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Abstract

Uncertainty about future spread of invasive organisms hinders planning of effective

response measures. We present a two-stage scenario optimization model that accounts for

uncertainty about the spread of an invader, and determines survey and eradication strate

gies that minimize the expected program cost subject to a safety rule for eradication suc

cess. The safety rule includes a risk standard for the desired probability of eradication in

each invasion scenario. Because the risk standard may not be attainable in every scenario,

the safety rule defines a minimum proportion of scenarios with successful eradication. We

apply the model to the problem of allocating resources to survey and eradicate the Asian

longhorned beetle (ALB, Anopiophora glabripennis) after its discovery in the Greater

Toronto Area, Ontario, Canada. We use historical data on ALB spread to generate a set of

plausible invasion scenarios that characterizes the uncertainty of the beetle's extent. We

use these scenarios in the model to find survey and tree removal strategies that minimize

the expected program cost while satisfying the safety rule. We also identify strategies that

reduce the risk of very high program costs. Our results reveal two alternative strategies: (i)

delimiting surveys and subsequent tree removal based on the surveys' outcomes, or (li) pre

ventive host tree removal without referring to delimiting surveys. The second strategy is

more likely to meet the stated objectives when the capacity to detect an invader Is low or the

aspirations to eradicate it are high. Our results provide practical guidelines to identify the

best management strategy given aspirationa! targets for eradication and spending.

Introduction

Programs thd aredeagned to stop the^read of I nvaave spades often invoivetheailocation
of resourcesto survey and eradicaitetheinvadingindividuals[1-6j. Although aconsiderable
shareof theavailableresourcesisoften da/oted to surveys[7], such effortsrardy reveal com-
pleteinformdion about thepressnceof thespedesof interest. The resulting uncertainty about
the spread and extent of theinvada- meensthet theoosts—and likelihood of success—of the
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management aiiionsto control theinvasion are also uncertain. Thiscreetesproblemswith
allocsting resourcesappropridely to control theinvasons^ because critical management ded-
sons{eg., when and whereto prioritize surveysor aadic^ion efforts) must be made under
uncertain ©cpectdionsof thelikdihood and outcomes of invasion. A common approach In
thisatuation isto estimate the©(pected cost of eradicating thegpedes based on probabilistic
©(pectdionsofthespede^ spread in theareaof concern. Theseexpectationsareuncertain but
can berepreffinted asalargeset of plauablestochasticscenariosthat hdp estimate the bounds
of uncertainty on tho9eexpectations[8-14]. Howe/er, thetruecostsof theactionsthat ulti
mately must betaken to manage the invasion remain unknown, because thededsons based
on theexpected costscould be wrong and lead to ©dremely high management costs

Detection and control of biological invaaonscan begreetly improved through applic^ion
of spatial-dynamicoptimization modelsthat predict economically optimal strdegiesfor sur-
veillanceand eradication of invasve^edes Themodelsdepicttheallocdion of resourcesto
control an invason asan optimization problem, with someimportant parametersand dedaon
variables depicted in temporal and gpatial domains Epanchin-Niell et al. [15] de/eloped a
dynamic model of pest colony establishment and growth and designed optimal long-term
equilibrium survallanceand eradicdion programsto minimize program costs They used the
model to optimize long-term survei I lance effort a:ross heterogeneous landscapes subject to
region-widesurveillancebudgets Hauser and McCarthy [16] proposed astaticmodd toopti-
mizeone-timesurveillanceeffort arossmultipleateswhen aspeded presenceisuncertain
prior to detection and probability of occurrence vaies across sites In contrast to the equilib
rium anaiysisof Epanchin-Niell et al. [15], the static model of Hauser and McCarthy [16] is
appropridefor optimizing surveillance when many local populdionsaethought to ha/e
established prior to theinitiation of asurveillanceprogram. Horieetal.[17] and Yemdianov
et al.[14] developed moddsto optimize one-time survdllance effort acrossmultipleatesgiven
uncertainty about theedent (rather than simply the presence) of the infestation in eadiate

They handledthisuncertainty by splitting the managemait dedaon into two stages In the
first stage; sitesaresdected for survdilancegiven thdr ©cpected le/dsof infestdion, and in the
second stage; eradication treatmentsareprescribed within the surveyed atescontingent on the
la/dsof infestation found. Theobjectiveisto minimizetheexpected growth oftheinfestation
subject to the total budget for survallanceand treatmait. Epanchin-NidI etal. [18] da/doped
amechanisticbioeconomicmodd that rdatessurvdilanceintenaty and invasion azeto prob-
abllitiesof detection and control. Thdr modd determined, in ageographicdomain. theopti-
mal investment in survdllance; in termsofthenumba"sanddistributionsof trap§ to
minimizethetotal invasion impact. Mooreand McCarthy [19] proposed a modd thd opti-
mizestheallocation of survdllanceeffortsin both spdial and temporal domainsand accounts
for stochastically varying detection ratesin geographical space

In thisstudy, weaddressaproblem in which adedaon maker must sdect a program for
ddimitingsurveysand eradication that minimizesoverall program costsand attainsadeared

levd of eradication successdespite uncertainty about thecurrent and futureextent of an inva
sion. Smilar to Horieetal. [17] and Yemshanov etal. [14], wesplit the management dedaon
into two stagesrepresenting the placement of survdllance in thefirst stage and theintenaty of

tredment given theoutcomeof survdilancein thesecond stage Rdher than dtemptingto

minimize0<pected invasion expansion, we indudeprobabilistic constralntsfor dtaining erad

ication successasaw^ to limit thedamagefrom theinvader populationsthd ha/ebeen estab
lished in thearea of interest. These constraints areconastentvwth a safety-rule approadi to

addresang uncertainty in environmental regulation [20-22]. A sd^ety ruleindudesaridx stan

dard representing aminimum probability of attainingadedrableaivironmental outcome

(eg,, eradicdion of an invasivespedes population). The safety ruleindudesa probability thd
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management action(s) will not achia/eadesirecl outcoma Thisprobability vaiue(aiso known

as margin of safety) representsthededson-maker'sa/eraon to uncertainty about thesttain-

ing theri^ standard.

