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A B S T R A C T

Forest canopy gaps play an important role in forest dynamics. Airborne laser scanning (ALS) data provide de-
monstrated capacity to systematically and accurately detect and map canopy gaps over large forest areas. Digital
aerial photogrammetry (DAP) is emerging as an alternative, lower-cost source of three-dimensional information
for characterizing forest structure and modelling forest inventory attributes. In this study we compared the
relative capacities of ALS and DAP data to map canopy gaps in a complex coastal temperate rainforest on
Vancouver Island, British Columbia, Canada. We applied fixed- and variable-height threshold approaches for gap
detection using both ALS and DAP data, and validated outcomes using independent data derived via visual image
interpretation. Overall accuracies for ALS-derived gaps were 96.50% and 89.50% for the fixed- and variable-
height threshold approaches respectively, compared to 59.50% and 50.00% for the DAP-derived gaps, with DAP
data having large errors of omission (> 88%). We found that 70% of ALS-derived gaps were identified in old
seral stage stands (age > 250 years), while 65% of DAP-derived gaps were located in early seral stage stands
(age < 40 years). For the DAP data, gap detection accuracy was 80% in early seral stands, compared to 50% in
old seral stands. In contrast, ALS detection accuracy varied by only ~6% between early and old seral stages. We
compared detected gaps using a variety of metrics and found significant differences in the number and average
size of gaps detected using ALS and DAP data. Using the fixed-height threshold, the ALS data identified 16 times
more gaps and 6.5 times more gap area than the DAP data, with a mean ALS-derived gap size that was half that
of the DAP data. The average amount of overlap between ALS- and DAP-detected gaps was 13.26% and 42.90%
for the variable and fixed thresholds, respectively. We attribute these differences in gap detection to the nature of
the DAP data itself, which characterizes primarily the outer canopy envelope, as well as to the confounding
effects of canopy complexity and related occlusions and shadows on image matching algorithms. We conclude
that DAP data do not provide analogous results to ALS data for canopy gap detection and mapping in coastal
temperate rainforests, and that ALS data enable markedly superior accuracy and detailed gap characterizations.

1. Introduction

Natural disturbances play an important role in forest ecosystems.
Some disturbances, such as wildfire (e.g. Burton et al., 2008) or insects
(e.g. Safranyik et al., 2010), can impact large areas over relatively short
time frames. In contrast, the mortality of single trees or small groups of
trees create openings or gaps within the continuous forest canopy that
are either devoid of trees or contain trees that are markedly smaller
than their immediate neighbours (Runkle, 1982). Canopy gaps play an
important role in the ecological processes in natural forests and influ-
ence forest structure, particularly in mature and old stands (Spies et al.,
1988). Gaps influence tree recruitment and regeneration success (Gray
and Spies, 1996; Yamamoto, 2000; Muscolo et al., 2014), play a role in

the maintenance of biodiversity (Gray et al., 2012), and can provide a
matrix of preferred forage species for ungulates (Harestad, 1985; Massé
and Côté, 2012; Tahtinen et al., 2014). In unmanaged coastal temperate
forests of British Columbia, Canada, canopy gaps are the primary agent
influencing forest composition and structure (Lertzman et al., 1996;
Daniels and Gray, 2006). In this environment, gaps result in enhanced
growth responses (Stan and Daniels, 2010, 2014). Lertzman et al.
(1996) distinguished between ephemeral developmental gaps caused by
tree mortality and branch fall, and more persistent gaps, which result
from edaphic or topographic conditions, such as streams or rock out-
croppings. By definition, canopy gaps are considered localized and
discrete, and are not part of an “open-ended” system such as a wetland
or a large burned area. While edaphic gaps contribute to openness of
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the forest canopy and to landscape forest structure, they are not con-
sidered significant contributors to forest dynamics (Lertzman et al.,
1996).

In the study of canopy gaps, both the spatial and temporal variation
in the formation of canopy gaps is of interest (Lertzman et al., 1996).
However, landscape-level spatial assessments of canopy gaps are often
constrained by gap detection and mapping methods, which have pri-
marily been ground-based measurements at sample locations
(Schliemann and Bockheim, 2011). Given the level of effort and ex-
pense required to obtain ground-based measurements, the areas cov-
ered by these surveys are often small and not spatially contiguous. An
improved understanding of the temporal variation in gap formation
processes has also been limited by the lack of time series data to enable
such investigations (Lertzman et al., 1996), and by the difficulties as-
sociated with repeat measurements. Conventional gap surveys often
involve some form of transect sampling, as the accurate delineation of
gap perimeters (determined by vertically projecting the outline of
peripheral trees) is challenging (St-Onge et al., 2014), and research has
demonstrated significant differences in gap size estimates using dif-
ferent field-based measurement methods (de Lima, 2005). Runkle
(1992) identified the potential of aerial photography for mapping ca-
nopy gaps, and subsequent work by Fox et al. (2000) compared the
accuracy of canopy gap maps generated from ground surveys to those
generated from manual interpretation of high resolution (1:15,000) air
photos. The authors found that maps generated from air photo inter-
pretation were more accurate, with the latter having an omission rate of
only 4.7% compared to 25.6% for the ground survey; however, al-
though the air photos enabled a more synoptic detection and mapping
of canopy gaps, they could not provide the same detailed information
on the characteristics of the vegetation within the gaps, as would be
provided by a ground survey (Fox et al., 2000).

