined asthe expected vaue of the cost digtribution over (1 —a)x100% of
theworst scenarios, or dternatively, asthe expected vaue above VaR,, for confidencelevel a.
Fig 1isadepiction of the CVaR concept and how it isrelated to minimizing the expected
value of adistribution.

Incorporating VaR in an optimization framework isdifficult [56] becauseVaRisanon-
convex function for discrete digtributionsand may not account for properties of the distribu-
tion beyond the confidence level a. The CVaR is more ussful for optimization-based models
[49, 51] becauseit isa coherent risk metric (df. Artzner & a. [57]) and continuouswith respect
to the confidencelevel a. The most appeding property of CVaR isitsconvexity with respect to
thedecision veriables[49, 56]. Optimization of CVaR with respect to linear decison varizbles
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Expected
cost .
e Cost in the
worst-case
scenario
VaR,
CVaR
I
< —pie >
0 o l-a

Distribution of the program costs

Fig 1. The program cost distribution, the expected cost and the CVaR, concept. The scenarios in the
right tail of the cost distribution above the confidence level a (shaded area) depict the worst outcomes with the
highest costs. These outcomes are characterized with the VaR, and CVaR, metrics. Minimizing the CVaR,
deviation decreases the expected value of the cost distribution above VaR,,.

https://doi.org/10.1371/journa.pone.0181482.g001

for discrete scenario-based distributions can be expressed by aset of linear equations[56]. In
comparison, optimizing VaR in the same problem setting could be numericaly intractable

In our model, we used the CVaR to control theright tail of the program cost distribution
and reducethe cost uncertainty. |dedly, both the expected cost value (i.e, the mean vaue
acrosstheentire cogt distribution) and the CVaR should be minimized, however thisrequires
atwo-objective formulation. We reformulated the objective function equation asaweighted
average between the expected cost vaue and the CVaR, of the program cog, i.e:

minExpected cost (EFpp CVaR_ &ostb[EFa 610k

whereF isthe weighting parameter that defines a decision-maker’s preferences towards mini-
mizing the expected cost versus minimizing the expected vauein theright tail of the cos dis-
tribution (i.e, the CVaR,). For F = 0, the objective function minimizesthe expected cost, and
for F= 1, the CVaR, isminimized. Eq 10 adopts an approach of combining multiple objectives
in asingle objective function equation viaweighted averaging [58, 59], with F and 1—F vaues
representing the objective weights By atering the F values atrade-off between the objectives
can beexplored.

Theobjective function in Eq 1islinear with respect to the decision veriablesx and Ry 0
we gpplied alinearized formulation of the CVaR, from [49, 60]. For adiscrete distribution of &
scenarioswith equal probability of occurrence, 1/S the CVaR of the program cost, at aconfi-
dencelevel o, can be approximated with the following equivaent set of S+ 1 auxiliary decision
variablesand S+ 1inequdity congtraints

1 X
2P S T, W, &1k
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XJ
®Ncx b tRPEE[w, 8s2S &12k

Al
w, 8s2S 13k

P
where  ®N,Gx b t;R.Pin Eq 12isthetotd program cost in ascenario § z and we are auxil-
jval

iary decision verisblesand z isamember of aset of rel numbers We have modified the objec-
tivefunction to follow theideaof Eq 10 as

) 1XS Xy . 1 Xs
min F ®N,Gx b tR.pb &1 [EFp zp

p W
g4l A

1

614k

B PR
whereg BNgx b t;R Pistheexpected program cost, subject to model constraintsin

EARVA
Eqs2, 3, 8, 9and auxiliary congraintsin Eqs 12 and 13.

By adding the CVaR, to the objective function equation, the uncertainty in theright tail of
the program cost distribution can be controlled and therisk of incurring high program costs
can bereduced. Reducing therisk of high program costsincreasss the expected program cods
because more resources will be required to reduce the cost uncertainty. We have explored this
aspect by evauating the optima solutionsfor arange of F vauesbetween 0and 1, and report
thesolutionswith F vaues between 0.5 and 1.0 that yielded the greatest reduction of thecost a
CVaR,.

Case study: Assessing the program costs for controlling the outbreak of
Asian longhorned beetle (ALB) in the Greater Toronto Area (Ontario,
Canada)

Assessing thehuman-mediated spread of ALB in an urban setting. Two infestationsof
ALB have been found in the Greater Toronto Area(GTA). Thefirst population was discovered
in 2003in Toronto [61], and the second onein 2013 in Mississauga [62). Discovery of exch
population led to theimplementation of an eradication program [28, 62, 63]. Theregulated
(i.e, quarantine) areato manage thefirgt 2003 infestation wasdeclared pest-freein 2013 [44].
TheMissssauga quarantine areawas about 46 km? and outside that of the Toronto quarantine
area(Fig 2). Trestment for both eradication programs consisted of the removal of all infested
tressaswell ashost trees categorised assuitable and at high risk of being infested.

We gpplied our model to managethe most recent ALB incursion in Mississauga Severd
techniques have been tested in an atempt to improve early detection of ALB [28, 64, 65], but
visud inspection of treesfor signs of attack remainsthe most practica detection method
[35, 63]. The possibility of new introductionsand high costs of eradication necessitate that sur-
velllance activitieslinked to the eradication of ALB extend beyond theinitia regulated areg, as
well asthe potentid expansion of theregulated areaand an asssssment of thetotd eradication
cogswerethisto happen in thefuture

ALBisknown to have dow spread rates[42, 43]. 80% of the populaion & agiven dteis
expected to spread lessthan 300 m per year [66]. Most recent ALB introductions have been
atributed to human activities[38]. Growing anecdota evidence suggeststhat the pest may
hitchhike on dow-moving vehiclesthat have been previoudy parked neer suitable host trees

PLOS ONE | https://doi.org/10.1371/journal.pone.0181482 July 31, 2017 8/25
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pj est-
[ ] <0.0005(low)

] 0.0005-0.001

I 0.001-0.005

B 0.005-0.01

Il >0.01 (high)

Fig 2. Probability of ALB spread, pj est, in the Greater Toronto Area (GTA). The blue polygon depicts the

initial quarantine area defined when ALB was discovered in Mississauga in 2013. The calculated probability
for each map location (i.e., each 400x400-m block) is the mean value from 6000 stochastic spread scenarios.

https://doi.org/10.1371/journa.pone.0181482.g002

[32, Turgeon, pers obs], similar to the documented spread of another invasive forest insect,
theemerdd ash borer (Agrilusplanipennis Farmaire) [67]. Locd street traffic accountsfor a
large portion of the movement of people and goodsin urban settings and has been recognized
asaproxy for averiety of local economic activities[68]. We usad volumes of local road traffic
asamessure of activitiesthat could facilitate ALB spread. We utilized a dataset on locd strest
traffic volumes[69] that had been linked to the GTA portion of the ESRI Street Map geospatia
database (70, 71] to estimate probabilities of ALB movement from previously invaded loca-
tions (seedescription in S2 File). Wedivided the GTA strest network into 400x400-meter
blocks, each representing a potentid survey site, and then used thelocd traffic volumedatato
estimateamatrix of probabilities of ALB movement from block to block viathe network. We
aso adjusted the probability vaues by the annua projected rates of traffic volumeincrease,
which we estimated from the available traffic volume data over thelast 10 years Thismatrix
was used to smulate 5% 10° randomized pathways of ALB spread between sitesin thesudy
areg and to etimatearriva rates for each of the destination sites (see next section). The ALB
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spread model then was cdibrated to match the historical spread ratesof ALBin the GTA as
determined from previous survey campaigns prior to the current eradication effort (S2 File).