Weapply our s^ety-ruleapproach to thecaseof managing theinvasion of aforest pest, the

Aaan longhorned t>eetle(ALB), Anoplophora ̂ abripainls(Mot3chuld<y), in theGreda-

Toronto Areaof Ontario, Canada Thiswoodborer Isandlveof Chlnaand theKoresn Penln-

sulaand Isllsted amongtheworld'sworstlnva3vespecies[23]. In Invaded landscapes^ Itspre-
ferred host ismaple(Aoer spp.); other suitablehostsinduda but arenot limited to, birches

(Betulaspp.), poplars(Ropulusspp.), willows(&llxspp.), andelms(Ulmusspp.) [24-29]. East

ern North Amfficaseemse^Dedally vulnerabletoinfestetionsby thisbeetlebecauseof Its

abundanceof mapleand of suitable habitat condltions[30]. Breeding populdlonsof ALB ha/e
been found at sa/eral loc^lonsin eastern North America[28,31,32] and in Europe[33-35].
Most of theselntroductionslnvolved beetlesthd had orlglnded from thespede^ ndlverange
[36-38]. In most countriesoutadeofitsnatlve range; discovery of ALB leadsto theimplemen-

tdlon of an eradicdion program [39,40]. SUch programstyplcally feetureadeJImitation phase

ofthelnvaded aea, which leadstotheestabll^ment of aquarantlnezoneto limit the spread

ofthebeetleaswell asatredment phase[41]. Removal and destruction of all Infested treesand

removal or tredment of high-risk suitable host trees^ astrategy that takes advantage of ALB's

slow ratesof spread [42.43], represents an effective method to eradicate ALB. Indeed, this

strategy hasled to successful eradlcatlonsin North America [44,45].

Materials and methods

Scenario-based invasion management model

We da/elop a two-stage; spatial optimization model in which uncertainty about thepresence
and ©(tent of the invader (i.e, ALB or another forest pest) isrepresented by aset of probabilis
tic scenarios Weassumed the beginning of the first stage that thelnvad© Isknown to be

present In asingleareaand aquarantlnezonelsestabll^ed around thd Invaded area The

area under quarantine contains Jateswhe'ethe Invader m^ also be present, but which of

theseatesareactually Infested isunknown, Definingaquarantlnezone("regulded areaf here
after) surrounding known Infestationsisacommon phytosanltary practlceaimed i centaln-

Ingexpandlng Invader populations[41].Thesizeof the area Jlsdefined bydedaon makers
based on ©cpectatlonsoffuturespreadand new Introductions Each ate],] 2 4 In theregulded
areaJcontainsNj suitablehost trees that can be used by the Invader to completeltsde/elop-
ment and reproduction (seeTablel for a summary of model parameters). The proportion of
host treesat atej that are infested is^, ̂  2 [0,1], Whilethetrueproportlon of Infested trees^
^.Isunknown, theG^ value at each survey ateisesti mated based on thelnvader'shlstorlcal pst-
ternsof spread and thenumbersof Infested treesfound In surveyed sitesduring pre/loussur
veillance campaigns These estimates are used to da/elopalargesetof probabllisticscenarlosi
5\whereea± atej in scenalo5s= 1,.... 5 Ischaraderlzed by the proportion, Qa oftreesthat
arelnfested at theateunder that scenario. Weassumeeach Invaaon scenarios has an equal
probability of occurrence 1/S

The model hasoneset of dedaon varlablesin each stage In the first stage the binary ded-
aon variables)^, Xj 2{0,1} and j 2 4 represent whether or not to select atej for survey. While
atesareselected for survey with knowledge that they could poteitially belnvaded, theselec-
tlon Isdonewlthout knowing which sitesare actually invaded, and If so, towhd ©(tent. In the
second stage thededaonvariablesF^sj 2 Jends2 Q represent thenumber of treesto remove
In each sitej under scenario a which Isoontingent on the proportion of Infested treesthat are
found to be present under the scenario.
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Table 1. Summary of the model parameters and variables.

Symbol Parameter / variable name Description

Parameters:

Potential survey sites in a defined regulated area j2J

J Size of the defined regulated area J>0

s Stochastic spread scenarios s2S

S Total number of stochastic spread scenarios 2400-

N| Number of host trees at a site j NillO)--

Qis Proportion of trees at a site] in a scenario s that are infested eis2[0:1]—

P Proportion of a site's area that is surveyed P2[D;1]

Y Pest detection rate after inspecting a tree Y2]0;1]

d, 1—D Probability of eradication success d2]0;1]

do Probability value that denotes eradication failure 1e-64

P Minimum proportion of the scenarios where eradication is expected to succeed
with the probability d (safety margin)

P2]0:1]

a Confidence level that defines the value in the program costs distribution that can
be exceeded only in (1 -a). 100% of worst scenarios

0.99

Tree survey cost $6.83 tree'^

t) Tree removal cost $1000 tree-^

F Weighting parameter that defines decision-making preferences towards
minimizing the expected cost vs. minimizing the cost in the right tail of the cost
distribution in the objective function equation

F2 [0;1]

Decision variables:

Binary survey selection of a site j Xi2{0,1}-

R|s Number of host trees removed at a surveyed site] in a scenarios Ris2[0:Nir"

Qs Binary indicator variable that specifies eradication success (or failure) for a
scenarios

gs2{0,1}-—

Ws Auxiliary decision variable for a linearized formulation ofCVaRa WsGO)
Auxiliary decision variable for a linearized formulation of CVaRa

•>/.
to
A

• The number of scenarios was chosen based on the optimality gap analysis.

** The parameter/variable value is site-specific.

*** The parameter/variable value is site and scenario-specific.

**** The parameter/ variable value is scenario-specific.

https://doi.or9/10.1371/journsi.paie018l482.t001

The manager'sobjectiveisto minimize the©(pected oostof survey and tree removal in the
regulated areaJover Sinvaaon scenarios; i.e.:

lXs XJ
t %min- aNjqX| [3

^ s%i jy.i

whereq and tjarethecostsof inspecting and removing host treesin atej and (3, p2 [0:1], Is
the proportion of asjte'sarea(in our formulation, equivalent to the proportion of host trees^

aste) that hasbeen surveyed. Note that our model conadered aangleia/d of survey intenaty
at all sites Ideally, the proportion of aat^sareathat issurveyed (p) ̂ouldbeadedaon vari

able but the model formulation would become non-li near i n that case While it may be posa-

bleto reformulate the model to address this non-linearity it would agnificantly increase the

computational compl©<ity of the problem.
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Wedefinetwo oonstrantson thenumber of treesthd can beremoved from esch ate The

number of removed treescannot exceed thetotal number of treesatasurveyed atej:

8s2Qj2J: 321:

Treesareonly r0noved(F^sCil)) at siteswhichareselectedforsurveys()^ = 1). If atreeis
infested, it can befound with thedetection ratey, y2 [0,1],andeaditreethat isfound tobe

Infested must beremoved. Becausethesurveycovffsonly a proportion p of a site, themini-

mum number of infested trees to remove from site] in scenario sis

F;.[S>J|bgy|P^ 8s2 9j2J: flSt

Eq 3 implies that all detected infested trees must iDeranoved. A special case with p= 0

describesasituation when adedsion-maker choosesto skipthedelimiting survey stage and

proceed with pre/entive tree removal st aselected ateinSead.