In a review of contemporary literature for actual and potential
methods for detecting canopy gaps, Runkle (1992) was prescient in
identifying the capacity of future technologies (Runkle, 1992, p. 5):

“Measurement of actual canopy heights on a regular grid system
throughout a stand is another technique for gap surveys. Such a
mapped grid provides a more accurate view of variation in canopy
structure than a simple gap–non-gap dichotomy. It also clearly lo-
cates large gaps and gives a reasonable estimate of the fraction of
land area in gaps as the proportion of grid points in gaps.”

The capability to which Runkle (1992) was referring is now afforded
by airborne laser scanning data (ALS; also referred to as airborne
LiDAR), an active remote sensing technology that measures the 3-di-
mensional distribution of vegetation within forest canopies (Lefsky
et al., 1999). ALS data also enable the detailed characterization of
terrain under forest canopy with sub-metre accuracy (Reutebuch et al.,
2003; Næsset, 2015) and likewise the accurate estimation of plot and
stand canopy heights over large areas (Andersen et al., 2006). Indeed,
ALS measures of canopy height are becoming the benchmark against
which other measures are evaluated (White et al., 2016).

More recently, the capacity to derive detailed canopy surface
characterization through an image matching photogrammetric work-
flow has emerged as a less costly alternative to ALS data (Baltsavias,
1999; Leberl et al., 2010). Commonly referred to as digital aerial
photogrammetry or DAP, image-based point clouds are generated using
image-matching algorithms that operate in stereo or multi-image
matching modes, depending on the image acquisition parameters and
degree of image overlap. The emergence of image-based point clouds
have been enabled by advances in digital camera systems (increased
overlap and improved radiometry) and computational power (Leberl
et al., 2010) and numerous image matching approaches and algorithms
have been developed (Gruen, 2012, Remondino et al., 2014). However,
to date there has been limited benchmarking of acquisition parameters
(Bohlin et al., 2012; Nurminen et al., 2013; Puliti et al., 2016) and
image matching algorithms (Kukkonen et al., 2017; Granholm et al.,

2017; Ullah et al., 2017) in forest environments. Moreover, very few
image matching algorithms are designed specifically to operate on
forest canopies (Baltsavias et al., 2008), which are particularly chal-
lenging targets for image matching algorithms because of shadows
(Baltsavias, 1999), which increase with decreasing solar elevations
(Honkavaara et al., 2012).

An accurate canopy height model (CHM) can be generated from an
image-based point cloud when used in concert with a detailed ALS-
derived digital terrain model (DTM) (St-Onge et al., 2008; Bohlin et al.,
2012). In a review of the utility of image-based point clouds for forest
inventory applications in 2013, White et al. (2013) noted that at the
time of their review, there were very few studies that compared the
performance of DAP and ALS data (i.e. Bohlin et al., 2012; Järnstedt
et al., 2012). Subsequently, several studies have been published that
have directly compared the performance of ALS and DAP for the esti-
mation of a basic suite of forest inventory attributes such as height,
basal area, and volume across a range of forest environments (e.g.
Vastaranta et al., 2013; Pitt et al., 2014; Gobakken et al., 2014; White
et al., 2015; Puliti et al., 2016; Bohlin et al., 2017; Rahlf et al., 2017;
Hawryło et al., 2017). Using an area-based approach (Næsset, 2002),
these studies have demonstrated that ALS and DAP provide comparable
outcomes for inventory attributes across a range of forest en-
vironments—primarily because both technologies are capable of accu-
rately characterizing canopy heights, which strongly influence the
subsequent estimation of attributes such as volume (St-Onge et al.,
2008).