Parameterizing the optimization model. The optimization model required alarge set of
plausibleinvasion scenarios Asnoted before, each scenario had an associated st of propor-
tionsof treesthat areinfested, 6 We generated theinvasion scenariosin two steps Firg,
weused our cdibrated pest spread model to estimate the probability of ALB arriva, P e, fOr
each sitej in the study area(Fig 2). For each spread scenario s we generated a stochastic pat-
tern of invaded sitesvia uniform random draws against the p; & vaues Next, each invaded
site] in ascenario swasassigned anumber of infested tressthat wasrandomly sampled
from an empirica distribution of the number of infested trees Thisdistribution wasbased on
previousrecordsof historical ALB detectionsin the GTA prior to the current eradication cam-
paign. The proportion of infested trees, § at asite] in ascenario swasthen found by dividing
the number of infested trees sampled from thedistribution by N, the total number of host
treesat sitej. To estimate the total number of host trees(N;), wefirst estimated theareaof tree
cover a each survey sitej from the SOLRIS|and cover dataset for the GTA [72]. Subsequently,
we converted the areaof tree cover into a corresponding number of host treesby multiplying
by treedensity and the host species proportion; the tree density vaues came from the SOLRIS
deta whilethe estimates of host tree species proportions came from the City of Toronto's
Every Tree Counts survey [73], which provided adetailed summary of Toronto’surban
forests

Themodel aso required estimates of the costs of survey (g) and treeremova (t;) aswell as
the pest detection rate value (y). Because surveysare conducted within an accessible street net-
work, we assumed equa survey costson a per-tree basis We estimated the survey cost from
contractor rates paid to do visud treeinspectionsin previous ALB survey campaigns This
yielded an average survey cost of $6.83 per tree. The cost of tree remova was based on current
tresdisposd costsin the ongoing ALB eradication program and was st at $1000 per tree The
high cost of tree remova wasdueto regulatory requirements when disposing of atree, which
requirecostly chipping operations at designated disposa sites Thebasgline probability vaue
of detecting ALB by inspecting ahost treg y, wasset to 0.7. Thisestimateis basad on experi-
encegained during the previous ALB surveillance programs and assumesthat inspectionsare
performed by trained personnel [63]. We have dso evauated the mode behaviour for arange
of detection ratesbetween 0.3 (inspections by untrained personnel [37]) and 0.95 (inspections
in idedlized conditions). We evaluated optima solutionswith different aspirationa targets of
eradication success d = 0.5and 0.95, and safety margins, p=1and 0.95.

Computing boundson theobjective function value We aso assessed thesuitablerange
for the number of stochastic spread scenarios, S that should be used in themodel. Idedly, the
optimization model would be supplied with avery large st of invason scenarios but thenum-
ber of scenariosislimited by computationd capacity. Optima solutions based on afinitenum-
ber of random scenarios provide an approximation of the true optima solution. To better
understand how close our model solutionswereto the solution with acomplete st of scenar-
ios weestimated the upper and lower boundson the optima objective function vaue using
conceptsfrom Mak et a. [74] and Leeet d. [75]. We computed the boundson the objective
function for an area Jof sufficient sze to cover the magority of plausible ALB spread paterns
in the GTA over ashort-term planning horizon (i.e, 3208 stes). Thiswasdoneto ensure that
thenumber of scenarioswas sufficient to depict the variation of possible spread outcomes The
lower bound (@Nasati mated asthe mean of the objective function vauesfor the solutionsto
20 independent replicate problemswith Sscenarios S= 400, 800, 1200, 1800, 2400 and 3000
scenarios For eech of the 20 solutions based on non-overlapping setsof spread scenarios
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Table 2. Upper and lower bounds on the objective function value for differing numbers of spread scenarios. The mean yalues, @nd E:—Efthe_c_;bjec—
tive function over a specified number of scenarios S, as well as their 95% confidence intervals, were calculated for a base case with the deswe_d pr_obablht)f of
successful eradication d = 0.5 in all scenarios (p = 1), the detection rate y = 0.7 and the proportion of the site covered by surveys B=1.The obu_actwe function
minimized the expected program cost (i.e., F = 1) and was computed with sets of 20 independent replicates with increasing numbers of scenarios, S = 400,
800, 1200, 1800, 2400 and 3000.

Number of scenarios, S Lower bound (LI)_-,] 95% confidence interval Upper bound ( 95% confidence interval Optimality gaL
400 1567061 1+ 86508.3 18013682 + 75871.6 8.06%
800 19307048 £ 89452.9 20317904 £ 88144.9 5.24%
1200 20952310+ 89724.6 21672209 + 48226.4 3.44%
1800 22385237 £90386.8 22787222 +30790.8 1.80%
2400 23333257 £91223.4 23629602 + 55014.0 1.27%
3000 23864635 +£ 92225.0 24119056 + 48244.8 1.07%

*The optimality gap is 8HITLE-U474).
https://doi.org/10.1371/journd.pone.0181482.t002

obtained to compute the lower bound, we re-computed the objective function value using a st
of 6000 scenarios, and then estimated the upper bound (@asthe meen of the objective func-
tion vauesin those 20 sets. The optimality gap was estimated asthe relative difference between
the upper and lower bounds, oAU U 15]. A summary of themode parametersand
variablesisshown in Table 1. We prototyped themodd in SolverSudio [76] and GAM Senvi-
ronments[77] and solved theMIP problem using the GUROBI linear programming solver
[78].

Results

Number of spread scenarios and the optimality gap

We estimated the upper and lower boundson the objective function vaue for problem solu-
tionswith 400, 800, 1200, 1800, 2400 and 3000 spread scenarios (Table 2). The optimality gap
was around 8% for problem solutionswith 400 scenarios and around 1% for problem solutions
with 2400 scenarios We also examined the program costs (i.e., averaged over 20 independent
replicates) for the optimal solutions based on different numbers of scenarios (Table 3). Specifi-
caly, the worst-case and upper percentile (a = 0.95) cost valuesindicae how well the scenarios
depict themost damaging outcomes with the highest cost. Asthe number of scenarios S
exoeeds 2400, the worst-case cost vaue and the CVaR both stabilize, which indicatesthat fur-
ther increase of the number of scenarios does not add much information about extremeinva-
sion events |t does not gppeer that solving problemswith more than 2400 scenarioswould

Table 3. Basic description of the program costs and survey and tree removal components for differing numbers of spread scenarios. The program
cost values are mean estimates based on 20 independent replicates with increasing numbers of scenarios, S = 400, 800, 1200, 1800, 2400 and 3000. See
Table 1 for the model parameter settings.