Wenext defineaprobabiiisticoonstraintfor successful eradicdion of the pest from all of

thesitesin areaJunderagiven scenaios The probability thd one or moreof the remaining

hosttreesin aeaJisinfested after F^streesha/et^een removed at atesj.j 2 4 is

1 [l7 [1^,3:61 [ligbtei : eAt
j%i

Thetermai llig>ai CDcgyjgbi?^'^'^definestheprobability thd theremaningtrees
in atej arenot infested in ascenario a Then, the product agn in Eq 4 represents the probabil
ity thd the remaining treesin all of the sitesarenot infested, andoneminusthat probability
equalstheprobability thd removal faiistoeradicatetheinfestation from areaJThederivation
of Eq 4 can befound in SI Rie A requirement that the probability of eradicdionfaiiurebe
below achosen thre^oid, D, is

V h i
1 [D 31 [I[^j3l3i [HLgtix^ [Eb 8 s2 S 361:

j/.i

Reerrangi ng terms the probabilistic constrai nt for successful eradication of the pest is

YJ h i
61 [Eb 8 s2 S 661:

j%1

wherethethre^oldd, d= 1 -D, definestheminimum protebility for successful eradic^ion in
areaJ Eq6islineerized with reqpect to the decision variables

Xj h i
eN| OO^^Hndl (SbgMfl Eiigyj^lSJ [l]nadt> 8 s2 S 671:

jV.1

B^erepresentsadedsion-maker'saEpiration to satisfy the eradication success threshold for
each and a^ery invaaon scenario. When uncertainty about theextent of theinvasion issgnifi-
cant,adii©/ing successful eradication in all possible scenarios m^ becost-prohibitive because
most of theates would require tree removal. Weaddressthisissue by defining a margin of
safety p, representing theminimum proportion ofthescaiariosthat must sdisfy the eradica
tion success thre^old d. To credeaconstraint for the margin of safety, we first definea binary
indicdor variable, gB2{0,1}, that spedfie^ for each scenario s whether eradication succeeds
with probability d(i.e,gs= 1) orfais(gs= 0; thefailurecondition isdefined with a probability
of eradication success do, equal ordoseto zero. Sncethedovalueisunder the logarithm sgn
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it was set to a very low poative value). We have used thefollowing constraint to set the^
value

XJ h 1
eNj CD^sttnei [Itgt3=d1 ELgy^staa [%lnadtD[D 61 E^Hnddol^ 8 s2 S 68t

i%i

Then, aconstrant that requires atainment of the margin of safety is

iXs
Ci aLI4>:
^ S/-1

Notethat EqsSand 9areconsist6nt withasafety-ruleapproa:ti to dealing with uncertainty in
environmental reguiaion (eg., [20-22]). EqSdefineswhether or not a risk standard issatis-
fied for eadi scenario, where therisk standard istherequired probability oferadicdion, d.
Eq 9 definesthemargin of safety, which istherequired proportion of thescaiariosthat satisfy
therisk standard. The margin of safety pcan beinterpreted asaconfidencele/ei for ahypothe-
astest with thevaluestypically set to 0.9 or 0.95. 1 n summary, the problem isto determine
which sites to survey in thefirst stage and how many trees to removein the second stage con
tingent on the outcome of the first stag^ in orda-to minimizetheexpected cost of surveys and
treeremovalsover Sscenarios(Eq 1), subject to upper and lower boundsontreeranovals
(Eqs2 and 3) and constraintsfor s^isfying the risk standard for eradication (Eq 8) and the
margin ofsrfety(Eq 9).

Controlling the risk of extreme project costs

Due to theuncertainty about theinvader'sspreaj, the actual costsof survey and eradication in

individual scenariosm^vary. Scmesoenarioscould be severe in termsof invaeon extent and
impact, and thaeforem^ requirecostly eradication. These scenarios are located in the right
tail of thecost distribution (Rg 1), which thededaon-maker triesto a/oid. The problem of

controlling the worst (i.e. most cost-intenave) outcomesessentialiy amounts to controlling
thecostsin theright tail of theprogram cost distribution. Thiscan beaibia^ed withametric
thd charaiterizesthe upper percentileof thedistribution.

Percentile-ba^d metricssuch asmaximum loss[46,47], Value-d-Ri^ [48] and Condi

tional Value-d-Risk [49.50] have been widely used to quantify rl^sof e^ctremelossesin many
disciplines In particular, Value-at-Ri^ (VaR) and Conditional Value-d-Ri^ (CVaR), also

known asexpected ̂ ortfail or conditional tail ©(pectation (CTE), arecommonly used by

financial institutionstoevaludethepoteitial for ©ctremelossesin investment portfolios
[51-55]. With respect to our invaave^^edes©(ample VaRa isdefined, with aconfidaicela/el

a, a 2 [0:1], as the valuein thedistribution of thesurveiliance and eradication program costs

thd is©(C8eded only in (1 -a)x100% of the worst sc©iarios(Rg 1). In turn, CVaRa, for acon-

fldencela/d a, isdefined as the ©<pected valueof thecost distribution over (1-a) x 100% of

the worst scenarios or altanati vely, asthe ©cpected val ue above VaRa fof confidence le/el a.

Rg1 isadepiction of the CVaR concept and howit isrelated to minimizing theexpected

valueof adistributi on.

Incorporating VaRin an optimization framework isdifficult [56] becauseVaRisanon-

convscfunction for discretedistributionsand m^ not axount for propertiesof thedistribu
tion beyond theconfidencelevel a. The CVaR ismore useful for optimization-based models

[49,51] becauseit isacoherent ri^ metric(cf. Artzner et ai. [57]) and continuous with respect

to the confidence level a. The most appedi ng propffty of CVaR is its conv©(ity with reject to

thededeon variables[49,56]. Optimization of CVaR with respect to linear dedson variables
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Expected
cost

Cost in the

worst-ease

scenario

Distribution of the program costs
Fig 1. The program cost distribution, the expected cost and the CVaRa concept. The scenarios in the
right tail of the cost distribution above the confidence level a (shaded area) depict the worst outcomes with the
highest costs. These outcomes are characterized with the VaRa and CVaRa metrics. Minimizing the CVaRa
deviation decreases the expected value of the cost distribution above VaRg.

httpsy/doi.org/10.1371/journal.pone0181482.g001

for discreteacenario-baaed distributionscsn beexpressed by aaet of linear equatlons[56]. In
comparieon, optimizing VaR in thesameproblem setting could benumericstly intractable

In our model, we used theCVaRto control the right ta! of the program cost distribution
and reduce thecost uncertainty, idealiy, both theexpected cost value(i.e, the mean value
axosstheentirecost distribution) and theCVaRshould beminimized, howa/erthisrequires
atwo-objectiveformuldion. We reformulated theobjectivefunction equation asaweighted
a/erage between theexpected cost valueand the CVaRa of the program cost, i.e:

mln'^pectedcost [Ibl GVaRaacostRlZO^a aiot

where Fistheweighting parameter that definesadedsion-maker'spreferencestowardsmini-
mizing theexpected cost versus minimizing the©<pected valuein theright tali of thecost dis
tribution (i.e, theCVaRa). For F= 0, theobjectivefunction minimizestheexpected cost, and
for F= 1, theCVaRa isminimized. Eq lOadoptsan approach of combining multipleobjectives
In asingleobjectivefunction equation viaweighted averaging [58,59], with Fand 1—F values
repre^ting theobjectiveweights By altering theFvaiues^ atrade-off between theobjectives
can beexplored.

