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A B S T R A C T

Vertical forest structure can be mapped over large areas by combining samples of airborne laser scanning (ALS)
data with wall-to-wall spatial data, such as Landsat imagery. Here, we use samples of ALS data and Landsat time-
series metrics to produce estimates of top height, basal area, and net stem volume for two timber supply areas
near Kamloops, British Columbia, Canada, using an imputation approach. Both single-year and time series
metrics were calculated from annual, gap-free Landsat reflectance composites representing 1984–2014. Metrics
included long-term means of vegetation indices, as well as measures of the variance and slope of the indices
through time. Terrain metrics, generated from a 30 m digital elevation model, were also included as predictors.
We found that imputation models improved with the inclusion of Landsat time series metrics when compared to
single-year Landsat metrics (relative RMSE decreased from 22.8% to 16.5% for top height, from 32.1% to 23.3%
for basal area, and from 45.6% to 34.1% for net stem volume). Landsat metrics that characterized 30-years of
stand history resulted in more accurate models (for all three structural attributes) than Landsat metrics that
characterized only the most recent 10 or 20 years of stand history. To test model transferability, we compared
imputed attributes against ALS-based estimates in nearby forest blocks (> 150,000 ha) that were not included in
model training or testing. Landsat-imputed attributes correlated strongly to ALS-based estimates in these blocks
(R2 = 0.62 and relative RMSE = 13.1% for top height, R2 = 0.75 and relative RMSE = 17.8% for basal area,
and R2 = 0.67 and relative RMSE = 26.5% for net stem volume), indicating model transferability. These
findings suggest that in areas containing spatially-limited ALS data acquisitions, imputation models, and Landsat
time series and terrain metrics can be effectively used to produce wall-to-wall estimates of key inventory at-
tributes, providing an opportunity to update estimates of forest attributes in areas where inventory information
is either out of date or non-existent.

1. Introduction

Forest inventories are generated to support a variety of information
needs ranging from operational to strategic. Data required to support
these information needs likewise vary in terms of spatial and temporal
resolution. In Canada, extensive forest management practices (Wulder
et al., 2007) have led to the dominance of strategic-level forest in-
ventories generated from air photo interpretation and ground sampling
(Leckie and Gillis, 1995). However, these inventories are preferentially
generated for managed forest areas, which represent only 65% of Ca-
nada’s total forest area (Bernier et al., 2012). The remaining

unmanaged forest areas have no systematic inventory information.
Moreover, many of the existing forest inventories in the managed forest
area are more than 20 years old, creating a need for up-to-date, cost-
effective, strategic forest information to support applications such as
projections of timber supply.

Airborne laser scanning (ALS) is an active remote sensing tech-
nology that enables three-dimensional forest structure to be char-
acterized over larger spatial scales than is possible with conventional
field methods (Lim et al., 2003). The use of ALS data has transformed
forest inventory practices in many jurisdictions (White et al., 2016),
and when combined with high quality ground plot data—in what is
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commonly referred to as an area-based approach (Næsset, 2002)—can
produce attribute estimates that typically meet or exceed inventory
accuracy requirements (Magnussen et al., 2012). Acquisitions of ALS
data in Canada to support forest inventories have been increasing
steadily over the past decade (D’Eon and Macafee, 2016), although the
acquisitions have not been systematic and often target specific man-
agement areas of interest. Despite the pace of change in many regions,
there is a need to generate and/or update strategic-level forest in-
ventory information more rapidly over large areas, particularly in jur-
isdictions that have experienced widespread disturbance, such as via
wildfire or as caused by the mountain pine beetle in British Columbia.

To address information needs in forests that lack ALS or inventory
data, or where these data are out-of-date, optical remote sensing data
can be used to estimate forest attributes from nearby ALS data collec-
tions to generate up-to-date and spatially extensive estimates of forest
attributes (Frazier et al., 2014; Pflugmacher et al., 2014, 2012; Zald
et al., 2016). Specifically, the sensors onboard the Landsat series of
satellites have been collecting multispectral data of the planet con-
tinuously from 1982 to the present at 30-m spatial resolution, and back
to 1972 at 60-m resolution, although prior to 1984, the acquisition of
30 m data was sparse (Goward et al., 2006). Following the opening of
the Landsat archive in 2008 (Wulder et al., 2012a), along with advances
in computing (hardware and software; Wulder and Coops, 2014), cloud
masking (Zhu and Woodcock, 2014) and surface reflectance generation
(Masek et al., 2006), approaches have been developed that utilize all
available Landsat imagery to characterize forest change (Zhu, 2017).
This Landsat time series information has been used in past research to
extrapolate ALS-derived estimates of forest attributes (Frazier et al.,
2014; Pflugmacher et al., 2012; Zald et al., 2016), with Pflugmacher
et al. (2012) demonstrating that the inclusion of Landsat time series
data improves model results over models that rely on a single date of
Landsat imagery alone.