Number of scenarios, Scenario-based program costs, $M Survey cost, $M Number of removed trees
S Expected cost | VaRy g5 | CVaRg g5 | Worst-case scenario Mean over S scenarios | Worst-case scenario
400 18.0 24.4 26.4 31.0 8.1 9907 22896
800 20.3 26.8 28.9 ) 35.7 10.4 9881 25340
1200 217 280 | 301 36.7 17 | 9925 25006
1600 22.8 29.3 31.3 384 12.9 9871 25518
2400 236 30.1 32.2 40.5 13.8 9889 26798
3000 241 305 | 325 _ 404 14.2 | 9884 26502

https://doi.org/10.1371/journal.pone.0181482.t003
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Fig 3. Survey allocation patterns. (A) Mean allocation of surveys based on 20 independent replicates with 400
scenarios. (B) Differences in mean survey allocations, 2400 vs. 400 scenarios, based on 20 independent
replicates. The blue polygon depicts the initial quarantine area defined when ALB was discovered in Mississauga
in2013.

https://doi.org/10.1371/journal pone.0181482.9003

yield much benefit in termsof precision or accuracy, but would greetly increase computing
time

Thenumber of scenarios affected the spatid patternsof thesurveyed stes Fig 3ashowsthe
survey selection pattern (averaged for 20 optimization runs) based on 400 scenarios, while
Fig 3b shows the difference between the average selection patterns based on 400 and 2400 sce-
narios Morescenariosincreasad the number of surveysestablished at distent locationswith
low risk of infestation. The survey pattern a distant locations was stabilized for 2400 or more
scenarios, which indicates that 2400 scenariosis sufficient to represent the majority of plaus-
ble outcomes from our model formulation, predicted by the stochastic spread model.

The number of spread scenarios aso influenced key survey characteristics (Table 3).
Increasing the number of scenarios from 400 to 3000 increased the proportion of sitessur-
veyed from 39.4%to 71.3%, and aso increased the proportion of the tota budget devoted to
survey from 45% to 59%. By indluding more long-distance dispersa events, alarger number of
scenarios provides amore complete depiction of where ALB islikely to spread through time
and in turn, requiresmoresitesto be surveyed.

General model behaviour

Theproportiona alocation of the program budget to surveysand treeremova isinfluenced
by the eradication successconstraint in Eq 8. The summation sign in Eq 8 makesit dependent
on thesize of theregulated area(J), the detection rate (y) and the totad number of host trees
that areleft after remova (Nj-R4). Thisindicatesthat the model’soptima solutionsare likely
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to beinfluenced by the parameter values, so we explored the model'sgenerd behaviour in the
parameter space{J v, B, Bs Nj}.

Wefirst evauated the optima solutionsfor different values of 8, which definesthe propor-
tion of the area of each sdlected sitethat issurveyed. Wetested arange of possble vauesfrom
Oto 1; = 1impliesthat all host trees(i.e, theentirearea) a the sdlected stesare surveyed,
while = 0 indicatesthat adecison-maker chooses preventivetres remova a the sslected
steswithout performing surveysof theregulated area Although preventiveremova of trees
without prior surveys may seem counterintuitive, this strategy was adopted for previous ALB
eradication effortsin the GTA to reduce costs Fig 4 depictsthe expected program cost asa
function of B for two different vaues of the pest detection ratey and with theregulated area
J=80ha (Whileweestimated the solutions for arange of parameter combinations weonly
show examplesthat illustrate major changesin the model behavior).

When theregulated area Jisamal and the detection ratey ishigh (asin Fig 4a), surveysof
eech stesentirearea(i.e, f= 1) with subsequent treeremoval yield the lowest expected cost.
In thiscase the surveys provideinformation about the presence of infested trees which, in
turn, helpsreducethe cogt of treeremova. When alarger proportion of asiteissurveyed,
thereislesschance of infested trees going unsurveyed. Consequently, fewer susceptible host
trees have to beremoved to protect againgt the possibility that an undiscovered infestation will
fecilitate future spread.

Whileinformation gained from the surveys can thus help reduce the number of tressthat
must be removed, the capacity of the surveysto find infested trees depends on thedetection
ratey. When y islow, moreinfested treesare overlooked, and so more susceptible(i.e,
possibly infested) treesmust be removed to satisfy the eradication successconstraint in Eq 8.
With respect to our ALB example, when the detection rateis set to acomparatively low vaue
(y=0.7), thelowest expected cost occursat 3= 1, meaning that the optimal solution in this
cazisto dlocated| of the available budget to tree remova only (Fig4b). An incressein the
sizeof theregulated area Jhassimilar impact: When Jbecomesvery large, it isno longer opti-
ma to survey the sitesbeforetresremova, so instead the entire program budget should be
alocated to preventive treeremoval. In those conditions, information gained from the surveys
providesonly amargind reduction of thetota tree remova cost and therefore does not justify
thecogt of the surveys

Switching between the "survey-and-remove" and "remove" policies

Themode! behavior illustrated in Fig 4 suggeststwo aternative optima management policies
depending on the combination of the model parameter vaues The"survey and remove’ policy
prescribes delimiting surveysin theregulated area J with 100% coverage of the selected survey
stes(i.e, B= 1) and subsequent remova of host trees based on the outcomes of the surveys
The"remove only" policy alocatesthe entire program budget to preventive tree remova—
according to the model optimal solution—without undertaking prior surveys Wefurther
explored the mode parameter combinationsthat cause the policy to switch. We depicted the
switch between the "survey and remove' and "remove only” asaboundary curvein thedimen-
sonsof thesze of theregulated area Jand the pest detection ratey (Fig 5). The areaabovethe
boundary curve correspondsto the parameter combinations for which the"survey and
remove’ policy isoptimal, and the area below the boundary correspondsto the parameter
combinations for which the"remove only" policy is preferred.