Theobjectivefunction in Eq 1 islineer with respect to thededson variables)^ and Rjaso
weapplied a linearized formulation of theCVaRa from [49,60]. For adiscretedistribution of S
scenarios with equal probabi iity of occurrence, 1/5 the CVaR of the program cost, at a confi
dence ie/el a, can be approximated with thefollowing equivalent set of S-+-1 auxiliary ded a on
variablesand S+ 1 inequality constraints

1  Xs

sTliFb
s%1

PLOSONE|https;//doi.org/10.1371/journal.pone.0181482 July 31,2017
7/25



PLOS ONE
A safety rule approach to manage biological invasions

XJ
aDN^qXj \3 t,F^3t5[It[lLWs 8 s2 S 612t

WgUUD 8 s2 S fl13t

u  Pwhere flbN.cX| (3 tRgPin Eq 12isthetotal programcodin ascenariosizand WsSreauxil-
jy.i

iary dedaon variablesand z isa member of aset of real numbers We have modified theobjeo-
tivefunction to follow the idea of Eq 10as

lXs XJ ^ ^ xs ' '
mm F- &Njq)^ \3 61 z\> ,,-n w^ ei4t

^sy.i j%i

R R
where| SbNjqXj p tjf^sRIstheexpected program cost, subject to model constraintsin

8^41 j%1

B:is2,3,8,9and auxiliary oonstrantsin Eqs12and 13.

By adding the CVaRa to the objective function equation, the uncertainty in the right tal of
the program cost distribution can becontrolledand the risk of incurring high program costs
can bereduced. Redudngtheriskof high program costs inaeffies the expected program costs
Ijecausemoreresourceswill berequired to reducethecost unca-tanty. Wehave©<ploredthls
aqpect bye/alu^ingtheoptimai solutionsfor a rangeof Rvalues between 0 and 1,and report
thesolutionswith Rvalues between 0.5 and I.Othat yielded the greatest reduction of thecost at
CV^.

Case study: Assessing the program costs for controlling the outbreak of
Asian longhorned beetle (ALB) in the Greater Toronto Area (Ontario,
Canada)

Assessingthehuman-mediated spread of ALB in an urban setting. Twoinfestationsof

ALB ha/e been found in theGreater Toronto Area (GTA). Thefirst populdlon wasdiscovaed
in 2003 in Toronto [61], and thesecondonein 2013 in Mls3ssauga[62]. Discovery of eadi
population led to the implementation of an eradication program [28,62,63].Theregulded
(i.e. quarantine) area to manage the first 2003 infestdion wasdedared pest-freein 2013 [44].

TheMisassaugaquarantineareawasabout46km^ and outside that of theToronto quarantine
area (Rg 2). Treatment for both eradication programs conasted of theremoval of ail infested

treesaswell ashost treescategorised assuitableandat high risk of bang infested.
Weapplledour mode! to managethemost recent ALB incursion in Misassauga S&/eral

techniquesha/ebeen tested in an dtempt to improve early detection of ALB [28,64,65], but
visual inspection of trees for agnsof^tack remansthemost practical detection method

[35,63]. Theposabillty of nevintroductionsand high costsof eradication necessitatethatsur-

veillanceactivitieslinked to theeradication of ALBe(tend b^ond theinitial regulated area, as

wdl asthe potential 0(panson of theregulded area and an assesanent of the total eradication

costswerethisto happen in the future

ALBisknown to havedow spread rates[42,43]: 80%ofthepopuldion atagiven steis

©(pected to^read lessthan 300 m per year [66]. Most recent ALB introductions ha/e been

attributed to human actlvities[38]. Growing anecdotal a/idence suggests that the pest may

hitchhikeon dow-moving vehicles that hawebeen pra/iously parked near suitable host trees

PLOS ONE lhttps;//doi.org/10.1371/journal.pone.018l482 July 31,2017 8/25
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Pj esf

□ <0.0005(low)
□ 0.0005-0.001
■ 0.001-0.005
■ 0.005-0.01
■ >0.01 (high)

Fig 2. Probability of ALB spread, pj est. in the Greater Toronto Area (GTA). The blue polygon depicts the
initial quarantine area defined when ALB was discovered in Mississauga in 2013. The calculated probability
for each map location (i.e.. each 400x400-m block) is the mean value from 6000 stochastic spread scenarios.

httpsy/doi.ag/10.1371/)oumd.pone0181482.g002

[32, Turgeon, pers obs], similar to thedocumented spread of another invasive forest insect,
theemerald ash borer (Ag-|lusplanipennisFairmare) [67]. Local street trafficaxountsfor a
large portion ofthemovementof peopieandgoodsin urban settings and has been recognized
asa proxy for a variety of local economicactivities[68]. Weused voiumesof local roaj traffic
asameasureof activities that could faalitateALB spread. We utilized addaset on local street
tr^cvolumes[69] that had been linked totheGTA portion of theESRI Sreet Mapgeospatial
database [70,71] toestimateprobabilitiesof ALB movement from previously invaded loca-
tions(9eedescription in S2Rle). Wedivided the GTA street network into 400x400meter
blocks eadi representing a potential survey ate, and then used the local traffic volumedda to
estim^eamatrix of probabilitiesof ALB movement from block to block viathenetwork. We
alsoadjusted the probability valuesbytheannual projected rdesof traffic volumeincreasei
which weestimded from thea/ailabietrafficvolumeddaover theiast lOyeera Thismatrix
wasused to simuldeSxIO® randomized pathw^sof ALB spread between atesin thestudy
area, and to estimatearrival rdesfor each of thedestindion ates(seenext section). TheALB
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Spread model then was calibrated to mstdn thehistoricsl gpread rdesof ALB in theGTA ss
determined from prwioussurvey campaignsprior to thecurrent eradication effort (S2 Rle).