K-Nearest Neighbor (kNN) imputation has been widely used to
produce wall-to-wall estimates of forest attributes using remotely
sensed data (Andersen et al., 2011; Beaudoin et al., 2014; Bright et al.,
2014; Hudak et al., 2008; Makela and Pekkarinen, 2004; Mora et al.,
2013), given that the technique is non-parametric and can support
multi-variate analysis (Chirici et al., 2016). In most applications, forest
attributes are imputed directly from field plots or inventory data to
spatially extensive remote sensing layers (e.g., Makela and Pekkarinen,
2004; Tomppo et al., 2008; Beaudoin et al., 2014). In Alaskan boreal
forests, however, Andersen et al. (2011) found that incorporating ALS
data in a two-stage approach led to improved estimates of biomass
across the landscape when compared to imputing directly from field
plots. Specifically, estimates of forest attributes were first derived along
ALS transects by developing models between ground plots and ALS
metrics. Second, these ALS-derived forest attributes were used as input
data to impute forest attributes across the area of interest using Landsat
imagery and synthetic aperture radar (SAR) data. Given the large area
covered by the ALS transects, a wider range of structural variability
could be supplied to the imputation models, leading to increased esti-
mation accuracy. Similarly, Wilkes et al. (2015) implemented a two-
stage approach that used ALS data in combination with a range of sa-
tellite data products to estimate canopy height across 2.9 million ha of
forest in Victoria, Australia with a relative Root Mean Square Error
(RMSE) of< 31% when compared to independent field plots. In addi-
tion to incorporating optical imagery from Landsat and the Moderate
Resolution Imaging Spectroradiometer (MODIS), Wilkes et al. (2015)
also included climate data, topographic information, and soil maps as
predictors to produce wall-to-wall maps of canopy height.

In order to implement a two-stage approach to estimating forest
attributes, highly accurate estimates of forest attributes from ALS data
are first required. The area-based approach has become a standard and
accepted method for generating high accuracy estimates of forest at-
tributes over large areas with ALS data (Næsset, 2014; Wulder et al.,
2013). First, discrete point clouds of ALS data are summarized using a

suite of metrics that describe vegetation cover, stand height, and the
vertical distribution of ALS returns (Bouvier et al., 2015; Lefsky et al.,
2005; Tompalski et al., 2015). Second, through parametric (Næsset
et al., 2004; Woods et al., 2011; Wulder et al., 2012b) or non-para-
metric (Hudak et al., 2008; Penner et al., 2013) approaches, these ALS
metrics are related against field measured forest attributes, such stem
volume or basal area. Finally, the developed models are then applied to
predict forest attributes wall-to-wall across the ALS data collection.

Given the incrementally developing coverage of ALS data that exist
across many jurisdictions, an opportunity exists to explore how these
high-quality datasets can be leveraged to provide wall-to-wall estimates
of key forest attributes in areas where ALS data have not been collected
and where existing inventory data is out of date. In this analysis, we
develop a methodology to produce models that impute forest attributes
using a suite of Landsat single-year and time series predictors near
Kamloops, British Columbia, Canada, where ALS data was collected and
forest attributes were predicted in 2014 for several spatially disjointed
areas covering approximately 350,000 ha. Through this analysis, we
ask the following specific questions.

1.1. How does the predictive capability of imputation models for top height,
basal area, and stem volume change when single-year Landsat metrics are
replaced with Landsat time series metrics?

Most attempts to predict forest attributes with Landsat time series
information have relied on metrics that describe disturbance and re-
covery dynamics (e.g., Pflugmacher et al., 2012; Frazier et al., 2014).
However, as many sampled stands within our study area have not un-
dergone a major disturbance during the interval of the Landsat recorded
we assessed (1984–2014), information on disturbance and recovery
from 1984 to 2014 is not likely informative for many stands. Alter-
natively, time series metrics such as long-term spectral means, varia-
bility of spectral indices through time, and the slope of indices through
time, can describe long-term stand conditions and development, re-
gardless of disturbance history. Here, we assess the relative importance
of Landsat predictor variables that describe single-year spectral condi-
tions and disturbance history versus metrics that describe long-term
spectral conditions, with a special interest on undisturbed stands.

1.2. For LANDSAT time series predictors, what length of time yields the best
results for making attribute estimates: 10-year, 20-year, or 30-year
descriptors?

Landsat time series metrics can be calculated across a number of time
periods. Longer periods of time will capture more of a stand’s history (e.g.,
30 year spectral averages), while shorter time periods will more accurately
describe the current state of a forest stand (e.g., 10 year spectral averages).
To determine how the length of time described impacts model accuracy, we
compare Landsat time-series metrics calculated at 10, 20, and 30 years prior
to the year of the ALS data collection (2014).