The potential utility of airborne laser scanning data for detecting
canopy gaps was first identified using airborne laser profiling systems in
the mid-1980s (Nelson et al., 1984; Aldred and Bonner, 1985). Since
that time, research across a range of boreal, temperate, and tropical
forest environments has demonstrated the capabilities of ALS data for
detecting and mapping canopy gaps (Table 1). These studies have used
ALS data to characterize canopy gaps over very large areas
(> 100,000 ha), enabling insights into landscape-level variations in gap
size and frequency (Asner et al., 2013), a key information need iden-
tified in the ecological literature (e.g., Lertzman et al., 1996). More-
over, time series of ALS data have been used to quantify changes in the
size and shape of canopy gaps over time (Vepakomma et al., 2008,
2011, 2012). The majority of studies have used the ALS-derived canopy
height model (CHM) with a fixed-height threshold for gap detection.
Most studies have not reported gap detection accuracy (Table 1);
however, those that have evaluated the accuracy of gap detection re-
port overall accuracies ranging from 82% to 97%. Gaulton and Malthus
(2010) compared the use of a relative height threshold on both an ALS-
derived CHM and point cloud, finding that gap detection using the
point cloud directly provided a slight increase in gap detection accuracy
of 3.7%; however, the authors also identified that the use of the point
cloud was “considerably more computationally demanding” and given
the relatively modest gain in detection accuracy, may not be justified
over large areas. We are aware of only one study that has examined the
use of DAP data for mapping canopy gaps (Zielewska-Büettner et al.,
2016, 2017). In this study, the authors used stereoscopic aerial imagery
from 2009 and 2012, and evaluated gap detection results using in-
dependent, visual interpretation of the imagery; however, the authors
did not directly compare the gaps detected with the DAP data to those
detected with the ALS data.

Recent research in less complex forest environments has indicated
that DAP may be less effective than ALS data for mapping small canopy
openings (Vastaranta et al., 2013); however, the capacity of DAP for
this purpose has yet to be fully studied and quantified, and a detailed
comparison of the gaps generated from ALS and DAP has yet to be
undertaken. There are fundamental differences in the way these two
data sources characterize the canopy, with ALS pulses penetrating small
openings in the canopy, and thereby capturing the vertical distribution
of vegetation, whereas DAP data primarily characterizes only the outer
canopy envelope, with image matching algorithms interpolating across
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small gaps that are either occluded by other trees or in shadow
(Baltsavias et al., 2008; St-Onge et al., 2014). In the stereo-matching
scenario of the DAP data used in this study, a gap has only two op-
portunities to be “viewed” (and thereby matched). If one of the views of
the gap is obstructed or in shadow, then the gap will not be captured in
the image point cloud. Hirschmugl et al. (2007) demonstrate that a
multi-image matching scenario (enabled by a 90% along-track image
overlap) can significantly improve the detection of small canopy gaps
and forest edges; however, the majority of imagery used for generating
image-based point clouds in a forestry context (and reported in the
published literature) are acquired with only a 60% along-track image
overlap (White et al., 2015) and do not enable this multi-image
matching scenario. As ALS data do not have the aforementioned lim-
itations associated with DAP, we expected the ALS data to provide a
more accurate characterization of canopy gaps in our coastal temperate
rainforest study area. Differences in gap detection capacity between
ALS and DAP can have implications for studies of gap dynamics that
seek to monitor changes in gaps over time, wherein ALS data may be
used to characterize gaps initially, with subsequent gap detection and
mapping done at future points in time using DAP data. Thus, the degree
to which these data sources convey similar information regarding the
location and size of gaps must be understood. The objective of this
study was therefore to quantify the differences in gap detection be-
tween ALS and DAP derived canopy gaps for a complex, coastal

temperate rainforest on Vancouver Island, British Columbia to gain
some insights on the relative capacity of DAP data for this application.

2. Methods

2.1. Study area

The study area is situated on the Pacific Northwest coast of North
America on northern Vancouver Island, British Columbia, Canada, and
covers approximately 8500 ha (Fig. 1). Located within the Coastal
Western Hemlock submontane very wet maritime subzone (CWHvm1),
the study area is characterized by high annual precipitation (2228mm),
mild winters, and cool summers (Meidinger and Pojar, 1991). The area
receives little snow and has a long growing season. Elevation within the
study area ranges from sea level to 662m.

Vegetation in the study area is characterized as a highly productive
temperate rainforest dominated by western hemlock (Tsuga hetero-
phylla) and amabalis fir (Abies amabilis), with lesser amounts of western
red cedar (Thuja plicata). A range of seral stages are found within the
study area, with the old seral stage (> 250 years) representing the
majority of the area (Table 2; B.C. Ministry of Forests and B.C. Ministry
of Environment, Lands, and Parks). Large, natural, stand-initiating
events are rare in these forests, resulting in an older, uneven-age forest
with complex within-stand structure (Lertzman et al., 1997). Canopy

Fig. 1. Location of study area and region of interest (ROI) on Vancouver Island, British Columbia, Canada.

Table 2
Distribution of seral stages within the study area.

Seral stage Age (years) Proportion of study area (%) Mean height (ALS) Std deviation (ALS) Mean height (DAP) Std deviation (DAP)

Early < 40 23.01 15.80 6.72 14.21 5.83
Mid 40≥ and<80 5.93 26.93 9.83 25.85 8.92
Mature ≥80 and<250 12.21 33.17 11.15 33.25 7.35
Old ≥250 58.86 27.58 12.87 29.39 8.50
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gaps play an important role in influencing forest structure and com-
position in these forests (Lertzman et al., 1996; Daniels and Gray,
2006).