A lower pest detection raterestrictsthe optimdity of the "survey and remove” strategy to
small areas. However, the size of the regulated area for which “survey and remove” isoptima
increases when the safety margin p or the eradication successthreshold d isrelaxed (Fig 5), i.e,
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Fig 4. Total program costs and tree removal costs vs. the proportion of a site that is surveyed, B. (A)
Example with the pest detection rate y = 0.95, when survey of 100% of each selected site's area (i.e.,p=1)
yields the lowest cost. (B) Example with the pest detection rate y = 0.7, when preventive tree removal without
surveys (i.e., B = 0) yields the lowest cost. Regulated area J = 80 ha, safety margin p = 1 and eradication
success threshold d = 0.95 for both examples.

https://doi.org/10.1371/journal.pone.0181482.g004

when adecision-maker has lower aspirations about eradicating the pest from regulated area J
For insgtance, for the eradication successthreshold d = 0.9, the boundary curve stabilizes
around y = 0.94, which impliesthat "survey and remove' policy isoptimal for detection rates
abovethat rate For theempirical ALB detection ratein the GTA, y = 0.7, the"remove only”
policy istheonly optimal choice Smilar to what occurswith lower vauesof the proportion of
each dte surveyed (B), lower detection ratestrandate to ahigher number of infested treesthat
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Fig 5. Optimal management policy in dimensions of the detection rate, y, and the size of the regulated
area, J. The solid blue line depicts the policy switch boundary for solutions with the safety marginp=1, and
the solid green line depicts the boundary for solutions with the safety margin p = 0.95. The horizontal dotted
line indicates the current detection rate for ALB in GTA, ya g = 0.7. The intersection between the line at ya. s
and each boundary curve indicates the maximum size of J where it is optimal to survey before tree removal.

https://doi.org/10.1371/journdl.pone.0181482.g005
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areleft undetected. When the number of infested treesthat areleft undetected istoo high, sur-
veysarenot sufficiently ableto reduce the number of treesthat must be removed, sincealarge
number of susceptible host trees have to be removed to prevent spread from undetected
infestations

Other model parameters, such asthe expected proportion of treesthat areinfested (84 and
locd host density (N;), dso influenced the optima policy choice (S1 Fig). In generd, lower
infestation rates make the "survey and remove’ policy atractive for larger regulated areas (J)
or, dternatively, for lower detection rates(y) (S1 Fig). Theimpact of decreasing the host den-
sity issimilar: Lower host densities make the "survey and remove’ policy atractive for larger
areas because fewer treeswill need to beremoved in al cases Lower host densities (or infesta-
tion rates) shift the policy switch curvedown (S1 Fig). Notethat thisimpact isonly noticesble
when the detection rateishigh (i.e, y> 0.9), in which case surveys can detect most of the
infested trees At lower detection rates (such asy = 0.7 and below), the "removeonly" policy is
theonly preferred choice

Impacts of controlling the extreme program cost on the optimal policy

Recall that the objective function formulation in Eq 14 minimizesacombination of two objec-
tives the expected program cost and the CVaR,, which depictsthe extreme cost in theright
tail of the program cost distribution. Different decision-making preferences between minimiz-
ing the expected cost versusthe extreme cost can be explored by changing the weighting factor
F. When F = 0, the objective function minimizesthe expected cost only. Increasing the F vaue
above 0 placesmore emphasison minimizing the cost in theright tail of the cost distribution.
A decrease of the extreme cost causes the expected cost to increase. This penalty isexpected:
Theonly way to decrease the cost with respect to worst-case scenariosisto survey morestes
Thetotd reduction of the extreme cost dependson the chosen vaues of the detection ratey,
eradication successthreshold d and the sefety margin pin the constraint Eq 8: ahigher ratey
(or lower d and p values) lead to agreater reduction of the extreme cost. In ageogrephica con-
text, the additional surveysin the solutionswith CVaR, sdlected digtant locationswherethe
probability of spread isvery low (Fig 6). Although these additiond siteshad considerably
lower probabilities of ALB spread, they had higher host densitiesthan therest of the surveyed
sites(Fig 7). These stesrepresent low-risk locationsin terms of spread, but because of their
abundant hogt, infestations could be severe and require costly eradication if they wereto be
invaded.

Contralling the extreme cost aso influencesthe optima management policy. In the current
mode setup, the only way to reduce theextreme codt isto survey more siteswith respect to the
worst-case scenarios Thus, controlling the extreme program cogt isonly possible by increasing
the number of surveys, i.e, by implementing the "survey and remove' policy. Nevertheless the
choiceof the optima policy aso dependson how adecision-maker perceivestherisk of incur-
ring high program costs Controlling the extreme cost adds a pendlty to the expected cost,
which makesthe"survey and remove' policy lessattractive when adecison-maker isrisk-neu-
tra and therefore aspiresto minimize the expected cost (Fig 8, dotted lines). In thiscass, the
boundary between the"survey and remove’ and the "remove only" policies shiftstowards
higher detection rates, meaning that arisk-neutra decision-maker probably will not adopt the
“survey and remove’ policy unlessthelikelihood of detection isvery high. In contrast, when a
decision-maker perceivesthe worst-case cogsasareasonable proxy of thetrue program cogts,
the boundary shiftsdownward (Fig 8aand 8b, dashed lines), making the "survey and remove'
policy attractive for lower detection ratesand larger regulated areas For the specific example
of ALBin the GTA, with adetection ratey = 0.7 and high expectations of eradication success
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Fig 6. Additional survey sites in solutions with minimization of the extreme cost in the objective
function via CVaR vs. solutions based on minimizing the expected cost only. Colored (black, red, or
orange) hexagons show survey sites that appeared in solutions with CVaR (F = 0.5) but not in solutions that
minimized the expected cost (i.e., F = 0). Light green hexagons denote sites with high host density (> 1200
trees per survey site). An outline depicts the sites with the probability of ALB spread, p; es:, above 0.003.

https://doi.org/10.1371/journdl.pone. 0181482.g006

(i.e, with an eradication successthreshold d = 0.9 and safety margin p= 0.95; seeFig 8b), the
"survey and remove' policy remainsa preferred choice for regulated areas spproximately

160 haor lessin size. However, for regulated areaslarger than 500 ha, the "survey and remove"
policy isoptima only if the detection ratey is 0.8 or greater (Fig 8b, dashed line).

Discussion

Eradication of invasive species often requires costly investments Agenciestasked with manag-
ing biological invasions face various budget and regulatory congraintsthat prevent them from
undertaking full-scale eradication. When the need to eradicate an invasive species conflicts
with apoor capacity to detect it, or when decision-makers face limited budgets management
policiescan be developed that attempt to attain adesired level of eradication while meeting the
budget and detection capacity constraints The primary methodologica contribution of our
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Fig 7. Differences in host density, Nj, and the probability of ALB spread, p; .st, between the subset of survey sites that were
selected only in solutions with CVaR vs. sites that were selected both, in solutions with CVaR and based on minimizing the
expected cost (i.e., F =0). (A) differences in host density (N). (B) differences in the probability of ALB spread (p; es1). Solutions for
the parameter combination of y=0.7 and 0.9, =1, d = 0.95 and p = 0.95 are shown; other parameter combinations revealed similar
differences. The lower and upper whiskers are the 5™ and 95" percentile points, respectively. 1 —survey selections that appear in the
solutions with CVaR but absent in the solutions based on minimizing the expected cost; 2 —survey selections that appear both in
solutions with CVaR and based on minimizing the expected cost value. The survey selection sets in 2 were randomly sampled to
match the size of the sets in 1.