Parameterizing theoptimization model. Theoptimizdion model required alargeset of
piausbieinvaaon scenarios Asnoted before, each scenario had an associated set of propor-
tionsof treesthat areinfested, 6^^ Wegenerated theinvason scenariosin twostqDs Rrst,
weused our calibrated pest spread model to estimatetheprobabiiity of ALB arrival, p es, for
each site] in thestudy area(Rg2). Foreachspreadscenario? wegenerated astochasticp^-
tern of invaded sites via uniform random drawsagaind the ea values Next, each Invaded
atej in ascenario swasassgned anumba* of infested treesthd was randomly sampled
from an empirical distribution of the number of infested trees Thisdistribution wasbased on

pre/iousrecordsof historical ALB detectionsin theGTA prior to thecurrent eradication cam
paign. The proportion of infested trees at asitej in ascenario swasthai found by dividing
thenumber of infested treessampled from thedistribution by Nj, the total number of host
trees at si tej. To esti mete the total numba- of host trees (Nj), we fi rst esti mated the area of tree
cova at each survey atej from theSOLRlSland cova" dataset for theGTA [72]. SUbsequaitiy,
weconverted the area of tree cova intoacorresponding number of host trees by multiplying
bytreedenaty and the host sped es proportion; thetree density values came from theSOLRIS
data, whiletheestimatesof host treespedesproportionscamefromtheCity of Toronto's
EvayTreeCountssurvey [73], which provided a detailed summary of Toronto'surban
forests

The model alsD required estimdesof the costs of survey (q) and tree removal (tj)aswell as
the pest detection r^evalue(Y). Because surveysareconducted within an accessiblestreet net
work, weassumed equal survey costs on a per-tree basis We esti mated the survey cost from
contractor rates paid to do visual treeinspectionsin pre/iousALB survey campaigns This
yielded an average survey cost of $6.83 per tree The cost of tree removal was based on current
treedisposal costsin the ongoing ALB eradication program and wassst et $1000 per tree The
high cost of tree removal wasdueto reguldory requirements when disposngof atree which
require costly chipping operationsddeagnated disposal sites Thebaselineprobability value
of detecting ALB by injecting a host tree; y. wasset to 0.7. Thisestimateisbased on e5<peri-
encegai ned duri ng the pre/ious ALB surva llance programs and assumes thd i ngpectionsare
performed by trained personnel [63]. Weha/ealsoe/aluated the model behaviour for arange
of detection rates between 0.3(inspectlonsby untrained personnel [37]) and 0.95 (inspections
in idealized conditions). Wee/aluded optimal solutionswith differait aspirational targetsof
eradication sucoes^ d = 0.5 and 0.95, and safety margins^ p = 1 and 0.95.

Computing boundson theobjectivefunction value Wealsoassessed thesuitablerange
for thenumber of stochastic spread scenarios 5 thd ̂ould beu$d in the model. Ideally, the
optimizdion model would iDesupplied with avery largeset of invaaon scenarios but thenum
ber of scenariosislimited by computational capadty. Optimal solutionsbased on afinitenum-

ber of random scenarios provide an approximation ofthetrueoptimal solution. To l^etter
understand how dose our model sol utionswereto the solution with acomplete set of scenar

ios weestimated theuppa-and lower boundson theoptimal objective function value uang
concepts from Maket al. [74] and Leeet al. [75]. We computed the boundson theobjective
function for an area Jof suffident azeto cover the majority of plausible ALB spread patterns

in theGTA over adiort-term planning horizon (i.e, 3208 sites). Thiswasdoneto ensurethd
thenumt)er of scenarioswassuffident to depict the variation of posable spread outcomes The

lower txjund (O^as esti mated asthemean of the objective function values for thesolutionsto
20 Indepaident replicateproblemswith Sscenarios S= 400,800,1200,1800,2400 and 3000

soenaios For each of the20 solutionsbased on non-overlapping setsof spread scenarios
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Table 2. Upper and lower bounds on the objective function value for differing numbers of spread scenarios. The mean values, fi3nd Ojif the objec
tive function over a specified number of scenarios S, as well as their 95% confidence intervais, were calcuiated for a base case with the desired probability of
successfui eradication d = 0.5 in all scenarios (p = 1), the detection rate y = 0.7 and the proportion of the site covered by surveys 3=1. The objective function
minimized the expected program cost (i.e., F = 1) and was computed with sets of 20 independent replicates with increasing numbers of scenarios, S = 400,
800,1200,1800, 2400 and 3000.

Number of scenarios, 8 Lower bound (0^ 95% confidence interval Upper bound (6^ 95% confidence interval Optimallty gap*

400 16670611 ±86508.3 18013682 ±75871,6 8.06%

800 19307048 ±89452.9 20317904± 88144.9 5.24%

1200 20952310 ±89724.6 21672209 ±48226.4 3.44%

1800 22385237 ±90386.8 22787222 ± 30790.8 1.80%

2400 23333257 ±91223.4 23629602 ±55014.0 1.27%

3000 23864635 ±92225.0 24119056±48244.8 1.07%

• The optimallty gap is (

httpsy/doi.of9'10.1371/journal.pone0181482,t002

obtained to compute the lower bound, were-computed the objective function value uangaset

of 6000 seenarioa and then estimated the upper bound (O^as the mean of theobjectivefunc
tion values in those20set& Theophmajjty^ was estimated asthereidivedifferencebetween
theupperand lower bounds, i.e:aiK[0&l[Pjl5]. A summary of the model parametersand
variablesis^own in Tab! e1. We prototyped the model in Sblveraudio[76] and GAMSenvi-
ronments[77] and solved theMIP problem uangtheGUROBI linear programming solver
[78].

Results

Number of spread scenarios and the optimallty gap

Weesti mated the upper and lower boundson theobjective function valuefor problem solu-
tlonswith 400,800,1200,1800,2400 and 3000 spread scenarios(Table2). Theoptimaiity gap
wasaround 8%for problem solutionswith 400 scenariosand around 1%for problem solutions
with 2400 scenarios Weal so ©camined the program costs(i.e, averaged over 20 independent
replicates) for the optimal solutions based on different numl^ersof 9o©iarios(Table3). Specifi
cally, the worst-case and upper percentile(a = 0.95) cost valuesindicdehowweil thesoenarios
depict the most damaging outcomes with the highest cost. As the number of scenariosS
exceeds24O0, theworst-casecost valueand theCVaR both stabilize which indic^esthat fur-
tha- increaseof thenumber of scenaiosdoesnot add much informdion about ©ctremeinva-

slon a/ents It does not appear that solving problemswith more than 2400soenarioswould

Table 3. Basic description ofthe program costs and survey and tree removal components for differing numbers of spread scenarios. The program
cost values are mean estimates based on 20 independent replicates with increasing numbers of scenarios, S = 400, 800,1200,1800,2400 and 3000. See
Table 1 for the model parameter settings.