1.3. How well do pixel-level imputation models estimate forest structure at
the stand-level?

Landscape-level decision making for forest management is not often
made for individual grid cells (pixels) from remotely sensed data pro-
ducts, but rather for stand-level polygons. In British Columbia, stand-
level polygons are derived for managed forests through the Vegetation
Resources Inventory (VRI), which is a forest inventory program devel-
oped by British Columbia’s Ministry of Forests, Lands Natural Resource
Operations (MFLNRO). Stand-level boundaries are derived in the VRI
through photo interpretation, and are combined with a sample of
ground plots to produce inventory data across British Columbia
(Sandvoss et al., 2005). To determine if imputed forest attributes can
accurately capture variability at the scale at which management deci-
sions are made, we compare imputed estimates against ALS estimates at
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the VRI stand-level. As the goal is to determine how well imputation
models describe variability in forest structure outside of areas where
ALS data has already been acquired, the stand-level comparison will be
made in forested areas not included in model training and testing, al-
lowing model transferability to be assessed.

2. Methods

2.1. Study area

This study was conducted across two timber supply areas near
Kamloops, British Columbia, representing a total area of approximately
350,000 ha (Fig. 1). According to the ecosystem classification in British
Columbia, the area of interest is dominated by two Biogeoclimatic
Ecosystem Classification (BEC) zones: Engelmann Spruce-Subalpine Fir
(ESSF) and Interior Cedar–Hemlock (ICH), with area proportions of
41% and 49%, respectively. Two minor BEC zones are also present:
Montane Spruce (MS, 3%) and Interior Douglas fir (IDF, 8%). The ESSF
occurs in relatively cold, moist, and snowy continental climate

mountainous terrain that is often steep and rugged (elevation
1200–2100 m). Engelmann spruce (Picea engelmannii) and subalpine fir
(Abies lasiocarpa) are the dominant tree species in the ESSF. Spruce
usually dominates the canopy of mature stands. Subalpine fir is most
abundant in the understory, however, at high elevations and in some
wetter areas, it frequently dominates the forest canopy. The ICH occurs
at lower to middle elevations (400–1500 m) with the highest diversity
of tree species of any zone in the province. Western redcedar (Thuja
plicata) and Western hemlock (Tsuga heterophylla) are the two dominant
tree species. Other dominant species such as Douglas fir (Pseudotsuga
menziesii) and lodgepole pine (Pinus contorta) are present in MS and IDF.
The Montane Spruce is a transitional zone between ESSF and IDF with
mixed tree species such as spruce, subalpine fir, Douglas fir and lod-
gepole pine.

2.2. Data sources

2.2.1. ALS-derived estimates of forest attributes
ALS-derived estimates of forest attributes were obtained from the

Fig. 1. ALS coverage near Kamloops, British Columbia, Canada. Blocks in
red were used to train and test the imputation models. Blocks in blue
were used to perform a stand-level comparison between ALS-derived
attributes and Landsat imputed estimates. (For interpretation of the re-
ferences to colour in this figure legend, the reader is referred to the web
version of this article.)
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Ministry of Forests, Lands, Natural Resource Operations (MFLNRO) for
areas near Kamloops, British Columbia (Fig. 1). The estimates of forest
attributes cover 350,000 ha and were generated using an area-based
approach at a 20-m spatial resolution from ALS data collected in 2014.
MFLNRO derived these estimates of forest attributes by building area-
based models between 233 circular ground plots (fixed radius of
11.28 m) and a standard suite of ALS metrics that describe the vertical
distribution and density of ALS returns within each plot (please see
White et al., 2013 for more information on conducting an area-based
inventory with ALS data). Here, we focus on ALS-derived estimates of
basal area, top height, and net stem volume as these attributes are of
particular interest to forest managers. Basal area was measured for all
live trees with a diameter at breast height (DBH) > 4 cm, while net
stem volume was defined as the net merchantable stem volume for all
live trees with a DBH > 12.5 cm. Top height was determined by
measuring the height of the largest diameter live tree in dominant and
co-dominant layers within 5.64 m of plot center, regardless of species or
residual status. These estimates from ALS data were derived for six
distinct forest blocks (see Fig. 1). In this study, three blocks were used
for model training and testing, while the remaining three blocks were
reserved for an independent comparison between imputed values and
ALS estimates at the VRI stand-level. Summary statistics for each block
are presented in Table 1

2.2.2. Landsat time-series data
Landsat time-series predictors and forest disturbance information

were derived from gap-filled Landsat composites for 1984–2016 pro-
duced following the Composite 2 Change (C2C) approach (Hermosilla
et al., 2017, 2016). Specifically, best-available pixel (BAP) image
composites were first produced from Landsat imagery by selecting ob-
servations for each pixel within a specific date range (August 1+/
−30 days) based on the scoring functions defined by White et al.
(2014), which rank the presence and distance to clouds and their sha-
dows, the atmospheric quality, and the acquisition sensor. Next, these
image composites were further refined by removing noisy observations
(e.g., haze and smoke) and infilling data gaps using spectral trend
analysis of pixel time series (Hermosilla et al., 2015a). Implementation
of these rules and subsequent temporal analysis allows for the pro-
duction of seamless annual surface reflectance composites for all of
Canada, as well as the detection and characterization of forest change
events. Hermosilla et al. (2016) reported the overall national detection
accuracy for change events (1984–2012) was 89.0%. Following the
object-based image analysis approach introduced in Hermosilla et al.
(2015b), the detected changes were attributed to a change type (i.e.,
fire, harvesting, road, or non-stand-replacing such as insect dis-
turbance), based on their spectral, temporal, and geometrical char-
acteristics using a Random Forests classifier, with an overall accuracy of
92% (please see Hermosilla et al., 2016 for an overview of the gen-
eration of image composites and change products).