https://doi.org/10.1371/journa.pone.0181482.9g007

work isaresource dlocation model that can help decision-makersworkingin terrestria set-
tingsto develop cost-effective site survey and host removal strategiesin areasunder threzt of
invasion. Our model setup generaly conformsto the current decision-making environment
for managing ALBin the GTA, and depictsthe management program asatwo-step decision-
making process Firgt, delimiting surveys are dlocated over sitesin adefined management area
a the beginning of the survey season. Thedistribution of the pest within this management
areg, and the extent of damage, isuncertain &t that point in time, and ismodeled with alarge
set of stochastic scenarios, where each scenario depicts one possible outcome of the invasion.
In the second stage at the end of the survey period, subsequent actionsare gpplied to eradicate
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Fig 8. Impact of controlling the right tail of the program cost distribution with CVaR on the choice of
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curves indicates the maximum size of the managed area J where it is optimal to survey before tree removal.
(A) The policy choice based on the expected cost value. (B) The policy choice is based on the extreme cost
values in the right tail of the program cost distribution at CVaRg gq.
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infestationsthat are discovered & the surveyed sites The mode involvesaset of constraints
that focus regulatory decisionson two key parametersin particular; the desired level of eradi-
cation success and the margin of sfety. These parameters are valuejudgmentsand definea
decision-maker’s aspirations regarding eradication and tolerance for program failure Our
modél offersa practica approach to estimating the costs of these value judgments The modd
formulation is generalizable and can be zpplied to other geographica regionsand speciesof
concern.

Our andysesreveded two aternative optima management policiesfor ALB. Thefirst
choice prescribes deimiting surveyswithin aregulated area, with subsequent removd of host
treesat infested sites based on the outcomes of the surveys, while the second choice prescribes
preventiveremova of infested and susceptible host treesat selected sitesin theregulated area
without prior delimiting surveys Which policy isoptima depends not only on the vauejudg-
ments mentioned above, but aso on the combination of key assumptions, such asthe capadity
to detect the pest, the size of the regulated area the expected infestation ratesand loca host
densities It turnsout that the policy of preventive tree removal isoptimal for thetypica sizes
of regulated areasthat have previoudy been etablished to managethe ALB outbresk in the
GTA (i.e, on theorder of 46 km?). Moreover, our resultsagree with past and current manage-
ment practicesfor ALBin the GTA, whereremova of infested and nearby susceptible host
treeswasinitiated without delimiting surveys

Theoptima policy aso dependson how decision-makers perceive therisk of eradication
falure. In our ALB example, if adecison-maker strivesto minimizethe cost with respect to
theworst-case invasion scenarios, delimiting surveys appear to be optima for alarger size
of regulated areathan if the decison-maker perceivesthe expected program cog to bearea-
sonable representation of thetrue cost. Theonly way to reduce the cost with respect to the
worst-caseinvason scenariosisto survey more sitesand more trees, which providesmore
opportunitiesto find infested treesand reducesthe number of susceptible tressthat must be
removed to protect against overlooked infestations. However, the policy of minimizing the
chance of aword-case scenario imposes extra costs, thus making the expected program cost,
on average, gppreciably higher than the policy that grivesonly to minimize thisexpected cost.

The need for adequate control of the risk of high program costs

Generdly, decison-makers tasked with containing the spread of an invasive speciesdesireto
achieve successful eradication of theinvader with minimum cods Ye, thereisawayssome
risk that the cogtsof eradication could bevery high. Thisaspect can be problematic for decison-
-makers who may havelow tolerancefor incurring high costisand may agreethat control of the
risk of high program codsisimportant, even if thiscomeswith anecessary increasein the over-
al cogs Theleve of risk that cen betolerated often dependson thetype of organism, its capac-
ity to spread and cause damageto economically vigble hosts, aswell asthe objectives of the
management program. We bdlieve that adequate control of therisk of high program cogsisan
important part of a successful pest management program. A typica approach to managerisk in
financid and nationd security epplicationsisto estimate and control vaue risk of high lossss
costs or damages with a specified confidence level, such as 95%([53, 79].

Adequate control of therisk of high program costs also dependson an andyst's ability to
predict the outcomes of futureinvasions and management actionsand to quantify other key
factorsthat influence the species ability to invade novel habitats Whilethe outcomesof ALB
management actionsin our GTA study (i.e, complete remova of host treesin an urban envi-
ronment) were graightforward and well-understood, assessment of the outcomes of ALB inva-
sion in naura ecosystemswould require better understanding of factorsthat control the
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species capacity to invade and egtablish aviable population, such asan ability to displace other
speciesfrom their habitats or interspecificinteractions, eg., competition with native wood-
and bark-boring insects for host resources[6,80].

Our study was primarily focused on quantifying human-mediated dispersa of ALB.
Humean activitiesare known to be mgjor contributorsto rates of spread for many invesive
insects[81]. In our cass, the natura spread capacity of ALB by biological meansisknown to
be poor [42, 43] and the pattern of recently discovered ALB infestationsin North Americahas
been attributed largely to human-assisted movement [64, 66], so wefdlt justified in our focus
on tracking the human-mediated spread. Accounting for biologica spread would becritica
for an invasive pest specieswith strong flight capability that could cover long distances by its
own means

Spread rates may dso be affected by other abiotic factors, such asclimatic variation [82, 83].
In our cass, the study ereawas very smal and theforecast horizon wasreaively short (i.e, less
than fiveyearswithin GTA city limits), o therefore wedid not account for site-to-site or tem-
pord dimatic variation and its potentid impact on the rate of spread. Accounting for the
impact of spatial and tempora dimatic variation on the spread rateswould beimportant for
cases with long forecast time horizonswhen species are expected to spread over longdistances

Our sgtudy illugtrates how the sfety-rule approach with controlling the conditiona vaue-a
risk for program costs can be formulated asamathematica progranming problem. In our
casg, alineerized formulation of CVaR enabled solving the mode with alinear programming
solver for alarge number of spatid casesand spread scenarios Notably, minimizing the CVaR
requires substantidly greater computationd effort than minimizing the expected cost. The
CVaR metricissensgtiveto the shape of the distribution tail above the chosen confidence level
a, and thetail configuration affectsthe solution times Nevertheless, our approach appearsto
be suitable for large-scale geographical gpplications and enablesrepresentation of theuncer-
tainty of apest’sfuture spread in largeregionsviaalarge st of discrete scenarios

Supporting information

S1 File. Defining the probability threshold for eradication success.
(DOC)

S File. Model-based assessment of ALB spread in in the Greater Toronto Area (ON).
(DOC)

S1 Fig. Impact of changing theinfestation rate (8¢ and the host density (N;) on the opti-
mal management policy.
(DOC)

Author Contributions

Conceptualization: Denys Yemshanov, Robert G. Haight, Frank H. Koch, Robert Venette,
Jeen J Turgeon.

Datacuration: DenysYemshanov, Kala Sudens, Rondd E. Fournier, Tom Swystun.

