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A B S T R A C T

The use of time series satellite data allows for the temporally dense, systematic, transparent, and synoptic
capture of land dynamics over time. Subsequent to the opening of the Landsat archive, several time series
approaches for characterizing landscape change have been developed, often representing a particular analytical
time window. The information richness and widespread utility of these time series data have created a need to
maintain the currency of time series information via the addition of new data, as it becomes available. When an
existing time series is temporally extended, it is critical that previously generated change information remains
consistent, thereby not altering reported change statistics or science outcomes based on that change information.
In this research, we investigate the impacts and implications of adding additional years to an existing 29-year
annual Landsat time series for forest change. To do so, we undertook a spatially explicit comparison of the 29
overlapping years of a time series representing 1984–2012, with a time series representing 1984–2016. Surface
reflectance values, and presence, year, and type of change were compared. We found that the addition of years to
extend the time series had minimal effect on the annual surface reflectance composites, with slight band-specific
differences (r ≥ 0.1) in the final years of the original time series being updated. The area of stand replacing
disturbances and determination of change year are virtually unchanged for the overlapping period between the
two time-series products. Over the overlapping temporal period (1984–2012), the total area of change differs by
0.53%, equating to an annual difference in change area of 0.019%. Overall, the spatial and temporal agreement
of the changes detected by both time series was 96%. Further, our findings suggest that the entire pre-existing
historic time series does not need to be re-processed during the update process. Critically, given the time series
change detection and update approach followed here, science outcomes or reports representing one temporal
epoch can be considered stable and will not be altered when a time series is updated with newly available data.

1. Introduction

Enabled by free and open access to Landsat data in an analysis-ready
form (Wulder et al., 2012; Wulder and Coops, 2014), a number of
projects have been implemented to inform on the historic dynamics of
terrestrial ecosystems over a range of spatial scales, from regional to
global (Hansen et al., 2013; Pekel et al., 2016; Potapov et al., 2015).
While the amount and distribution of Landsat data in the United States
Geological Survey (USGS) Landsat archive is regionally and temporally
variable (Wulder et al., 2016), time series methods have evolved to
conform to archival data availability (Senf et al., 2015). At present,
there are two Landsat satellites in orbit collecting a combined ∼1200
images per day for ingest to the USGS archive (Wulder et al., 2016).
Furthermore, there are measures from compatible sensors (such as

Sentinel-2; Drusch et al., 2012) that have spatial and spectral com-
plementarity enabling integration with Landsat data (Wulder et al.,
2015). Robust cross-sensor calibration has enabled the compatibility of
the various Landsat data streams through time (Markham and Helder,
2012; Roy et al., 2015), and continuous Landsat acquisitions allow for
the extension of previously produced time series, allowing new mea-
sures of the Earth’s surface to be ingested and integrated on an ongoing
basis.

Leveraging the available Landsat archive in a transparent, sys-
tematic, and repeatable manner, several algorithms have been devel-
oped to characterize landscape change. These algorithms are no longer
hindered by data costs; however, processing requirements can be no-
table (Hansen et al., 2013; Hermosilla et al., 2016; Sexton et al., 2013).
Several studies have demonstrated the capacity to exhaustively portray
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large areas with Landsat image composites, combining pixels from
multiple images according to a pre-defined rule set (Griffiths et al.,
2013; Roy et al., 2010; White et al., 2014), and augmented with syn-
thetic surface reflectance values to address situations when no pixel
value meets phenological and/or atmospheric clarity constraints
(Hermosilla et al., 2015a; Zhu et al., 2015). Access to the entirety of the
Landsat archive has likewise promoted temporal analysis approaches of
spectral trends for change detection (Huang et al., 2010; Kennedy et al.,
2010; Verbesselt et al., 2010; Zhu et al., 2012), as well as automated
approaches for attributing change to a particular change type
(Hermosilla et al., 2015b; Schroeder et al., 2017).