The analysis area (hereafter referred to as the region of interest or
ROI) was defined by excluding areas without high vegetation, including
areas recently harvested. Those areas were defined based on their size
(> 2 ha) and low canopy heights (< 10m). Areas identified as “no
data” in either the ALS or the DAP were also excluded. The final ROI
was 4350 ha (Fig. 1).

2.2. Data

2.2.1. ALS data
ALS data were acquired in August and September of 2012 using an

Optech ALTM3100EA scanning system from an altitude of approxi-
mately 700m above ground level (Table 3). The average point density
was 11.6 points/m2. A Digital Terrain Model (DTMALS) with a spatial
resolution of 1m was created using ground returns and standard pre-
processing routines following the methods of Axelsson (2000). Using
first returns, a Digital Surface Model (DSMALS) was generated with a
1m spatial resolution. The DSMALS and DTMALS were used to generate a
1m canopy height model (CHMALS) representing normalized heights
above ground. ALS processing was performed using LAStools software
(version 161114).

2.2.2. DAP data
Digital imagery was acquired for the study area using a Vexcel

UltraCamX camera in September 2012 (Table 4). The imagery was 4-
band (RGB and NIR) with a 0.30m ground sampling distance (GSD) and
was acquired along 6 flight lines, with a minimum 60% along-track and
20% across-track overlap. We used the semi-global matching (SGM)
algorithm (Hirschmüller, 2008), as implemented in the Remote Sensing
Software Package Graz (RSG version 7.46.11) to generate dense image
point clouds. As per Stepper et al. (2014), only along-track stereo pairs
were used for image matching. In total there were 49 stereo pairs.

Absolute orientation of the images was achieved during acquisition
using onboard GPS and IMU data. The resulting point density of the
image-based point cloud was 12.27 points/m2. The output of the pro-
cessing was a digital surface model (DSMDAP) and canopy height model
(CHMDAP) both with a spatial resolution of 1m.

2.3. Co-registration of the ALS and DAP data

An initial comparison of CHMALS and CHMDAP revealed that there
was a misalignment of the two datasets that could potentially influence
gap detection results. The shift was not constant for the whole study
area, but was consistent within each flight line of the aerial photo ac-
quisition. Thus, co-registration of the ALS and DAP data was under-
taken for each of the DAP flight lines using the following procedure.
First, a 1-m resolution DSM was generated for each flight line in-
dependently using the DAP point clouds for that flight line. Second,
each of the DSMDAP layers was adjusted to align with the DSMALS using
at least six ground control points (GCPs) distributed evenly across each
DSMDAP. Characteristic terrain features (e.g. road crossings), and dis-
tinctive tree crowns were used as GCPs. Special attention was given to
areas of across-track image overlap, where transformation points were
selected on overlapping DSMDAP layers and the DSMALS. Finally, the
adjusted individual DSMDAP layers were then mosaicked and normal-
ized to heights above ground using DTMALS. A revised canopy height
model (CHMDAP) was then generated from the DSMDAP using the
DTMALS. CHMDAP and CHMALS were then differenced and compared,
with summary measures (e.g. Pearson's R, RMSE) generated for the
entire analysis area, and by seral stage.

2.4. Gap detection

The two most common methods for gap detection reported in the
scientific literature are fixed and variable height thresholds (Table 1).
We applied both of these approaches to CHMALS and CHMDAP to com-
pare outcomes between the two data sources and approaches. Fixed
height thresholds are determined by the user who typically considers
the ecological conditions relevant to the forest ecosystem in question,
whereas variable height thresholds are determined relative to the
height of the canopy surrounding a gap. For the fixed-height threshold
approach, we defined a CHM pixel as a gap if it had a height < 3m.
The 3m height threshold was adapted after Kane et al. (2011) who used
this value in a similar environment of topographically variable, struc-
turally diverse coastal temperate forests. We removed gaps that
were<5m2 and> 2 ha in size from further analysis.

For the variable-height threshold approach, gaps are detected using
a variable height threshold that is determined by the relative height of
the canopy drip line. The canopy drip line typically represents the
maximum extent of the tree crown in coniferous forests (Gaulton and
Malthus, 2010). Based on the method presented by Gaulton and
Malthus (2010), we determined the relative height of the canopy drip
line by manually measuring 50 randomly located trees in the ALS point
clouds. The measurements included tree height and height to canopy
drip line. The mean value of the proportion of the canopy drip line
height to tree height was 0.64, and this value, which was similar to the
0.66 value used by Gaulton and Malthus (2010), was used in our ana-
lysis (Fig. 2). To determine the relative height threshold for each CHM
pixel, we first generated a surface representing the maximum height of
the canopy (top of canopy), by applying a moving maximum filter in a
11× 11 pixel window. The filter size is a trade-off between preventing
the top of canopy from falling within small gaps between trees, and
maintaining the height variation in the stands. Each pixel in the CHM
was then classified as a gap if its canopy height value was<64% of the
corresponding maximum height. As per the fixed-height threshold ap-
proach, gaps that were<5m2 and>2 ha were removed from further
analysis.