Number of scenarios, Scenario-based program costs, $M Survey cost, $M Number of removed trees
8 Expected cost VaRo 95 CVaRo.95 Worst-case scenario Mean over S scenarios Worst-case scenario

400 18.0 24.4 26.4 31.0 8.1 9907 22896

800 20.3 26.8 28.9 35.7 10.4 9881 25340

1200 21.7 28.0 30.1 36.7 11.7 9925 25006

1600 22.8 29.3 31.3 38.4 12.9 9871 25518

2400 23.6 30.1 32.2 40.5 13.8 9889 26798

3000 24.1 30.5 32.5 40.4 14.2 9884 26502

ht^y/doi.org/10.1371^ourng(.poneL0181482.t003
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Fig 3. Survey allocation patterns. (A) Mean allocation of surveys based on 20 independent replicates with 400
scenarios. (B) Differences In mean survey allocations, 2400 vs. 400 scenarios, based on 20 independent
replicates. The blue polygon depicts the Initial quarantine area defined when ALB was discovered in Mississauga
In 2013.

https://doi.org/10,1371/]ournsJ.pone0181482.g003

yield much benefit in terms of precision or axuracy, but would greetiy increasecomputing
time

Thenumber ofscenariosaffected thespdial pdternsof thesurveyed sites RgSashowsthe
survey selection pattern {a/eraged for 20 optimization runs) based on 400 scenarios^ while
Rg3b showsthedifferencebetween theaverageselection patternsbased on 400 and 2400 sce
narios Morescffiariosinaeased thenumber of surveys established at distant locationswith
low rid< of infest^ion. The survey pdtern at distant locations was stabilized for 2400 or more
soenarioSi which indiciesthd 2400 scenarios is sufficient to represent the majority of plausi
ble outcomes from our modd formulation, predicted by the stochastic spread model.

Thenumber of spread scenariosaisc influenced key survey characta"istics(Table3).
I ncreaang thenumber of scenarios from 400 to 3000 inaeased the proportion of sites sur
veyed from 39.4%to 71.3%, and also increased the proportion of thetotal budget de/oted to
survey from 45%to 59%. By including morelong-distanoedispersal e/ents^ alarger number of
scenariosprovidesamorecompletedepiction of whereALBislikely to spread through time
and in turn, requiresmoreatesto iDesurveyed.

General model behaviour

The proportional allocdion of the program budget tosurveysand tree removal isinfluenced
bytheeradic^ion successconstraint in Eq8. The summation agn in Eq 8 makes it dependent
on theazeoftheregulated are9(J),thedetectiQn r£te(Y) and thetotal number of host trees
that areleft after removal (Nj-F^^.Thisindicdesthatthemodd'soptimal solutionsarelikely
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to be Influenced by theparameta* valuer sowe©<plored themodel'sgeneral beha/iour in the
parameter space{4 y. P, ̂s. Nj}.

Wefirst a/aluated theoptimal sDlutionsfor different values of (3, which defines the propor

tion of thearea of each selected atethst issurv^ed. We tested a range of posablevaluesfrom
Oto 1; p= 11mplies thd all host trees(i.e,theentirearea) d the selected sitesaresurveyed,
whilep = 0indicdesthatadeci9on-maker choosespra^entivetreeremoval at the selected

steswithout performing surveysof the regulated area Although pr©/entive removal of trees
without prior surveysm^ seem counterintuitive; thisstrategy wasadoptedfor pr©/iousALB
0-adic^ion effortsin theGTA to reducecosts Rg 4 depicts the ©(pected program cost as a

function of pfor two different valuesof the pest detection ratey and with theregulated area

J= 80 ha (Whileweesti mated thesolutionsfor arangeof parameter combindionSi we only

show ©camples that illustratem^or changesin the model behavior).
When theregulded areaJissmall and thedetection rdey ishigh (asin Rg4a), surveysof

each ate'sentirearea (i.e. p= 1) with subsequent tree removal yield thelowest expected cost.

In thiscase; the surveys provideinformdion about the presenceof infested tree^ which, in

turn, helpsreducethecost of tree removal. When a larger proportion ofasiteissurveyed,
thereislesBchanceof infested trees going unsurveyed. Consequaitly, fewer susceptiblehost

treeshaveto be removed to protect against thepossibility that an undiscovered infestation will

fadlitctefuturespread.

Whileinformdion gained from thesurveyscan thus help reduce thenumber of treesthat
must be removed, thecapadty of thesurveystofind infested trees depends on thedetection

rde/. When y islow, moreinfested treesareovs-looked, and so moresusc6ptible(i.e,
possibly infested) treesmust beremoved to satisfy theeradicdion successconstralnt in EqS.
With respect to our ALB example; when thedetection rdeisset to a comparatively low value
(y = 0.7), thelowest ©cpected costoocursd p= 1, meaning that theoptimal solution in this
caseistoallocateall oftheavailablebudget to tree removal only (Rg 4b). An increasein the

azeoftheregulded areaJhasamila impa:^: When J becomes very large; it isno longer opti
mal to survey theatesbeforetreeremoval, so instead the©iti re program budget should be
allocated to pra/entivetreeremoval. In those condition^ information gained from thesurveys
providesonly a marginal reduction of the total tree removal cost and th©eforedoesnot justify
thecost of thesurveys

Switching between the "survey-and-remove" and "remove" policies

The model behavior illustrded in Rg4suggeststwoalt©nativeoptimal managenent polides
depending on thecombination of the model paramet© values The "survey and remov^' policy
prescrlbesdelimitingsurveysintheregulded area4wlth 100% cov©ageoftheselected survey
9tes(i.e, p= 1) and subsequent removal of host treesfctased on theoutcomesof thesurveys
The"removeonly" policy allocatestheentireprogram budget to pre/entivetree removal—
according to the model optimal solution—without und©taklng prior surveys Wefurth©
©cplored the model p©amet© combindionsthat causethe policy to switch. Wedepicted the
switch between the "survey and removd' and "remove only" asabound©y curvein thedimen-
aonsoftheazeof theregulated ©eaJand the pest detection ratey (Rg 5). The^ea above the
lx>und©y curvecorrespondsto thep©amet© combinationsfor which the "survey and
remov^' policy isoptimal, and the ©ea below the bound©y correspondstothep©amet©
combindlonsfor which the "remove only" policy ispref©red.
A low© pest detection raterestrictstheoptimaiityof the"surv^and remove!' strategy to

small ©eas How©/©, theazeof the regulated ©eafor which "survey and remove?' isoptimal
inaeaseswhen thesafety m©gin por the©adication suocessthreshold d isrelaxed (Rg5), i.e.
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Fig 4. Total program costs and tree removal costs vs. the proportion of a site that is surveyed, p. (A)
Example with the pest detection rate y = 0.95, when survey of 100% of each selected site's area (i.e., p= 1)
yields the lowest cost. (B) Example with the pest detection rate y = 0.7, when preventive tree removal without
surveys (i.e., P = 0) yields the lowest cost. Regulated area J = 80 ha, safety margin p = 1 and eradication
success threshold d = 0.95 for both examples.