Time series change algorithms can capture a broader range of forest
change types than was previously possible with bi-temporal change
detection approaches, including spatially and temporally discrete
changes such as wildfire and harvest, as well as more gradual, amor-
phous changes such as stress, disease, or defoliation (Hughes et al.,
2017; Kennedy et al., 2014; Vogelmann et al., 2016). The ability to
attribute to change type allows for better understanding of drivers of
change, such as ecosystem stress (e.g., Cohen et al., 2016) and forest
management (White et al., 2017), or to inform models requiring

parametrization of post-change, disturbance type-specific recovery
trajectories (Williams et al., 2014). The variety of Landsat time series
algorithms now available has lead an interest in learning more about
the relative capacities of these algorithms for detecting change (Cohen
et al., 2017) with the variably in mapped outcomes linked to both the
nature of the disturbance and the particulars of the algorithm applied.
Importantly, the year-on-year information from time series analysis of
imagery provides additional trend information that allows for
strengthening of models (Pflugmacher et al., 2012) and incorporation
of ecological insights and successional expectations for mapping land
cover (Gómez et al., 2016).

Common to most approaches involving Landsat time series is the
description of spectral trends and the detection of change events via an
analysis of a complete temporal sequence (Hughes et al., 2017; Zhu,
2017). Keeping composited imagery and associated derivatives (i.e.,
metrics; Hermosilla et al., 2015b; Pflugmacher et al., 2012) up-to-date
involves the addition of new data to the end of the time series. The
addition of these new data, however, may result in changes to spectral
trends, which are determined through the identification of spectral
breakpoints and fitting of linear segments to capture the spectral

Fig. 1. (A) False color (bands: SWIR-1-NIR-R) proxy image composite in 2016, (B) changes by year, (C) change magnitude, and (D) change types in the study area. The complete study
area is highlighted in the map inset.
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trajectories (Hermosilla et al., 2015a; Kennedy et al., 2010). These
different trends, in turn, may alter derived image composites and
change detection outputs, particularly at the temporal junction between
new and existing data. It is important that scientists, managers, and
policy makers have confidence that the outcomes derived from a given
image time series data set are stable and not subject to notable varia-
bility upon addition of more recent data and related reprocessing. For
instance, confidence in forest monitoring programs would be under-
mined if previously reported statistical information required frequent,
data-related revision. Thus, the objective of this study is to demonstrate
the capacity and identify potential challenges associated with the ad-
dition of new observations to an existing Landsat time series for the
purposes of updating forest change information. We build upon the
image compositing and spectral trend analysis methods presented in the
Composite2Change (C2C) approach representing 1984–2012 (here-
after, C2C84-12; Hermosilla et al., 2016). We add new Landsat ob-
servations representing the four years from 2013 to 2016 (corre-
sponding with the launch of Landsat-8 OLI) to the time series to update
seamless annual surface-reflectance image composites and attributed
forest change outputs (C2C84-16). We compare the overlapping years of
image composites and attributed change products from C2C84-12 with
those from C2C84-16 and report on the spectral, spatial, and categorical
differences between both products in order to determine the implica-
tions of adding new data to extend a given Landsat time series and
associated outputs (i.e., change products).

2. Study area

The study area is approximately 143 Mha and occupies three UTM
zones (11–13) as intersecting portions of the Canadian provinces of
Alberta, Saskatchewan, and British Columbia (Fig. 1). This area was
selected to represent a range of natural and anthropogenic disturbances
of variable size, distribution, and magnitude. The southern portions of
the study area are comprised by the Prairies on the east (dominated by
extensive agriculture, wetlands, and grasslands), and by the Montane
Cordillera to the west (encompassing the Alberta Foothills and the in-
terior mountain ranges of British Columbia). The northern portion of
the study area is comprised of four forested ecozones, including the
Boreal Plains, Boreal Shield, Taiga Plains, and Taiga Shield (Rowe,
1996). The vegetation of the northern forested ecozones is primarily
composed of black spruce (Picea mariana) and Jack pine (Pinus bank-
siana). These northern forest areas are largely unmanaged, with no
commercial tenures for harvesting and limited fire suppression activ-
ities (Brandt et al., 2013) and wildfires are the main disturbance agent
(Kurz and Apps, 1999; White et al., 2017). The more southern reaches
of the forested ecosystems are dominated by aspen (Populus tremu-
loides), white spruce (Picea glauca), and tamarack (Larix laricina), and
are subject to sustainable forest management activities (including fire
suppression) with ongoing tenure arrangements allowing for timber
harvest (Wulder et al., 2004).