We evaluated the degree of overlap between the DAP- and ALS-

Table 3
ALS acquisition parameters.

Parameter Description

Sensor ALTM3100EA
Aircraft speed 240 km/h
Data acquisition height 700m a.g.l.
Swath width 323m
Max scan angle ±12.5°
Beam divergence 0.3 mrad
Wavelength 1064 nm
Overlap 75%
Pulse repetition rate 70 kHz
Scan frequency 65 Hz
Number of returns per pulse 4
Pulse density 11.6 pulses/m2a (SD=4.3 pulses/m2)

a Pulse density was calculated for 25m×25m grid cells and averaged.

Table 4
DAP acquisition parameters.

Parameter Description

Sensor Vexcel UltraCamX
Data acquisition height 4228m a.g.l.
Across-track overlap 20%
Along-track overlap 60% minimum
GSD 0.30m
Cross-track field of view 55°
Along-track field of view 37°
Pixel size 7.2 μm
Point density 12.27 pts/m2
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detected gaps for the ROI as a whole, as well as relative to the flight
lines used for the digital image acquisition. We established a buffer
relative to the acquisition flight lines, within which view angles for
acquisition were close to nadir (± 5°). We then compared the amount
of overlap between the ALS and DAP gaps for both the fixed and
variable threshold approaches within and external to this buffer. We
also examined the distribution of gaps within each of the different seral
stages in the ROI (Table 2).

2.5. Validation of gap detection

Validation data were derived using visual image interpretation.
Outputs generated using the fixed- and variable-height threshold ap-
proaches were validated independently. For the fixed-height threshold
approach, the analysis area was stratified into “gap” and “not gap”
strata. The “gap” stratum was defined by combining gaps detected
using the fixed-height threshold approach on both the ALS and DAP
data. The “no gap” stratum was defined as the inverse of the gap
stratum. A random sample of 100 points was generated for each stratum
for a total of 200 samples. The interpreter was given the CHMALS and
the 1m orthophoto data to support their interpretation of “gap” or “not
gap” for each reference point according to the fixed-threshold criteria
(i.e. canopy height < 3m, and gap size > 5m2 and< 2 ha). To en-
sure independence, the interpreter was not aware of which stratum the
sample points were derived from, nor was the interpreter given access
to the ALS or DAP detected gaps. Upon inspection, the interpreter as-
signed each sample as either “gap” (n= 87) or “not gap” (n= 113).

The same validation process was applied to the outputs generated
with the variable-height threshold approach, with the gap stratum
generated from the combined outputs of the variable-height threshold
approach applied to the ALS and DAP data (and the “not gap” stratum

being the inverse). A separate sample of 100 points was generated from
each stratum and the interpreter inspected each point using the CHMALS

and the 1m orthophoto. An additional variable height raster, re-
presenting the height threshold value for the gap detection was gen-
erated to aid the interpreter in correctly identifying gaps. Once again,
the interpreter was not aware of which stratum the sample points were
derived from, nor was the interpreter given access to the ALS or DAP
detected gaps. Each reference point was evaluated against the variable-
height threshold criteria (i.e. canopy height < 64% of the average
height in an 11× 11 window, gaps size > 5m2 and< 2 ha) and was
assigned as either “gap” (n= 105) or “not gap” (n= 95).

2.6. Generation of gap characteristics

Gap size distribution can inform on landscape-level characteristics
(Asner et al., 2013). The gap size-frequency distribution provides a
summary of the frequency with which gaps of a certain size occur, and
is characterized by the exponent (λ) of a power-law probability density,
the Zeta distribution (also referred to as the discrete Pareto distribution;
Johnson et al., 2005, White et al., 2008). As demonstrated by Kellner
and Asner (2009) the power-law Zeta distribution is suitable for char-
acterizing the distribution of gap area. The λ value represents the ne-
gative slope between gap area and the frequency of gaps when plotted
on a log-log scale. Values of λ are larger when the slope is steeper (i.e.
when there are more small gaps; Kellner and Asner, 2009), and are
expected to range from 1.0 to 3.0 in forest environments, with a
threshold of 2.0 used to distinguish whether a forest is dominated by
small (i.e. λ > 2.0) or large gaps (i.e. λ < 2.0) (Asner et al., 2013).
We were interested in the differences of the λ-value when calculated for
gaps generated using different input data (CHMALS and CHMDAP) and
different approaches to detect canopy gaps (fixed and variable height