Formal analysis Denys'Yemshanov, Robert G. Haight, Kala Sudens, Ronad E. Fournier,
Tom Swystun, Jean J Turgeon.

Funding acquisition: Denys Yemshanov.

Investigation: Frank H. Koch, Robert Venette, Ronald E. Fournier, Tom Swystun, Jean J
Turgeon.

PLOS ONE | https://doi.org/10.1371/journal.pone.0181482  July 31, 2017 21/25



' PLOS | one

A safety rule approach to manage biological invasions

Methodology: Denys Yemshanov, Robert G. Haight, Frank H. Koch, Robert Venette, Ronad
E Fournier, Jean J Turgeon.

Project administration: DenysYemshanov.
Software: Kada Sudens, Tom Swvystun.
Supervision: Denys Yemshanov.

Validation: Ronad E. Fournier, Jeen J Turgeon.
Visuaization: Kda Sudens, Tom Swystun.

Writing—original draft: Denys Yemshanov, Robert G. Haight, Frank H. Koch, Jean J
Turgeon.

Writing —review & editing: Robert G. Haight, Frank H. Koch, Robert Venette, Ronald E
Fournier, Jean J Turgeon.

References

1.

10.

11.

12.

13.

Kim CS, Lubowski RN, Lewandrowski J, Eiswerth ME. Prevention or control: optimal government poli-
cies for invasive species management. Agricultural and Resource Economics Review 2006; 35(1):
29-40.

Bogich TL, Liebhold AM, Shea K. To sample or eradicate? A cost minimization model for monitoring
and managing an invasive species. Journal of Applied Ecology 2008; 45(4): 1134—1142.

Reaser JK, Meyerson LA, Von Holle B. Saving camels from straws: how propagule pressure-based pre-
vention policies can reduce the risk of biological invasion. Biological Invasions 2008; 10: 1085-1098.

Tobin PC. Cost analysis and biological ramifications for implementing the gypsy moth Slow the Spread
Program. Gen. Tech. Rep. NRS-37. Newtown Square, PA: U.S. Department of Agriculture, Forest Ser-
vice, Northern Research Station. 2008.

Davidovitch L, Stoklosa R, Majer J, Nietrzeba A, Whittle P, Mengerson K et al. Info-gap theory and
robust design of surveillance for invasive species: The case study of Barrow Island. Journal of Environ-
mental Management 2009; 90: 2785-2793. https://doi.org/10.1016/j.jenvman.2009.03.011 PMID:
19386410

Pysek P, Richardson DM. Invasive species, environmental change and management, and health.
Annual Review of Environment and Resources 2010; 35: 25-55.

NISC (National Invasive Species Council). Fact Sheet: National Invasive Species Council Fiscal Year
2007 Interagency Invasive Species Performance Budget. online source: National Invasive Species
Council, 2007. http://www.invasivespecies.gov/global/org_collab_budget/organizational_budget_
performance_based_budget.html

Rafoss T. Spatial stochastic simulation offers potential as a quantitative method for pest risk analysis.
Risk Analysis 2003; 23(4): 651-661. PMID: 12926559

Carrasco LR, Baker R, MacLeod A, Knight JD, Mumford JD. Optimal and robust control of invasive
alien species spreading in homogeneous landscapes. Journal of the Royal Society Interface 2010; 7:
529-540.

Hester SM, Brooks S, Cacho OJ, Panetta FD. Applying a simulation model to the management of an
infestation of Miconia calvescens in the wet tropics of Australia. Weed Research 2010; 50: 269-279.

Hester SM, Cacho OJ. Optimization of search strategies in managing biological invasions: a simulation
approach. Human and Ecological Risk Assessment 2012; 18: 181-199.

Koch FH, Yemshanov D, McKenney DW, Smith WD. Evaluating critical uncertainty thresholds in a spa-
tial model of forest pest invasion risk. Risk Analysis 2009; 29(9): 1227-1241. https://doi.org/10.1111/j.
1539-6924.2009.01251.x PMID: 19558391

Yemshanov D, Koch FH, McKenney DW, Downing MC., Sapio F. Mapping invasive species risks with
stochastic models: a cross-border United States-Canada application for Sirex noctilio Fabricius. Risk
Analysis 2009; 29: 868—884. https://doi.org/10.1111/].1539-6924.2009.01203.x PMID: 15220798

Yemshanov D, Haight R, Koch FH, Lu B, Venette R, Fournier R et al. Robust surveillance and control of
invasive species using a scenario optimization approach. Ecological Economics 2017; 133: 86-98.

PLOS ONE | https://doi.org/10.1371/journal.pone.0181482 July 31, 2017 22125



B PLOS | one

A safety rule approach to manage biological invasions

15.

16.

17

18.

19.

20.

21.

22.

23.

24,

25.

26,

27.

28.

29,

30.

31.

32.

33.

34,

35.

36.

Epanchin-Niell RS, Haight RG, Berec L, Kean JM, Liebhold AM. Optimal surveillance and eradication of
invasive species in heterogeneous landscapes. Ecology Letters 2012; 15: 803—-812. https://doi.org/10.
1111/1.1461-0248.2012.01800.x PMID: 22642613

Hauser CE, McCarthy MA. Streamlining ‘search and destroy’: cost-effective surveillance for invasive
species management. Ecology Letters 2009; 12: 683—692. https://doi.org/10.1111/).1461-0248.2008.
01323.x PMID: 19453617

Horie T, Haight RG, Homans F, Venette RC. Optimal strategies for the surveillance and control of forest
pathogens: A case study with oak wilt. Ecological Economics 2013; 86 (C): 78-85.

Epanching-Niell RS, Brockenhoff EG, Kean JM, Turner JA. Designing cost-efficient surveillance for
early detection and control of multiple biological invaders. Ecological Applications 2014; 24(6):
1258-1274.

Moore AL, McCarthy MA. Optimizing ecological survey effort over space and time. Methods in Ecology
and Evolution 2016; 7: 891-899.

Lichtenberg E, Zilberman D. Efficient regulation of environmental health risks. Quarterly Journal of Eco-
nomics 1988; 103: 167-178.

Haight RG. Comparing extinction risk and economic cost in wildlife conservation planning. Ecological
Applications 1995; 5(3): 767-775.

Lichtenberg E, Zilberman D, Bogen KT. Regulating environmental health risks under uncertainty:
groundwater contamination in Califormia. Journal of Environmental Economics and Management 1989;
17:22-34.

GISD (Global Invasive Species Database). 100 of the World's Worst Invasive Alien Species. 2016.
http://issg.org/database/species/search.asp?st=100ss&fr=1&str=&lang=EN

Nowak DJ, Pasek JE, Sequeira RA, Crane DE, Mastro VC. Potential effect of Anoplophora glabripennis
(Coleoptera: Cerambycidae) on urban trees in the United States. Journal of Economic Entomology
2001; 94: 116-122. https://doi.org/10.1603/0022-0493-94.1.116 PMID: 11233100

Lingafelter SW, Hoebeke ER. Revision of Anoplophora (Coleoptera: Cerambycidae). Entomological
Society of Washington, Washington, 2002.