Tasseled Cap Brightness (TCB), Greenness (TCG), Wetness (TCW),
and Tasseled Cap Angle (TCA) were calculated for each annual gap-free
composite from 1984 to 2014 (Crist, 1985; Pflugmacher et al., 2012).

TCA was calculated as TCA = atan(TCG/TCB). Two variables were
included to describe disturbance: c hange type and years since dis-
turbance. Disturbances were classified as either stand replacing (fire,
harvest, or road) or non-stand replacing. If a pixel was not disturbed
between 1984 and 2014, years since disturbance was set to 50 years.
Availing upon the BAP image composites and associated attributed
change information produced by C2C, a land cover data set has also
been produced. This land cover dataset was used to create a forest/non-
forest mask to constrain the analysis described herein.

2.2.3. Topographic data
Topographic information for the study area was obtained from the

Canadian Digital Elevation Model (CDEM). The CDEM is produced by
Natural Resources Canada at scales of 1:50,000 and 1:250,000, derived
primarily from data from the National Topographic Data Base (NTDB).
The 1:50,000 product, which is delivered at a spatial resolution of
0.75 ″ (∼23 m), was obtained for this analysis and resampled to derive
a 30 m spatial resolution digital elevation model for the study area
(Natural Resources Canada, 2017). From the digital elevation model,
slope and the topographic solar radiation index (TSRI) were also cal-
culated. TSRI is a transformed measure of aspect, obtained as
TSRI = 0.5 − cos((π/180)(aspect − 30))/2. TSRI can take values be-
tween 0, indicating cold NE slopes, and 1, indicating warm SW slopes.
Topographic variables were resampled to 30 m to align with the
Landsat predictor variables.

2.2.4. Vegetation resources inventory data
To assess how Landsat imputed attributes compare to lidar-derived

estimates at the stand-level, Vegetation Resources Inventory (VRI)
polygons from 2013 were obtained (British Columbia Data Catalogue,
2017a). The polygons were derived through visual interpretation of
aerial photos, with each polygon representing a delineated forest stand
(relating a unit of homogeneity with regards to forest age, composition,
and structure). VRI represents the standard of forest inventory data in
British Columbia, and is used by both land managers and the provincial
government to inform decision making on the landscape. Across the
study area, VRI polygons averaged 14 ha in size, with a maximum
polygon size of 806 ha. Historical information on the date of harvest for
VRI polygons was also obtained (British Columbia Data Catalogue,
2017b), which will be used as a tool to interpret model predictions.
While differences in forest inventories exist by jurisdiction, both within
(Leckie and Gillis, 1995) and between (Kangas and Maltamo, 2006)
countries, the notion of linking a suite of descriptive attributes to a
spatial unit is common. As such, the update approach presented here is
applicable outside of the current implementation jurisdiction.

2.3. Building imputation models

To integrate ALS-derived forest attributes (20 m spatial resolution)
with Landsat variables (30 m spatial resolution), ALS cells were as-
signed a 5 × 5 cell average of each forest attribute, representing a
surrounding area of 100 m by 100 m, while Landsat and topographic
variables were assigned 3 × 3 cell averages, representing an area of
90 m by 90 m. The ALS-derived attributes were then resampled to the
Landsat grid using a nearest neighbour approach to produce both sets of
attributes on a 30 m grid. While the 30 m cells represented a 90 by 90 m
average for Landsat spectral data, the value of the center 30 m cell was
retained for Landsat disturbance variables that could not be averaged
(change type and years since change). In Alaskan boreal forests, Strunk
et al. (2014) found an improved relationship between ground plots,
lidar, and Landsat data for estimating forest attributes at 90 × 90 m
compared to 30 × 30 m (Strunk et al., 2014). Spatial error in either the
Landsat or lidar data could lead to mismatches between spectral metrics
and structural variables, contributing to errors in estimation. In addi-
tion, the minimum stand size for strategic forest inventories in British
Columbia is 2 ha; therefore these attribute estimates at the 90 m cells

Table 1
Mean and standard deviations for ALS-derived estimates of top height, basal area, and net
stem volume for the six blocks displayed in Fig. 1. Standard deviations are in parentheses.

Forest
Attribute

Block 1 Block 2 Block 3 Block 4 Block 5 Blockb6

Top height
[m]

34.1
(18.2)

30.5
(15.9)

37.8
(17.3)

34.9
(18.9)

31.9
(18.1)

30.2
(14.3)

Basal area
[m2/ha]

22.4
(7.1)

21.3
(7.3)

24.7
(7.0)

23.9
(7.9)

22.4
(8.3)

21.8
(7.8)

Net stem
volume
[m3/ha]

235.3
(147.1)

205.4
(133.5)

274.1
(151.0)

254.9
(167.6)

229.4
(159.5)

210.7
(125.1)
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are sufficient for augmenting forest inventories across the province. In
general, it is understood that larger plots (from lidar) are more robust to
alterations in positon (geolocation) and for representing local condi-
tions as edge-effects are minimized (Frazer et al., 2011).