3. Methods

3.1. Data

Image composites were generated using all available images with
cloud cover less than 70% from the United States Geological Survey
(USGS) archive of Level-1-Terrain-Corrected (L1T) Landsat-4 and −5
Thematic Mapper (TM), Landsat-7 Enhanced Thematic Mapper Plus
(ETM+) and Landsat-8 Operational Land Imager (OLI) covering the
study area. The eligible date range for candidate images was August
1st ± 30 days from 1984 to 2016. August 1st was selected as central
target date due to a correspondence with the growing season for the
majority of Canada's forested ecosystems (McKenney et al., 2006).
Images were corrected to surface reflectance using the LEDAPS algo-
rithm (Masek et al., 2006; Schmidt et al., 2013). The characteristics of
the coincident bands for the different Landsat sensors are shown in
Table 1 (Roy et al., 2016). The study area was comprised of 285 scenes
(path/rows) of the Landsat Worldwide Referencing System (WRS-2). A
total of 17,200 images met the inclusion criteria, from which 14,567
images were ultimately used to create the image composites (Fig. 2).
Note that the 2013 launch of Landsat-8 OLI (Roy et al., 2014) coincides
with a high, multi-sensor image yield, and with the beginning of our
four year (2013–2016) update period.

3.2. Composite2Change (C2C) approach

Annual gap-free, seamless, Landsat surface reflectance composites
and 30-m forest change products were generated following the
Composite2Change (C2C) approach (Hermosilla et al., 2016). The C2C
approach is based on annual best-available pixel (BAP) image compo-
sites generated from Landsat imagery by selecting the most suitable
observations for each pixel location from all the candidate images ac-
quired within a specific date range (August 1 ± 30 days) and fol-
lowing the scoring functions defined by (White et al., 2014). These
functions rank every pixel based on the presence and distance to clouds
and their shadows (detected by the Fmask algorithm, Zhu and

Table 1
Characteristics of the coincident bands for the Landsat sensors.

Name TM ETM+ OLI

Band Wavelength (μm) Band Wavelength (μm) Band Wavelength (μm)

Blue (B) 1 0.45–0.52 1 0.45–0.52 2 0.45–0.51
Green (G) 2 0.52–0.60 2 0.52–0.60 3 0.53–0.59
Red (R) 3 0.63–0.69 3 0.63–0.69 4 0.64–0.67
Near Infrared (NIR) 4 0.76–0.90 4 0.77–0.90 5 0.85–0.88
Shortwave Infrared (SWIR) 1 5 1.55–1.75 5 1.55–1.75 6 1.57–1.65
Shortwave Infrared (SWIR) 2 7 2.08–2.35 7 2.09–2.35 7 2.11–2.29

Fig. 2. Number of images used to create the image composites by year and sensor.
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Woodcock, 2012; Zhu and Woodcock 2014), atmospheric quality, and
acquisition sensor. The acquisition sensor score (see Hermosilla et al.,
2016) prioritized Landsat TM (until 2012) and OLI (since 2013) data
over ETM+ due to the scan line corrector failure (SLC-off, i.e. after 31
May 2003).

The annual BAP image composites were further refined by removing
noisy (e.g., residual cloud/shadow, smoke, haze) observations
(Kennedy et al., 2010) and infilling data gaps with proxy surface re-
flectance values using spectral trend analysis of pixel time series
(Hermosilla et al., 2015a). Temporal trends and changes were detected
using a bottom-up breakpoint detection algorithm (Keogh et al., 2001)
applied to Normalized Burn Ratio (NBR) values (Key and Benson,
2006). This algorithm first divided the time series composed by n ele-
ments into n-1 segments for every pixel. The cost of merging each pair
of adjacent segments was then computed using the Root-Mean-Square
Error (RMSE), and the pair with the lowest cost was merged. The cost
value was recomputed for the new segments and the process is iterated
until the maximum number of segments are used. For the analysis of the
original time series (i.e. C2C84-12) a maximum of five segments to be
fitted was defined for change detection (noting that changes are not
detected in the first and last year of the time series). Given the longer
time span considered in extended time series (C2C84-16), and in order to
enable the detection of overlapping change events, we defined a max-
imum of six segments. From these trends, we derived a set of descriptive
change metrics that allowed us to characterize the change events, in-
cluding the change magnitude, defined as the difference between NBR
values after and before the change event. Finally, the detected changes
were attributed to a change type (with special focus on fire and har-
vesting; White et al., 2017), based on their spectral, temporal, and
geometrical characteristics using a Random Forests model and fol-
lowing the object-based image analysis approach presented in
(Hermosilla et al., 2015b). Stand replacing disturbances, such as har-
vest and wildfire, are commonly mapped using Landsat time series al-
though not frequently labeled. The high magnitude nature of the dif-
ference in pre- and post-disturbance condition results in reliable and
consistent capture of these stand-replacing disturbances. With the
number of votes received by each change class we also defined an in-
dicator of attribution confidence using the ratio between the percentage
of votes of the second most voted class and the percentage of votes of
the attributed (most voted) class (Hermosilla et al., 2016; Mitchell
et al., 2008). This indicator of attribution confidence allowed us to
distinguish between change types attributed with a high confidence
(ratio > 0.4) versus those with a low confidence (ratio ≤ 0.4). The
labeling of disturbance to type is focused on categories expected over
forested ecosystems, and therefore agricultural lands were identified
and excluded from labelling procedures using a mask provided by
Agriculture and Agri-Foods Canada (2011 data).1