Williams DW, Lee H-P, Kim |-K. Distribution and abundance of Anoplophora glabripennis (Coleoptera:
Cerambycidae) in natural Acer stands in South Korea. Environ Entomol 2004; 33: 540-545.

Wang B, Mastro VC, Gao RT. Host range of Anoplophora glabripennis: what we've learned from com-
mon-garden experiment data. In: Fosbroke SLC, Gottschalk KW, editors. 16th U.S. Department of Agri-
culture Interagency Research Forum on Gypsy Moth and Other Invasive Species 2005. Newtown
Square, PA: USDA Forest Service General Technical Report NE-GTR-337, 2005. p. 89.

Haack RA, Heerard F, Sun J, Turgeon JJ. Managing invasive populations of Asian longhorned beetle
and citrus longhorned beetle: a worldwide perspective. Annual Review of Entomology 2010; 55:
521-546. https://doi.org/10.1146/annurev-ento-112408-085427 PMID: 19743916

CFIA (Canadian Food Inspection Agency). Anoplophora glabripennis (Motschulsky)—Asian long-
horned beetle—Fact Sheet; 2014. http://www.inspection.gc.ca/plants/plant-pests-invasive-species/
insects/asian-longhorned-beetle/fact-sheet/eng/1447168284946/1447 168408039

Peterson AT, Scachetti-Pereira R. Potential geographic distribution of Anoplophora glabripennis (Cole-
optera: Cerambycidae) in North America. The American Midland Naturalist 2004; 151(1): 170-178.

Shatz AJ, Rogan J, Sangermano F, Ogneva-Himmelberger Y, Chen H. Characterizing the potential dis-
tribution of the invasive Asian longhorned beetle (Anoplophora glabripennis) in Worcester County, Mas-
sachusetts. Applied Geography 2013; 45: 259-268.

Trotter ET Il, Hull-Sanders HM. Quantifying dispersal of the Asian longhorned beetle (Anoplophora
glabripennis, Coleoptera) with incomplete data and behavioral knowledge. Biological Invasions 2015;
https://doi.org/10.1007/s10530-015-0961-9

Maspero M, Jucker C, Colombo M. First record of Anoplophora glabripennis (Motschulsky) (Coleoptera:
Cerambycidae, Lamiinae, Lamiini) in Italy. Bollettino di Zoologia Agraria e di Bachicoltura 2007; 39:
161-164.

EPPO (European and Mediterranean Plant Protection Organization). EPPO Reporting Service, No. 5,
2008. http://archives.eppo.org/EPPOReporting/2008/Rse-0805.pdf

Straw N, Fielding N, Tilbur C, Williams D, Inward D. Host plant selection and resource utilisation by
Asian longhorned beetle Anoplophora glabripennis (Coleoptera: Cerambycidae) in southern England.
Forestry 2015; 88: 84-95.

Animal Plant Health Inspection Service (APHIS). Asian longhorned beetle (Anoplophora glabripennis)
fact sheet. United States Department of Agriculture, Animal Plant Health Inspection Service, January
2005. http://www.aphis.usda.gov/lpa/pubs/fsheet_faq_notice/fs_phalb.pdf

PLOS ONE | https://doi.org/10.1371/journal.pone.0181482  July 31,2017 23125



©-PLOS | oxe

A safety rule approach to manage biological invasions

37.

38.

39.

40.

41,

42.

43.

44.

45,

46.

47.

48.
49.

50.

51.

52.
53.

54.

55.

56.

§7.

58.

59.

60.

61.

62.

Animal Plant Health Inspection Service (APHIS). Asian longhorned beetle cooperative eradication pro-
gram in Clermont County, Ohio; 2013. http://www.aphis.usda.gov/plant_health/ea/downloads/2013/
OHClermontCountyRevised_EA_May_final.pdf

Carter ME, Smith MT, Turgeon JJ, Harrison RG. Analysis of genetic diversity in an invasive population
of Asian longhorned beetles in Ontario, Canada. The Canadian Entomologist 2009; 141: 582-594.

EPPO (European and Mediterranean Plant Protection Organization). Standard PM 9/15 (1) Anoplo-
phora glabripennis: procedures for official control. Bulletin OEPP/EPPO Bulletin 2013; 43: 510-517.

EPPO (European and Mediterranean Plant Protection Organization). Standard PM 9/15 (1) Anoplo-
phora glabripennis: procedures for official control. Bulletin OEPP/EPPO Bulletin 2014; 44: 107.

UN-FAO. International Standards for Phytosanitary Measures. ISPM No. 9 Guidelines for pest eradica-
tion programmes. Secretariat of the International Plant Protection Convention, Rome: FAO, 1998. ftp:/
ftp.fao.org/docrep/fao/009/a0450e/a0450e. pdf

Smith MT, Bancroft J, Li GH, Gao RT, Teale S. Dispersal of Anoplophora glabripennis (Cerambycidae).
Environmental Entomology 2001; 30(6): 1036—1040.

Smith MT, Tobin P, Bancroft JS, Li GH, Gao RT. Dispersal and spatiotemporal dynamics of Asian long-
horned beetle (Coleoptera: Cerambycidae) in China. Environmental Entomology 2004; 33: 435442,

CFIA (Canadian Food Inspection Agency). Asian Long-horned Beetle eradicated from Canada. News
Release, September 20, 2013. http://www.inspection.gc.ca/about-the-cfia/newsroom/news-releases/
2013-04-05/eng/1365168144940/1365168154936

Animal Plant Health Inspection Service (APHIS). Asian Longhorned Beetle Eradication Program
Announces 2016 Plans for Fighting the Beetle in New York, Massachusetts, and Ohio; 2016. https:/
www.aphis.usda.gov/aphisinewsroom/news/sa_by_date/newsroom-2016/sa_03/alberadicationplans

Studer G. Maximum Loss for Measurement of Market Risk. Doctoral Thesis. 1997. hitp://www2.risklab.
ch/ftp/papers/ThesisGeroldStuder. pdf

Jorion P. Value at Risk: The New Benchmark for Managing Financial Risk, McGraw Hill Professional
Publ, 2006.

Duffie D, Pan J. An overview of value-at-risk, Journal of Derivatives 1997; 4: 7—49.

Rockafellar RT, Uryasev SP. Conditional value-at-risk for general loss distributions. Journal of Banking
and Finance 2002; 26: 1443-1471.

Pflug G. Some remarks on the value-at-risk and the conditional value-at-risk, In: Uryasev S, editor.
Probabilistic Constrained Optimization: Methodology and Applications, Kluwer Academic Publishers,
2000. pp. 272-281.

Acerbi C, Tasche D. Expected shortfall: a natural coherent alternative to Value at Risk. Economic Notes
2002; 31(2): 379-388.

Tasche D. Expected shortfall and beyond, Journal of Banking & Finance 2002; 26: 1519-1533.