Fig. 2. Methodology for the variable-height threshold ap-
proach to canopy gap detection. First, a moving window
(11×11 pixels in size) was applied to the canopy height
model (CHM; A) to identify the top of the canopy (B). A
height threshold raster was generated by calculating 64% of
the top of canopy raster. For each CHM pixel, the difference
between the CHM value and the height threshold raster
value was calculated (C). Negative values shown as black,
and positive as white. A pixel was identified as a gap if the
difference (C) was<64% of the corresponding maximum
height.
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thresholds). We derived the λ parameter for the Zeta distribution using
a maximum likelihood estimator, following the method described in
Hanel et al. (2017). To determine whether or not our gap size dis-
tributions were sampled from a power-law distribution, we im-
plemented the two-sided Kolmogorov-Smirnov test according the ap-
proach described in Hanel et al. (2017).

In addition to the gap size frequency distribution, a number of other
characteristics were calculated to describe gap size, shape, and canopy
properties inside a detected gap. A shape index (McGarigal and Marks,
1994) was used to characterize the complexity of a gap boundary. The
shape index was calculated as a normalized ratio of gap perimeter to its
area:

=

∗ ∗

shape index
perimeter

π area2 ( )0.5

The shape index of a perfectly circular gap will have a value of 1.
The more complex the shape of the gap boundary, the higher value of
the shape index. Distance to nearest gap was used to inform on the gap
density in the study area and was calculated as the lowest value be-
tween the bounding box of a particular gap and the bounding boxes of
gaps in its neighbourhood. CHM pixels within each gap were used to
calculate mean canopy height and standard deviation of canopy height,
for each data type, resulting in four statistics describing the canopy
height inside a detected gap: mean height of CHMALS (HALS), mean
height of CHMDAP (HDAP), standard deviation of CHMALS (SDALS), and
standard deviation of CHMDAP (SDCHM).

3. Results

3.1. Comparison of ALS and DAP CHMs

We compared the derived canopy height models to determine the
relative quality of CHMDAP in our analysis area (Table 5 and Fig. 3).
Overall, 62% of pixels within the CHMDAP were within±5m of the
CHMALS canopy heights. The degree of similarity between CHMDAP and
CHMALS varied by seral stage, with old seral stage forests having the
lowest correlation (r= 0.75) and the highest RMSE (9.41m).

3.2. Gap detection and validation results

The total number of gaps detected with ALS and DAP data varied
markedly, for both the fixed- and variable-height threshold approaches
(Fig. 4), with the ALS data resulting in a greater number of gaps for
both height threshold approaches (Table 6).

When the fixed-threshold approach was applied to the ALS data, we
identified 6.5 times more total gap area compared to when the same
approach was applied to the DAP data (Table 6). The average ALS gap
size was 2 times smaller than the average DAP gap size, and the DAP
data had markedly greater variability in gap size (standard devia-
tion=418.23m2) compared to the gaps identified with the ALS data
(standard deviation=142.66m2). In contrast to the fixed variable
approach, the mean gap size for the variable threshold approach was
larger for the ALS data (61.22m2) compared to the DAP data
(25.37 m2). The proportion of the ROI identified as gap with the DAP

data and the variable threshold approach was 3.13%, which was similar
to the result achieved using the ALS data and the fixed-height threshold
approach (3.47%).

We evaluated the degree of overlap between the DAP- and ALS-
detected gaps (Table 7) for the ROI as a whole, as well as relative to the
flight lines used for the DAP acquisition. In the ROI, the median pro-
portion of overlap between DAP and ALS gaps detected with the fixed
threshold was 33.53% (mean=42.90%), compared to a median of
3.84% (mean=13.26%) for the gaps detected with the variable
threshold. Trends in the proportion of DAP gaps that overlapped with
ALS gaps in the ROI were consistent within and external to the near-
nadir buffer, for both the fixed and variable threshold approach.
Overall, although markedly more gaps were detected with variable
threshold approach for both data sources, this increase in the number of
detected gaps did not result in a concomitant increase in spatial overlap
between the detected gaps.

We also investigated the distribution of detected gaps relative to
seral stage and found that 71% of gaps detected with the ALS data using
the fixed-threshold approach were found in old seral stage forests,
whereas 65% of gaps derived from DAP data were found in early seral
stage forests (Fig. 5). In old seral stage forests, the proportion of gaps
detected with the variable threshold approach were twice that detected
using the fixed threshold approach.