3.3. Assessment of the time series extension

We assessed the impact of adding new data to the time series at
spectral and temporal levels, corresponding to the two key outputs of
C2C approach: seamless (gap-free) surface-reflectance image compo-
sites and forest change information products. Spectrally, the proxy
values of the surface-reflectance image composites were compared
using the Pearson’s correlation coefficient between C2C84-12 and C2C84-

16 for every band and for years common to both time series
(1984–2012). To enable the comparison, a random sample of 50,000
pixels with proxy surface reflectance values that were located in
forested land areas (i.e., water and agricultural lands were excluded)
were selected from each year and band of the overlapping period.

For the assessment of the forest-change products, we compared the

C2C change output (i.e. both fire and harvesting). We used indicators
that summarized the various cases of spatio-temporal overlap
(1985–2011) between changes detected by the original C2C84-12 and
the extended C2C84-16 time series, including spatio-temporal coin-
cidence, temporal difference, and omission and commission errors.
Coincidence refers to changes detected by both the original and ex-
tended time series that spatially correspond and that are labelled to the
same year. Temporal difference represents pixels detected as change by
both original and extended time series that spatially correspond but
that were detected in different years. Omission refers to those pixels
detected as change by the original time series that are not detected as
change in C2C84-16. Conversely, commission represents pixels that are
not defined as change in the original time series, but are detected as
change in C2C84-16. Distances between pixels identified as either
omission or commission in C2C84-16 and change pixels identified in
C2C84-12 were also computed and reported. We report results by change
type (i.e., fire and harvesting; Hermosilla et al., 2015b) and change
magnitude in order to explore any possible impacts that extending the
time series may have on C2C's capacity to model change type.

4. Results

4.1. Spectral assessment

The Pearson’s correlation coefficients resulting from the comparison
of a sample of proxy surface-reflectance values for C2C84-12 and C2C84-

16 for each band and each year are summarized in Fig. 3. For the ma-
jority of years, r = 1 for all bands. Generally, correlations between
proxy values from the two time series decreased after 2001, with 2012
having the lowest correlations. Bands of the SWIR region were less
impacted than bands in the visible and NIR. The lowest correlation
values (r = 0.86) were found for the green and NIR bands in 2012.

4.2. Change detection and attribution assessment

The total area of change estimated during the overlapping period
(1985–2011) of forest change information for C2C84-12 and C2C84-16 is
presented in Table 2, stratified by change type and attribution con-
fidence. Overall, the area estimated by the C2C84-16 time series for stand
replacing change was slightly larger (0.53%) than C2C84-12, or an
average difference of 0.019% per year. As expected, a greater similarity
in change area is found for the high confidence attributions (0.08%),
compared to low confidence attributions (7.29%). When further con-
sidered by change type, the area impacted by fire had the greatest si-
milarity in change area between the original and extended time series,
differing by 0.04% overall. C2C84-16 had less high confidence fire
(-0.75%), but also more area identified as low confidence fire (17.79%).
By comparison, C2C84-16 estimated 3.30% more high confidence har-
vested area and 4.81% less low confidence harvest area. In summary,
the extended time series resulted in an increase in estimated aggregate
change area; however, on an annual basis, this increase is small relative
to the size of the study area (143 Mha) and when considered by year.
For stand replacing changes (considering both high and low confidence
attributions), C2C84-16 estimated approximately 2722 ha yr−1 more
change area: 177 ha yr−1 for fire and 2544 ha yr−1 for harvest.