httpsY/doi.org/l 0.1371 /journal.poneOI81482.gC04

when adedaon-maker haslower appirstionsabout eradicding the pest from regulated aea J

For instance; for the eradication successthre^oid d = 0.9, the boundary curvestabilizes

around y = 0.94, which impliesthd "survey and removd' policy isoptimal for detection rdes

above that rate For theempirical ALB detection rdein theGTA, v = 0.7, the "remove only"

policy istheonly optimal dioice Smilar to wh^ occurs with lower vduesof the proportion of
each sitesurveyed ((3). lower detection rdestranslateto a higher number of infested treesthd
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areleft undetected. When thenumber of infested treesthet areleft undetected Istoo high, sur-
veysarenot sufficiently ableto reduce thenumber of treesthst must be removed, dncealarge
number of susceptible host trees have to be removed to pr©/ent spread from undetected
infestations

Other model parameters^ such astheexpected proportion of treesth^ areinfested and
local host density (Nj), also influenced the optimal policy choice (SI Rg). In general, lower
infestdion ratesmakethe"survey and removd' policy attraiJivefor larger regulated areas(4>
or, alternatively, for lower detection rates(Y) (SI Rg).Theimpactofdecreasngthehostdai-
aty issimilar; Lower host densities makethe "survey and removd' policy ̂ tractivefor larger
areas because fewer treeswill need to beremoved in all cases Lower host den9ties(or infesta
tion rates) shift thepolicysA^itch curve down (SI Rg). Notethatthisimpactisoniy noticeable
when thedetection rateishigh (i.e, y > 0.9), in which casesurveyscan detect most of the
infested trees At lower detection rates (such asy = 0.7 and below), the'Vemoveonly" policy is
theonly preferred choice

Impacts of controlling the extreme program cost on the optimal policy
Recall that theobjectlvefunction formuldion in Eq 14minimizesacombination oftwoobjec-
tivesi the©(pected program cost and theCVaRa, which depictstheextremecost in theright
tali oftheprogram cost distribution. Different decision-making preferencesbetweai minimiz
ing theecpected cod versustheextranecost can be explored by changing thewaghting factor
F. When F=0, the objective function minimizes theexpected cost only. Increasing theFvalue
aboveO placesmoreemphasson minimizing thecost In theright tail ofthecost distribution.
A decrease of the extreme cost causesthe expected cost to increase Thispenalty isexpected:
Theonly w% to decreasethecost with reqcect to worst-case scenariosisto survey morestes
Thetotal reduction oftheextranecost dependson thechosen valuesof thedetection rdey,
eradicdion success thrediold d and thesafety margin p in the constraint Eq 8: a higher ratey
(or lower d and p values) lead to a greater reduction oftheextranecost. Inageographical con
text, theadditional surveysin thesolutionswith CVaRa selected distant locationswherethe

probability of spread isvery low (Rg 6). Although these additional ateshad conaderably
lower probabilitiesof ALB spread, they had higher host denatiesthan therest of the surveyed
sites(Rg7).Theseatesrepresent low-risk Icx^dionsln termsof spread, but because of their
abundant host, infestationscould bese/ereand requirecostly eradication ifthey weretobe
invaded.

Controlling theextremecost alsoinfluencestheoptimal managonent policy. In thecurrent

model setup, theonly w^ to reduce theextremecost isto survey moreateswith respect to the
worst-case scenarios Thu^ controlling theextremeprogram cost isonlyposablebyincreaang

thenumber of surveys^ i.e, by implementing the "survey and removd' policy. Na^ertheiess^ the
choice of the optimal policy also dependson howadecision-maker percavestherisk of incur
ring high program costs Controlling theextremecost addsa penalty to theexpected cost,
which makesthe"survey and remove!' policy iessdtractivewhen adeciaon-maker isrisk-neu-

tral and thereforeaspiresto minimizetheexpected cost (Rg 8, dotted lines). In thiscase the

boundary between the "survey and remove!' and the"removeonly" policies^ifts towards

higher detection ratesj meaning that a risk-neutral decision-maker probably will not adopt the
"survey and remove!' policy unlessthelikelihood of detection isvery high. I n contrast, whai a

dedaon-maker percavestheworst-casecostsasa reasonable proxy of thetrue program costs

thebounday^iftsdownward (RgSaand 8b, da^ed lines), making the "survey and removd'
policy attractive for lower detection ratesand larga regulated areas For thespedficexample

of ALB in theGTA, with adetection ratey = 0.7 and high ©xpectdionsof eradication success
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Fig 6. Additional survey sites in solutions with minimization of the extreme cost in the objective
function viaCVaRvs. solutions based on minimizing the expected cost only. Colored (black, red. or
orange) hexagons show survey sites that appeared in solutions with CVaR (F = 0.5) but not in solutions that
minimized the expected cost (i.e., F = 0). Light green hexagons denote sites with high host density (> 1200
trees per survey site). An outline depicts the sites with the probabiiity of ALB spread, Pj est. above 0.003.

httpsy/doi.org/10.1371/)ournal.pone01814a2.gC06

(i.e. with an eradication successthre^old d = 0.9 and safety margin p= 0.95; seeRg 8b), the
"survey and removd' policy remainsa preferred choice for regulated areas approximdeiy
160 ha or lessin size Howe/er, for regulated areasiarger than 500 h^ the "survey and removd'
policy isoptimai only if thedetection rdey isO.Bor greder (Rg Bb, dashed line).

Discussion

Eradication of invaave species often requirescostly investments Agendas tasked with manag
ing biological invasionsface various budget and reguldory constraintsth^ pre/ent them from
undertakingfull-scaieeradication. When theneed toeradicatean invasivegpedesconflicts
withapoor capacity to detect it, or when dedsion-makersface limited budgets; management
polidescan bede/eloped that attempt to attain a desired l©/el oferadicdion whilemeetingthe
budget and detection capacity constraints The pri mary methodological contri bution of our
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https://doi.Of3f10.l371/journal.pone0181482.g007