To focus the analysis on forested areas only, non-forested areas were
masked using the 2012 land cover classification (as described above).
As 2012 was the most recent year that land cover information was
available, an additional step was required to remove forests that were
harvested between 2012 and 2014, as these areas would no longer be
considered forested at the time of the ALS flight. Specifically, areas that
were classified as a stand replacing disturbance (i.e, harvest, fire, or
road) between 2012 and 2014 in the C2C approach were masked from
the analysis. Once forested areas were isolated, random samples were
selected for model training and testing. To ensure that the models could
predict across the full range of structural conditions present in the study
area, the forested area was first stratified into 20 classes based on the
ALS-derived estimates of forest attributes. Specifically, a k-means
clustering procedure was performed using the estimates of top height,
basal area, and net stem volume. A stratified random sample of training
cells was then selected, with the number of training cells in each of the
20 classes proportional to the presence of those classes across the
landscape. As nearby cells are often spatially autocorrelated and do not
represent independent samples for model development, randomly
sampled cells were required to be at least 500 m apart. Additionally, to
avoid selecting training cells on forest edges, all adjacent 30 m pixels
were required to be forested (i.e., 3 × 3 cell window). In total, three-
thousand 30 m pixels were randomly distributed across blocks one,
three, and five, representing 0.18% of the forested area in these blocks.
This set of random pixels was divided into a training (75%, 2250
samples) and testing (25%, 750 samples) set.

Once training cells were selected, predictor variables were calcu-
lated for each cell. These variables included single-year Landsat pre-
dictors derived from the 2014 BAP composite, time series predictors
derived from gap-filled Landsat composites from 1984 to 2014, in-
formation on disturbance history from 1984 to 2014, and topographic
variables. To test the predictive capabilities of single-year Landsat
metrics versus Landsat time series metrics, as well as the predictive
capability of Landsat time-series metrics at different temporal lengths,
six model scenarios were run. A summary of these model scenarios and
their associated set of predictors is summarized in Table 2. Each model

scenario was run to predict top height, basal area, and net stem volume
using k-NN imputation, with the random forests proximity matrix used
to derive the nearest neighbour distance metric (Liaw and Wiener,
2002). Specifically, the yai function of the yaImpute package was used
for the imputation (Crookston and Finley, 2008), with the number of
regression trees set to 500 and the number of nearest neighbors set to
one. Once each model was trained on the 2250 training samples, the
models were applied to the remaining 750 testing samples, and the
accuracy of each model was assessed using the coefficient of determi-
nation (R2) between observed and predicted values, the root mean
squared error (RMSE), and the model bias. RMSE and bias were cal-
culated as follows:

∑= −
=

n
Predicted ObservedRMSE 1 ( )

i

n

i i
1

2

(1)

∑= −
=

n
Predicted ObservedBias 1 ( )

i

n

i i
1 (2)

where Observedi is the ALS-derived estimate for the ith test sample and
Predictedi is the imputed value for each model. Relative RMSE and bias
(RMSE%, bias%) were calculated relative to the mean of the observed
values.

2.4. Comparing estimates at the VRI stand-level

Once a candidate model for top height, basal area, and net stem
volume was selected, imputed values were produced for blocks two,
four, and six (see Fig. 1) and compared against ALS-derived estimates at
the VRI stand-level. Each VRI polygon was assigned the average values
for both the imputed attributes and the ALS-derived attributes. Only
forested cells were considered when calculating the averages (i.e.,
classified as forest in 2012, no stand replacing disturbance between
2012 and 2014). Only VRI polygons that were> 2 ha in size and>
75% forested according to the 2012 land cover classification were as-
sessed (6645 polygons in total). As blocks two, four, and six were not
included in model training and testing, this additional comparison will
allow us to assess the transferability of imputation models to nearby
areas without ALS data, and provide an understanding of how well the
models perform at the stand-level.

Table 2
Predictor variables for each model scenario. All model scenarios include topographic variables. Filled boxes represent the variables used in each model.
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3. Results

Table 3 displays the coefficient of determination (R2) values be-
tween observed and predicted estimates of top height, basal area, and
net volume for 750 test samples in each model scenario, while Table 4
displays the relative Root Mean Square Error (RMSE) and bias for each
model. Of the three predicted attributes, basal area consistently had the
strongest level of agreement between observed and predicted values
(R2 = 0.42–0.66), followed by whole stem volume (R2 = 0.33–0.57),
and top height (R2 = 0.25–0.55). Alternatively, top height had the
lowest relative RMSE (RMSE% = 16.5–22.8%), followed by basal area
(RMSE% = 23.3–32.1%), and whole stem volume (RMSE%
= 34.1–45.6%).