Table 3 summarizes the results of the spatial overlap assessment
between changes detected by C2C84-12 and C2C84-16 for the temporally
overlapping period, expressed as a proportion of the pixels identified as
change in C2C84-12. Overall, there was a high level of spatial corre-
spondence between the changes detected by both time series. Fire had
the greatest spatial coincidence, with 97.2% of pixels identified as fire
in C2C84-12 also identified as fire in C2C84-16 (in the same year). Only
0.4% of pixels identified as fire in C2C84-12 were identified as fire in a
different year in C2C84-16, and only 3.6% of C2C84-12 fire pixels were
not detected as fire in C2C84-16. C2C84-16 identified 2.4% more pixels as
fire compared to C2C84-12. For harvest, spatial coincidence was lower

1 //ftp.agr.gc.ca/pub/outgoing/aesb-eos-gg/CEN_CA_AG_INTRP/AgrMask2011/
AgriculturalMask2011_AAFC.gdb.zip.
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(90%), with approximately 0.8% of pixels identified as harvest in a
different year. Omissions were also greater for harvest, with 9.2% of
pixels identified as harvest in C2C84-12 not identified as harvest in
C2C84-16. Of note, C2C84-16 identified 11.5% more pixels as fire com-
pared to C2C84-12. Examples of these results are spatially displayed in
Fig. 4.

To better understand the nature of the omission and commission
trends present, we calculated the distance, in pixels, between those
pixels identified as omission or commission in C2C84-16 and change
pixels identified in C2C84-12 (Table 4). The omission and commission
errors for fire and harvesting have respectively 90.5% and 84.7% of the
pixels labelled differently within a 2-pixel distance of identified pixels
in C2C84-12. This result suggests that for the majority of stand replacing
disturbance, omission or commission errors are concentrated around
the periphery of changes identified in C2C84-12 (i.e. fire in Fig. 4a and
harvesting in Fig. 4b).

The distribution of the change magnitude metric for the four spatial
overlap assessment cases is presented in a boxplot in Fig. 5. Coincident
pixels displayed the largest variation in change magnitude, whereas
omission and commission cases had the smallest change magnitude.
Changes detected but labelled in different dates comprised pixels with
moderate change magnitude values.

5. Discussion

In this research, we assessed the impact of adding new data to the

end of an existing time series to extend the temporal sequence of
Landsat surface-reflectance composites (White et al., 2014) and forest
change products (Hermosilla et al., 2015b) generated using the C2C
protocol (Hermosilla et al., 2016). The addition of new observations to
a time series may require the adaptation of processing approaches if
new image sources are incorporated (e.g. Landsat-8 OLI), or if algo-
rithm-specific parameters require adjustment to accommodate a longer
time period. In our case, we increased the maximum number of change
segments (Kennedy et al., 2010) to be used in the C2C spectral trend
analysis (from five to six segments), since additional observations ex-
tended the temporal analysis period and increased the likelihood of
multiple change events for a given pixel. Our results indicated a slight
decrease in the level of correlation between C2C84-12 and C2C84-16

proxy surface reflectance values, particularly after 2001 for the visible
and NIR bands. We also found that extending the time series resulted in
a small increase (0.53%) in the estimated area of stand replacing
change over the period analyzed. Overall, these results indicate that the
C2C approach is robust to the addition of new observations for exten-
sion of the time series and is capable of producing consistent image
composites and stand replacing change products.

Differences in the proxy surface reflectance values between the
original (C2C84-12) and extended (C2C84-16) time series image compo-
sites occur primarily in the later years of the common period analyzed.
This outcome is logical given that the proxy values were informed by
the additional observations added to the time series (4 more years).
Moreover, the image composites representing 2013–2016 were created
using Landsat-8 OLI imagery, which is acquiring more data relative to
previous Landsat sensors (Wulder et al., 2016), thereby enabling more
complete image composites with fewer data gaps. The lowest correla-
tions (i.e. r ≤ 0.9) between the original and extended time series, were
found in the last two years of the common period, and impacted the
visible and NIR bands. This is likely caused by the larger impact of
atmospheric effects on the shorter spectral wavelengths than on the
Landsat bands located in the mid-infrared (Liang et al., 2002). Further,
the slight differences in spectral band correspondences (Roy et al.,

Fig. 3. Pearson’s correlation coefficient values for a sample of proxy surface reflectance values from the overlapping years (1984–2012) of the original C2C84-12 and extended C2C84-16

time series. Landsat band characteristics are summarized in Table 1.