work isaresourceallocation mode! that can help dedsion-makersworklng in terrestrial st-
tingstod0/eiop cost-effectiveatesurvey and host removal strategiesinaeasunder threat of
invagon. Our model setup generally conforms to thecurrent dedaon-making environment
for managing ALB in theGTA, and depicts the management program asa two-step dedaon-
making process Rrst, delimiting surveysareaiiocated over atesin adefined management area
at the beginning of the survey season. The distribution of the pest within thismanagement
area, and the©(tent of damage, isuncertain at that point in time, and ismodeled with alarge
set of stochasticscenariosj whereeaoh scenario deplctsone posableoutcome of the Invaaon.
In thesecond staged the end of the survey period, subsequent actionsareapplied to eradicde
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Fig 8. Impact of controlling the right tail of the program cost distribution with CVaR on the choice of
management policy. The optimal management policy is shown in dimensions of the pest detection rate, y,
and the size of the managed area, J. Dashed lines depict the policy switch boundary based on minimization of
the expected cost value and solid lines show the policy choices in the solutions with the control of the worst
case program costs. The scenarios use the safety margin, p = 0.95. Horizontal dotted line indicates the
current detection rate for ALB in the GTA, Yalb = 0.7. The intersection between the line at y = 0.7 and the
curves indicates the maximum size of the managed area J where it is optimal to survey before tree removal.
(A) The policy choice based on the expected cost value. (B) The policy choice is based on the extreme cost
values in the right tail of the program cost distribution at CVaRo.99.
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infeststionsthat aredisoovered ̂  thesurveyed ates Themodel involvesaset of constraints
that focus regulatory dedaonson twokey paametersin particular; thedesired la/ei of eradi
cation successand the margin of safety. These parameters arevaiuejudgmentsand definea
dedaon-maka-'sagpirationsregarding a-adication and tola-ancefor program failure Our
mode! offersapradicai approadi toestimating thecostsof thesevaiuejudgmenta Themode!
formulation isgenerallzableandcan t)eapplied toother geographical regionsand spedesof
concern.

Our analyses ra/eded two aiterndive optimal managemait polidesfor ALB. The first
choiceprescrit)esdelimiting surveyswithin aregulded area, with subsequent removal of host
trees at Infested stes based on theoutcomesof thesurveys^ whilethesecond choice prescribes
pra/entive removal of infested and susceptible host treesat selected atesin the regulated area
without prior delimiting surveys Which policy isoptimal depends not only on thevaluejudg-
mentsmentioned above, but also on thecombindion of key assumptions such asthecapadty
to detect thepest, thesizeoftheregulded area, thee<pectedinfest^ion ratesand local host
denaties It turnsoutthd the policy of pra/entivetreeremoval Isoptimal for the typical azes
of regulated areasthat ha/e pra/iously been establidied to managetheALB outbreak In the
GTA (i.e, on the order of 46 km^). Moreover, our resultsagreewith past and current manage
ment pradicesfor ALB in theGTA, where removal of infested and nearby susceptible host
treeswasinitided without delimiting surveys

Theoptlmal policy also dependson howdedsjon-makerspercavetheriskof eradicdion

falure Inour ALB0<ample ifadedaon-maker strivestominimizethecostwith respect to
theworst-caseinvasion scenariosj delimiting surv^sappear to t)eoptimal for a larger size
of regulded area than if thededsion-maker perceivestheexpected program cost to bea rea
sonable representation of thetruecost. Theonly way to reduce the cost with respect to the
worst-case I nvag on scenarloslsto survey moresitesand moretrees^ which provides more
opportunitiestofind infested treesand reducesthenumber ofsusceptibletreesthdmust be

removed to protect against overlooked Infestations Howe/a", the policy of minimizing the

chanceof a worst-case scenario imposesextracostSi thus making the©(pected program cost,
on a/erage; appreciably higher than the policy that strivesonly to minimizethisexpected cost.

The need for adequate control of the risk of high program costs

Generally, decision-makerstad<ed with containing thespread ofan invasvespedesdesreto

achle/esuccessful eradication of theinvader with minimum costs Yet, thereisalw^sscme

risk thd thecostsof eradication could beva^ high. Thisaspect can Ijeproblematicfor dedaon-

-makers who m^ ha/elow tolerance for incurring high costs and m^ agree that control of the
risk of high program costsisimportant, e/en if thiscomeswith anecessary inaeasein theover-

all costs Thela/el of ri^that can betolerated often dependson thetypeof organism, itscapao-

ity to spread and cause damageto economically viable hosts as well as the objectives of the

management program. Webelia/ethat adequate control of the risk of high program costsisan

important part ofasuccesrful pest management program. A typical approadi to manage rld< In

finandal and ndional security appiicationsisto estimateand control valued rid< of high losses
costsor damageswith aspedfied confidencel©/el, such as95%[53,79].

Adequatecontrol of therid< of high program costs also dependson an analyst's ability to

predict the outcomes of futureinvaaonsand managemait adionsand to quantify other key
factors thd influence the speded ability to invadenovel habitds Whiletheoutoomesof ALB
management aotionsin our GTA study (i.e, complete removal of host treesin an urban envi
ronment) werestraightforward and well-understood, assessment of theoutcomesof ALB inva
sion in ndural eco^stems would require better understanding of factors that control the
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specie^ capacity toinvadeandestabli^ aviablepopulstion,such asan ability to di^Ia»other
spedesfrom their habitatsor interspecific interaction^ eg., competition with ndivewood-

and bark-boring insects for host resources [6,80].

Our study was primarily focused on quantifying human-mediated di^:>ersal of ALB.
Human activitiesare known to bemgor contributors to r^es of spread for many invasve

insects[81]. In our case, the neural ̂ read capacity of ALB by biological meansisknown to

bepoor [42,43] andthepdtern of recently discovered ALB infestationsin North America has
been attributed largely to human-assisted movement [64,66], so wefdt justified in our focus

on trad^ing the human-mediated spread. Accounting for biological spread would becritical

for an invasve pest species with strong flight capability that could cover long distances by its
own means

^read rates m^ alsc be affected by other abioticfactor^ such asdimatic variation [82,83].
In our casei the study area was very small and the forecast horizon w®reldively^ort(i.e, less

than five yearswithin GTAdty limits), so therefore we did notaxount forsite-to-siteor tem
poral dimdicvariation and its potential impact on therdeof spread. Accounting for the

impadof^ctial and temporal dimaticvarldion on thespread rateswould be important for
cases with long forecast timehorizonswhen ̂ edesare©<pected to ̂ read over long distances

Our study illustrdeshow thes^ety-ruleapproadi with controlling theconditional value-at
rld<for program costscan be formulated asamathematical programming problem. In our
case, allneerized formulation of CVaR enabled solving the model with alinear programming
solver for a largenumber of spatial cases and spread scenarios Notabiy, minimizing the CVaR
requires substantially greater computdional effort than minimizing the expected cost. The
CVaR metric issenative to the shapeof the distribution tal above the chosen confidaiceievel

a, and the tail configuration affectsthesolution times Ne/erthdess, our approach appearsto
besuitablefor large-scalegeographical applicationsand enables representation of theuncer-
tanty of apest'sfuture spread in largeregionsviaa large set of discretescaiarios
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