The R2 values were lowest (R2 = 0.25–0.42) and RMSEs highest
(RMSE = 22.8%–45.6%) for model A, which included single-year
Landsat predictors and topographic information. Model performance
improved when Landsat change metrics (i.e., years since change and
change type) were added in model B (R2 = 0.38–0.52). Model perfor-
mance did not improve when single-year predictors were replaced with
10-year Landsat predictors in model C (R2 = 0.38–0.52,
RMSE = 19.8%–41.9%); however, as the length of the temporal metrics
increased from 10-years to 30-years, R2 values increased and RMSE
values decreased (R2 = 0.54–0.66, RMSE = 16.5%–34.1% for model
E). Model accuracy did not improve when single-year and change me-
trics were added in model F (R2 = 0.55–0.65, RMSE = 16.4%–34.9%),
therefore model E was chosen as the candidate model. Scatterplots
between observed and predicted values for model E are displayed in

Fig. 2. Fig. 3 displays the scaled variable importance for model E.
Elevation was the most important variable in the model, followed by
the 30-year mean TCW, TCG slope, TCB slope, TCA mean, and the
standard deviation of TCW. TSRI was the least important variable in the
model.

3.1. Comparing estimates at the VRI stand level

Fig. 4 displays the stand-level comparisons between ALS estimates
and model E predictions for forest blocks not included in model de-
velopment (i.e., blocks two, four, and six in Fig. 1). Agreement between
model estimates was strongest for basal area (R2 = 0.75), followed by
net stem volume (R2 = 0.67) and top height (R2 = 0.62). Alternatively,
the relative RMSE was lowest for top height (RMSE = 13.1%), followed
by basal area (RMSE = 17.8%), and net stem volume (RMSE = 26.5%).
All three attributes had a negative bias (i.e., imputed values were
consistently lower than ALS estimates), with the largest bias for net
stem volume (−7.8%), followed by basal area (−6.1%), and top height
(−3.7%).

Fig. 5 displays ALS-derived estimates of net stem volume, as well as
volume estimates imputed using model B and E, for block six (southeast
corner of study area). When compared against the ALS-derived esti-
mates, model B and E both captured the general patterns of volume
across the block, with high volume estimates in the southwest corner,
trending to low volume estimates in the northwest corner. However,
key differences in volume predictions were observed in areas that were
harvested between 1970 and 1983 (i.e., prior to the start of the Landsat

Table 3
R2 values between observed and predicted attributes for 750 held-out samples. See Table 1 for a list of predictor variables for each model.

Forest Attribute Model A: Single-year
predictors

Model B: Single-year and
change predictors

Model C: 10-year
predictors

Model D: 20-year
predictors

Model E: 30-year
predictors

Model F: Single-year, change,
and 30-year predictors

Top height 0.25 0.38 0.38 0.51 0.54 0.55
Basal area 0.42 0.52 0.52 0.63 0.66 0.65
Net stem volume 0.33 0.41 0.41 0.53 0.57 0.55

Table 4
Relative RMSEs and relative bias between observed and predicted attributes for 750 held-out samples. Bias is displayed in parentheses. See Table 2 for a list of predictor variables for each
model.

Forest Attribute Model A: Single-year
predictors

Model B: Single-year and
change predictors

Model C: 10-year
predictors

Model D: 20-year
predictors

Model E: 30-year
predictors

Model F:Single-year, change,
and 30-year predictors

Top height 22.8% (0.2%) 20.1% (−0.3%) 19.8% (−1.1%) 17.1% (−0.8%) 16.5% (−1.2%) 16.4% (−1.1%)
Basal area 32.1% (−0.6%) 28.7% (−0.7%) 28.9% (−2.3%) 24.5% (−1%) 23.3% (−1.2%) 23.7% (−1.2%)
Net stem volume 45.6% (−0.5%) 41.7% (−0.7%) 41.9% (−3%) 35.7% (−1.6%) 34.1% (−2.1%) 34.9% (−1.9%)

Fig. 2. Scatterplots between observed and predicted attributes for 750 held-out samples using 30-year Landsat predictors (Model E). Observed values are ALS-derived estimates of forest
attributes.
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time-series). Specifically, model E was better able than model B to
capture the spatial patterns in volume associated with these harvested
areas, while model B tended to predict higher volumes than ALS over
these harvested areas.

4. Discussion

Existing ALS-derived estimates of forest attributes can be leveraged
in combination with Landsat time series and terrain metrics to estimate
key forest attributes where inventory data does not exist, or where in-
ventories are out-of-date. Previous research (e.g., Pflugmacher et al.,
2012) has demonstrated that Landsat time series is more capable of
explaining variability in forest attributes than single-year Landsat pre-
dictors alone. The model accuracy reported herein confirm the findings
of Pflugmacher et al. (2012) when using Landsat time series predictors
(Pflugmacher et al. reported a relative RMSE of 28% for basal area, 41%
for aboveground biomass, and 30% for Lorey’s height). However, while
previous studies have focused mainly on Landsat predictors that relate
to disturbance and recovery dynamics (Main-Knorn et al., 2013;
Pflugmacher et al., 2012; Zald et al., 2016), we have demonstrated that
simple long-term spectral averages and measures of temporal varia-
bility have strong predictive power. Moreover, we found that the in-
clusion of disturbance information alone did not greatly improve model
accuracy (model A to model B), as most of the sampled stands in our
study area had not undergone a major disturbance in the past 30 years.