The overall accuracies of gaps identified using CHMALS were
96.50% and 89.50% for the fixed- and variable-height threshold ap-
proaches, respectively (Table 8). This compares to overall accuracies of
59.50% and 50.00% achieved using CHMDAP data. While errors of
omission and commission are relatively balanced for the ALS detected
gaps, the gaps detected with the DAP data had larger errors of omission
exceeding 88% for both approaches, as well as large errors of com-
mission (> 40%) for areas that were not gap. The variable-height
threshold approach resulted in an increase in omission error of 11.39%
for the ALS data.

For the fixed-threshold approach, we also evaluated the relative gap
detection accuracy in the early and old seral stages (Table 9). For the
DAP data, overall accuracy for gap detection in early seral stage forests
was 80%, compared to 50% in old seral stage forests. Likewise, accu-
racy of gap detection for the ALS data was 100.00% in the early seral
stage forests, with larger omission errors for gaps (9.80%) in old seral
stage forests.

3.3. Gap characteristics

The gaps generated using both data sources and both approaches
were characterized using a number of different metrics in addition to
the size and area metrics reported in Table 6. Average canopy heights
within the detected gaps further corroborated the low level of spatial
coincidence for gaps detected with ALS and DAP (Table 10). Mean
canopy heights from the ALS and DAP data within ALS-identified gaps
were significantly different (t-test; p < 0.05). The mean HDAP was
26.15m, compared to a mean HALS of 1.59m, indicating that much of
the area identified as gap using the ALS data was not identified as gap
using the DAP data. Differences between mean canopy heights for HDAP

and HALS were less pronounced in gaps identified using the DAP data:

Table 5
Summary measures of comparison of DAP CHM to ALS CHM.

Metric ROI Seral stage

< 40 years 40–80 years 80–250 years > 250 years

Pearson's r 0.88 0.89 0.96 0.83 0.75
RMSE (m) 7.88 3.69 5.04 7.17 9.41
RMSE (%) 29.80 23.26 18.67 21.59 34.07
Percentage of DAP pixels within ± 5m of ALS heights (%) 62 83 72 64 51
Percentage of DAP pixels within ± 10m of ALS heights (%) 95 98 94 88 77
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mean HDAP was 1.55m compared to a mean HALS of 4.96m. Differences
between mean values of HALS and HDAP in gaps detected using the
variable threshold approach were not as large as for the fixed-height
threshold approach (Fig. 6).

In examining the distribution of gap sizes, we found that canopy gap
size frequency distributions followed a power-law Zeta distribution for
both data types and approaches (Fig. 7; Table 11). For the fixed-height
threshold approach, λ=1.85 for ALS-derived gaps and λ=1.67 for

DAP-derived gaps, corroborating the greater frequency of smaller gaps
detected with the ALS data (Table 6). Conversely, for the variable-
height threshold approach, values of λ were larger for the DAP-derived
gaps (λ=2.04), relative to the ALS-derived gaps (λ=1.70), which
also corresponds to the smaller average gap size associated with the
DAP data for the variable threshold approach (Table 6).

On average, distance-to nearest gap was 13.67m and 10.16m for
the ALS derived gaps compared to 34.42m and 11.30m for the DAP-

Fig. 3. Wall-to-wall comparison of DAP and ALS CHMs. Insets show differences between the two CHMs for (A) early seral stage forests and (B) old seral stage forests.
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derived gaps when using a fixed and variable-height threshold ap-
proach, respectively (Fig. 6). Average shape index values were con-
sistently between 1.5 and 1.7 for both data sources and approaches,
with more similarity in shape index values between the gaps identified
using ALS and DAP data when the variable-height threshold approach
was applied.

4. Discussion

Prior to this study, the relative capacity of DAP data for canopy gap
mapping and characterization had not been investigated and compared

to that of ALS data. Our results indicate significant differences in the
number and size of gaps detected using ALS and DAP data, as well as
large differences in the accuracy of gap detection. ALS data identified
markedly more gaps and gap area, whether using the fixed- or the
variable-height threshold approaches (Table 6), and there were large
errors of omission (> 80%) in gap detection when using DAP data with
either approach (Table 8). We attribute these differences to the char-
acteristics of the DAP data itself and the complexity of the forest en-
vironment. DAP data primarily characterize the outer canopy envelope
(Fig. 4; White et al., 2013) and shadows and occlusions from sur-
rounding trees can negatively impact image matching, particularly in
the stereo-matching scenario applied in this study, which thereby im-
pairs the detection of small canopy gaps (Vastaranta et al., 2013).

A variety of different data sources have been investigated for
mapping canopy gaps, including very high spatial resolution stereo
satellite images (WorldView-2; Hobi et al., 2015) and terrestrial laser
scanning data (Siedl et al., 2015). ALS data has been used extensively
for mapping canopy gaps, across a range of forest environments
(Table 1). Zielewska-Büettner et al. (2016) mapped forest gaps in 2009
and 2012 for a 1023-ha forest are in southern Germany using DAP data.
The authors used similar imagery to what was applied in this study
(UltraCamXP imagery with a 20 cm GSD, 60% along-track overlap, and
30% across-track overlap), from which they generated a 1-m CHM and
applied fixed height thresholds of 1m and 2m to identify canopy gaps

Fig. 4. Results of canopy gap detection using a fixed or variable height threshold.