Hardy M. Investment Guarantees: Modeling and Risk Management for Equity-Linked Life Insurance.
Hoboken, NJ: Joehn Wiley & Sons, 2003.

Inui K, Kijima M. On the significance of expected shortfall as a coherent risk measure. Journal of Bank-
ing & Finance 2005; 29: 853-864.

Rachev ST, Stoyanov S, Fabozzi FJ. Advanced Stochastic Models, Risk Assessment,and Portfolio
Optimization: The Ideal Risk, Uncertainty, and Performance Measures. Hoboken, NJ: John Wiley &
Sons, 2007.

Rockafellar RT, Uryasev SP. Optimization of conditional value-at-risk. Journal of Risk 2000; 2: 21-42.

Artzner P, Delbaen F, Eber J-M, Heath D. Coherent measures of risk. Mathematical Finance 1999;
9(3): 203-228.

Zadeh L. Optimality and non-scalar valued performance criteria. IEEE Transactions Automatic Control
1963; AC-8:59.

Snyder SA, ReVelle CS, Haight RG. One and two-objective approaches to an area-constrained habitat
reserve site selection problem. Biological Conservation 2004; 119: 565-574.

Sarykalin S, Serraino G, Uryasev S. Value-at-Risk vs. Conditional Value-at-Risk in Risk Management
and Optimization. INFORMS Tutorials in Operation Research. INFORMS 2008. pp. 270-294.

Hopkin A, de Groot P, Turgeon JJ. Alien forest insects: What's bugging us in Ontario? Emerald ash
borer and Asian longhorned beetle. Forest Health and Biodiversity News 2004; 8: 1-2, 5.

Turgeon JJ, Orr M, Grant C, Wu Y, Gasman B. Decade-old satellite infestation of Anoplophora glabri-
pennis Motschulsky (Coleoptera: Cerambycidae) found in Ontario, Canada outside regulated area of
founder population. The Coleopterists Bulletin 2015; 69: 674-678.

PLOS ONE | https://doi.org/10.1371/journal.pone.0181482  July 31, 2017 24125



@PLOS i ONE

A safety rule approach to manage biological invasions

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

Turgeon JJ, Pedlar J, de Groot P, Smith MT, Jones C, Orr M et al. Density and location of simulated
signs of injury affect efficacy of ground surveys for Asian longhorned beetle. The Canadian Entomolo-
gist 2010; 142: 80-96.

Smith MT, Wu JQ. Asian longhorned beetle: renewed threat to northeastern USA and implications
worldwide. International Pest Control 2008; 50: 311-316.

Nehme ME, Trotter RT, Keena ME, McFarland C, Coop J, Hull-Sanders HM et al. Development and
evaluation of a trapping system for Anoplophora glabripennis (Coleoptera: Cerambycidae) in the United
States. Environ. Entomol 2014; 43: 1034—1044. https://doi.org/10.1603/EN14049 PMID: 24960252

Favaro R, Wichmann L, Ravn HP, Faccoli M. Spatial spread and infestation risk assessment in the
Asian longhorned beetle, Anoplophora glabripennis. Entomologia Experimentalis et Applicata 2015;
155(2): 95-101.

Buck JH, Marshall JM. Hitchhiking as a secondary dispersal pathway for adult emerald ash borer, Agri-
lus planipennis. Great Lakes Entomologist 2008; 41(1-2): 197-198.

SACTRA (Standing Advisory Committee for Trunk Road Assessment). Transport and the economy: full
report (SACTRA), 1999. http://iwebarchive.nationalarchives.gov.uk/20050301192906/http:/dft.gov.uk/
stellent/groups/dft_econappr/documents/pdf/dft_econappr_pdf_022512.pdf

Tetrad Inc. TrafficMetrix Canada. 2014. Official website: http://www.tetrad.com/maps_and_data/
canadal/traffic/

Cook G, Downing M. Traffic Pattern Project Report: Methodology for Interpolating Traffic Count Data to
a Road Network. Fort Collins, CO: USDA Animal Plant Health Inspection Service, Plant Protection and
Quarantine, Centre for Plant Health Science and Technology, 2013.

ESRI. Street Map Premium for ArcGIS, 2014. http://www.esri.com/data/streetmap

SOLRIS (Southern Ontario Land Resource Information System). Land Use Data. Toronto, ON: The
Ontario Ministry of Natural Resources, 2008.

City of Toronto, Parks, Forestry and Recreation, Urban Forestry. Every Tree Counts: A Portrait of
Toronto's Urban Forest. Toronto, ON: City of Toronto, Parks, Forestry and Recreation, 2013.

Mak WK, Morton DP, Wood RK. Monte Carlo bounding techniques for determining solution quality in
stochastic programs. Operations Research Letters 1999; 24: 47-56.

Lee Y, Fried JS, Albers HJ, Haight RG. Deploying initial attack resources for wildfire suppression: spa-
tial coordination, budget constraints, and capacity constraints. Canadian Journal of Forest Research
2013; 43: 56-65.

Mason AJ. SolverStudio: A new tool for better optimisation and simulation modelling in Excel.
INFORMS Trans. Ed. 2013; 14(1): 45-52.

GAMS (GAMS Development Corporation). General Algebraic Modeling System (GAMS) Release 24.6,
2015,Washington, DC.

GUROBI (Gurobi Optimization Inc.). GUROBI Optimizer Reference Manual. Version 6.5. 2016. GAMS
interface is http://www.gams.com/help/index.jsp?topic=%2Fgams.doc%2Fsolvers%2Findex.html.
https://iwww.gurobi.com/documentation/6.5/refman.pdf

Krokhmal P, Murphey R, Pardalos P, Uryasev S, Zrazhevski G. Robust decision making: Addressing
uncertainties in distributions. Chapter 9 in: Butenko S et al. (eds.) Cooperative Control: Models, Applica-
tions and Algorithms. Kluwer Acedemic Publishers; 2003. pp. 165-185.

Gao YL, Reitz SR. Emerging themes in the understanding of species displacements. Annual Review of
Entomology 2017; 62: 165—183. https://doi.org/10.1146/annurev-ento-031616-035425 PMID:
27860525

Hudgins E, Liebhold AM, Leung B. Predicting the spread of all invasive forest pests in the United States.
Ecology Letters 2017; 20: 426—435. https://doi.org/10.1111/ele.12741 PMID: 28176497

Kriticos DJ, Leriche A, Palmer DJ, Cook DC, Brockerhoff EG, Stephens A et al. Linking climate suitabil-
ity, spread rates and host-impact when estimating the potential costs of invasive pests. PLOS One
2013; 8(2): €54861. https://doi.org/10.1371/journal.pone.0054861 PMID; 23405097

Dukes JS, Mooney HA. Does global change increase the success of biological invaders? Trends in
Ecology & Evolution 1999; 4: 135-139.

PLOS ONE | https://doi.org/10.1371/journal.pone.0181482 July 31, 2017 25/25