This finding demonstrates the need for additional time series metrics
that do not explicitly describe disturbance.

Landsat time series variables were particularly important in areas
that were disturbed immediately prior to the start of our Landsat time
series (pre-1984). Specifically, model B overestimated volume in areas
that were harvested between 1970 and 1983 (Fig. 5), as the canopies in
these cutblocks likely closed by 2014 (i.e., corresponding to the year of
the single-year Landsat predictors). Optical satellite measurements are
less sensitive to variability in forest structure once canopies close
(Avitabile et al., 2012, 2011; Duncanson et al., 2010; Wulder et al.,
1996). Therefore, models that only incorporate single-year Landsat
metrics after canopy closure will not be as sensitive to structural dif-
ferences between stands. Model B did incorporate Landsat change
metrics (year of change, type of change) in addition to single-year
predictors, but because the disturbances occurred prior to 1984, these
disturbances were not captured by these metrics. Alternatively, model E
was able to capture forest structural variability in and around these
cutblocks, as the 30-year predictors inform on stand condition early in
the time series prior to canopy closure. This ability to describe stand
history in areas that were not disturbed during the Landsat record is
likely why model E outperformed model B. However, incorporating
Landsat Multispectral Scanner (MSS) data could allow a longer record
of discrete disturbances to be incorporated (back to 1972), which would
likely improve the predictive capability of change metrics across the
landscape. It is important to note that while discrete changes in forest
condition (e.g., fire and harvest) are feasible to derive from Landsat
MSS data, additional time series metrics may prove challenging to in-
corporate in imputation models given the different spectral, spatial, and
radiometric resolutions of Landsat MSS data.

Increasing the length of the Landsat time series appears to improve
the predictive capability of imputation models, as the accuracy in-
creased from model C (10-year predictors) to model E (30-year pre-
dictors). The superior performance of model E suggests that it is more
important to observe a stand’s history, than it is to accurately char-
acterize the current state of the forest (via single-year metrics).
However, 30-year metrics may not be appropriate for all applications,
as models using 30-year metrics are unable to make historical predic-
tions of forest structure. Specifically, model E could only be used to
make attribute predictions for 2013–2016, as 30 previous years of
Landsat data are required. Alternatively, if single-year predictors are
used, models could be applied to predict forest attributes annually from
1984 to 2016, but at a lower accuracy (assuming similar results to those
presented herein). Knowledge of a terminal structural status (from
lidar) can also be used to guide estimation of prior conditions (such as
in Pflugmacher et al., 2012; Ahmed et al., 2014). While accurate esti-
mates of current structure are critical to land managers, historical

Fig. 3. Scaled importance values for Model E (30-year Landsat metrics and topographic
predictors). Scaled importance values were derived using the yaiVarImp function in the
yaImpute package in R (Crookston and Finley, 2008). Scaled values were obtained by
calculating z-scores from the importance values.

Fig. 4. Stand-level comparisons between ALS estimates and best performing imputation model (Model E) predictions (30-year predictors). Stands represent inventory polygons, deli-
neated via air photo interpretation and derived from British Columbia’s Vegetation Resources Inventory (VRI) program. Only areas in blocks two, four, and six from Fig. 1 are included, as
these areas were excluded from model training and testing (6645 VRI polygons in total).
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information on structure is important for monitoring changes in habi-
tats, monitoring carbon budgets, as well as tracking growth. Therefore,
determining the balance between model accuracy and the ability to
make historical estimates will vary depending on specific applications
and information needs.

Limitations of Landsat vegetation indices in closed canopies may
have contributed to the slight underestimations of forest attributes
observed in mature, productive stands (i.e., tall stands with high basal
area and high volume), leading to negative model biases (−1.2–−2.1%
for Model E). Specifically, as Landsat vegetation indices are less sensi-
tive to structural variability once canopies close (Avitabile et al., 2012,
2011; Duncanson et al., 2010; Wulder et al., 1996), estimation error
will likely be highest in stands that had dense, closed canopies for the

entire time series (1984–2014). This is observable in Fig. 2c, as stem
volumes> 500 m3/ha tended to be under predicted. However, as
biases remained small, this issue was not a major concern.