Table 2
Comparison of area detected as changed by C2C84-12 and C2C84-16 grouped by attribution confidence (conf.).

C2C84-12(ha) C2C84-16(ha) Relative difference (%)

High conf. Low conf. All High conf. Low conf. All High conf. Low conf. All

Fire 10,308,968 460,342 10,769,310 10,231,878 542,234 10,774,112 −0.75 17.79 0.04
Harvesting 2,661,532 399,547 3,061,079 2,749,451 380,321 3,129,772 3.30 −4.81 2.24
Total 12,970,500 859,889 13,830,389 12,981,329 922,555 13,903,884 0.08 7.29 0.53

Table 3
Assessment of changes detected by C2C84-12 and C2C84-16 expressed as proportion of the
changes in C2C84-12.

Type Coincidence Temporal difference Omission Commission

Fire 97.2% 0.4% 2.4% 2.4%
Harvesting 90% 0.8% 9.2 11.5%
Total 96% 0.5% 3.6 4.1%
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2016) between Landsat-8 OLI and Landsats-5 TM and -7 ETM+
(Table 1) may also have an impact upon correlations (via the segment-
based breakpoint detection and proxy value calculation). The opera-
tional implications of these results suggest that adding more years to
extend a time series of image composites does not necessarily require

fully re-processing all years. The amount of overlapping years of the
original series to be re-process would range between 20% (6 years)
when r < 0.98 is consider, and 38% (11 years) in a more conservative
approach (r < 1).

The forest stand replacing changes determined with both original
and extended series presented high spatial and temporal agreement,
with the differences associated with lower magnitude changes. The
pixel-to-pixel differences were concentrated around the perimeter of
changes identified in C2C84-12, indicating that the same change events
(objects) are detected and attributed, but slightly differently delineated.
Overall, commission, or the identification of more change in the C2C84-

16 time series, was greater than omission. This is likely a product of
using a larger number segments to perform the spectral trend analysis;
however, the increase in change area is minimal when considered on an
annual basis: 0.08% for harvesting and 0.002% for fire. The stability
and consistency in the outcomes are key findings, since stand replacing
changes (i.e., fire, and harvesting) are critical for forest monitoring and
reporting activities, in addition to applications including carbon bud-
gets, biodiversity assessments, and habitat characterizations.

6. Conclusions

Keeping satellite-derived land cover and land cover change datasets
up-to-date requires periodic integration of newly acquired data. The
update process involves adapting and modifying algorithms and pro-
tocols that may entail differences to previously generated (and re-
ported) datasets. We have analyzed the integration of Landsat-8 OLI
data to extend the period depicted by the seamless surface reflectance
composites and forest change products produced with the C2C protocol
(Hermosilla et al., 2016). This study demonstrated that adding new
data to extend the time series has a minimal impact on the annual proxy
surface reflectance composites, with some differences (r ≥ 0.1) in the
later years of the time series primarily in the visible and NIR wave-
lengths. Moreover, the use of an additional temporal segment in the in
the trend analysis does not substantially alter the stand replacing

Fig. 4. Examples of spatial distribution of the
overlap assessment cases in areas dominated by (a)
fires and (b) harvesting.

Table 4
Relative frequency of distance to coincidence cases for omissions and commissions per
change type.

Distance (pixels) Fire (%) Harvest (%)

1 80.8 73.8
2 9.7 10.9
3 3.2 4.1
4 1.7 2.3
≥5 4.6 8.9

Fig. 5. Boxplot representing median, interquartile range, and extreme values for change
magnitude metric across the spatial overlap assessment cases.
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change results, either spatially (change vs. no change), or temporally
(i.e., year of detection). Notably, the subsequent modeled attribution of
the detected changes to a disturbance agent (i.e., fire, harvesting) does
not change markedly. These results suggest that economies of scale are
possible in an operational context, whereby additional years can be
added to extend the time series with a limited number of overlapping
years (between six and eleven years) requiring reprocessing. This would
limit the computational effort required, as the entire time series data
would not need to be fully reprocessed every time new data are added
in order to maintain up-to-date satellite-based land cover monitoring
products.
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