Imputation models were able to accurately predict forest attributes
at the VRI stand-level for forest blocks not included in model training
and testing (RMSE = 13.1–26.5%), demonstrating the transferability of
the models, and the ability to make estimates at the scale of interest to
land managers. However, model bias was slightly higher when the
models were transferred to the new blocks (Bias = −3.9–−8.0%),
suggesting that the full range of structural variability in the new blocks
may not have been captured in the training plots used in model de-
velopment. In order to generate wall-to-wall estimates across large
study areas, it is critical that the full range of structural variability is

Fig. 5. A) ALS estimates of net stem volume for block six (southeast corner of study area); B) Net stem volume predictions using Model B; C) Net stem volume predictions using Model E.
Areas harvested between 1970 and 1983 are outlined to demonstrate the differences between Model B and Model E for areas harvested prior to the start of the Landsat time-series (pre-
1984).
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captured by the training samples to avoid underestimations in pro-
ductive stands, or overestimations in unproductive stands. If similar
imputation models are applied wall-to-wall across British Columbia,
capturing the full range of structural variability with existing ALS da-
tasets alone may prove difficult, as most ALS data collections are fo-
cused in the province’s more productive, managed forest areas.
Therefore, government and university led initiatives to collect ALS data
in unmanaged forests, such as the ∼25,000 km of transects of ALS data
collected across boreal Canada in 2010 (Wulder et al., 2012b), are
critical to ensure that low productivity forests are represented in im-
putation models.

Elevation was the most important variable in the models, high-
lighting the importance of including ancillary variables in the imputa-
tion process. Elevation was particularly important given the large ele-
vational gradient over the study area, which resulted in a gradient in
forest type, from highly productive Interior Cedar − Hemlock forests at
lower elevations to Engelmann Spruce-Subalpine Fir forests at high
elevations. Mean TCW was the most important spectral variable in the
model, but similar importance values were observed for the TCB slope,
TCG slope, TCA mean, and TCW standard deviation, suggesting that
both average measurements and measures of variability are important
in imputation models. Wilkes et al. (2015) and Zald et al. (2016) also
found TCW to be the most important spectral variable in imputation
models to predict forest attributes, demonstrating the value of spectral
indices that rely on the mid-infrared portion of the spectrum, where
Landsat bands are sensitive to moisture content (Cohen, 1991; Cohen
and Goward, 2004).

While we have demonstrated that Landsat imputation models can
produce estimates of forest attributes that are comparable to stand-level
estimates derived from ALS data, the true accuracy of these models will
largely depend on the quality of the area-based ALS-derived estimates
used to train the models. ALS data has been used extensively to derive
highly accurate estimates of key forest attributes, but in order for forest
managers to achieve high accuracies, a series of best practices must be
followed, which includes establishing a sample of ground plots that
capture the full range of forest structural variability observed in the ALS
data, as well as minimizing the time lag between ALS data collection
and field measurements (White et al., 2013). Provided standard prac-
tices for the area-based approach are followed, then estimates of forest
attributes derived from ALS data will remain a valuable source of input
data for estimating forest attributes wall-to-wall over large study areas
through the use of imputation models.

Historically, the generation of forest inventory information via air
photo interpretation provided a cost-effective means of data collection
over very large areas (Leckie and Gillis, 1995). The use of skilled human
interpreters somewhat mitigated the lack of spatial or categorical detail
available from the photos, as a function of the experience and expertise
of the interpreters. At the time, these strategic-level inventories pro-
vided the best-available information for applications such as timber
supply projection; however, the subjectivity of photointerpretation and
associated errors in forest inventories have been documented in the
literature, with Thompson et al. (2007) reporting an error rate of
30–60% for interpreted estimates of species composition. Currently, as
the number of skilled photo interpreters declines, and as the transition
to digital acquisition and attribution processes continues, many trade-
offs in the production of inventory information are emerging. For in-
stance, ALS data provides for greater accuracy, precision, and spatial
detail, but the relatively higher costs (compared to photos) have re-
sulted in smaller acquisition areas. As a result, forest management
agencies may have to focus their limited resources on priority areas,
leading to a subset of high quality ALS-based forest inventory in-
formation on a portion of the management area, with increasingly
dated and generalized data elsewhere. Opportunities, such as presented
herein, to use ALS data collected over a limited portion of the man-
agement area to aid in the broader characterization of a given jur-
isdiction are required. Our results demonstrate that forest management

agencies have alternative options for producing and maintaining stra-
tegic-level forest inventory information.

5. Conclusions

Spatially-limited ALS acquisitions, in combination with Landsat
time-series data and terrain metrics, can be effectively used to derive
temporally and spatially consistent strategic-level estimates of top
height, basal area, and net stem volume in areas that lack such in-
formation or where existing forest inventories are out-of-date. Landsat
metrics that described long-term spectral averages and spectral varia-
bility were better able to estimate top height, basal area, and net stem
volume than models using single-year Landsat metrics. While digital
data and approaches are becoming increasingly adopted, photo-based
forest inventories remain common for capture and portrayal of stra-
tegic-level forest inventory information, and could thus be considered
as the quality benchmark against which new and emerging technologies
are compared. ALS-derived estimates of forest attributes offer in-
formation at an operational level of detail, beyond that of large area
strategic inventory activities. Use of the ALS-derived attributes as the
comparative standard in this research indicates that the update capacity
and attribute information quality afforded by the Landsat-based im-
putation approach presented herein are sufficient for strategic in-
ventory purposes.
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