Table 6
Summary statistics for canopy gaps detected using CHMALS and CHMDAP.

Data
source

Number
of gaps

Total
area of
gaps
(ha)

Proportion of
ROI that is
gap

Mean
gap size
(m2)

Median
gap size
(m2)

SD gap
size
(m2)

Fixed-height threshold approach
ALS 52,085 151.09 3.47% 29.01 11.00 142.66
DAP 3149 23.25 0.54% 56.48 12.00 418.23

Variable-height threshold approach
ALS 127,972 783.47 18.03% 61.22 13.00 462.54
DAP 53,590 135.93 3.13% 25.37 9.00 159.92
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in low (< 8m) and high (≥8m) forests, respectively. The authors used
visual-stereo interpretation for validation, and commensurate with our
findings, reported large omission errors in gap detection in 2009 (30%)
and 2012 (48%) in forests that were ≥8m in height (Zielewska-
Büettner et al., 2017). The authors attributed these errors to the in-
creased prevalence of shadows and occlusions in tall forests. In our
study, overall accuracy for gap detection for the DAP data (fixed-height
threshold) was 80% in early seral stages (ALS mean height= 15.8m)

compared to 50% in old seral stages (ALS mean height= 27.6 m),
whereas the accuracy of gap detection with the ALS data varied by only
~6% between early and old seral stages. Old seral stage forests in this
study area contain larger trees (the mean ALS canopy height was
27.58m in old seral stage forests compared to 15.80 in early seral stage
forests; Table 2), and are characterized by increased shadows and oc-
clusions.

The gap size frequency distribution used in this study provides a
useful, single metric for comparative purposes within and among dif-
ferent forest ecosystems (e.g. Andrew et al., 2016). Gap size influences
factors such as light intensity and soil moisture, which in turn influ-
ences regeneration effectiveness (Muscolo et al., 2014) and growth
response (Stan and Daniels, 2014). Studies that have reported gap size
frequency distributions have been conducted in tropical forests (e.g.

Table 7
Summary of overlap characteristics between DAP- and ALS-detected gaps within our region of interest (ROI) overall, and within a spatial buffer defined relative to image acquisition flight
lines (representing view angles ± 5°), and external to this buffer.

ROI Within buffer (± 5° from nadir) External to buffer

Fixed threshold for gap detection
Total number of ALS gaps 52,085 14,056 38,029
Total number of DAP gaps 3149 1018 2131
Total number of DAP gaps with some degree of overlap with ALS gaps 2077 676 1401
% of DAP gaps overlapping with ALS gaps 65.96 66.40 65.74
Amount of overlap (%)
Mean 42.90 39.08 44.91
Median 33.53 30.00 37.01
Standard deviation 36.17 35.02 36.61
Minimum 0.03 0.03 0.03
Maximum 100.00 100.00 100.00

Variable threshold for gap detection
Total number of ALS gaps 127,972 30,192 97,780
Total number of DAP gaps 53,590 16,130 37,460
Total number of DAP gaps with some degree of overlap with ALS gaps 42,378 11,271 26,826
% of DAP gaps overlapping with ALS gaps 79.08 69.88 71.61
Amount of overlap (%):
Mean 13.26 13.10 13.33
Median 3.84 3.49 4.00
Standard deviation 19.89 19.71 19.97
Minimum 0.01 0.01 0.01
Maximum 100.00 100.00 100.00

Fig. 5. Results of canopy gap detection using a fixed or variable height threshold, by seral
stage.

Table 8
Gap detection validation results.

Overall
accuracy

Gap Not gap

Omission
error

Commission
error

Omission
error

Commission
error

Fixed-height threshold approach
ALS 96.50% 5.75% 2.38% 1.77% 4.31%
DAP 59.50% 90.80% 20.00% 1.77% 41.58%

Variable-height threshold approach
ALS 89.50% 17.14% 3.33% 3.16% 16.36%
DAP 50.00% 88.57% 36.84% 7.37% 51.38%

Table 9
Accuracy of gap detection using the fixed-threshold approach in early and old seral stage
forests.

Overall
accuracy

Gap Not gap

Omission
error

Commission
error

Omission
error

Commission
error

Early seral stage (n= 30)
ALS 100.00% 0.00% 0.00% 0.00% 0.00%
DAP 80.00% 50.00% 16.67% 5.01% 20.83%

Old seral stage (n= 98)
ALS 93.88% 9.80% 2.13% 2.13% 9.80%
DAP 50.00% 96.08% 0.00% 0.00% 51.01%

Table 10
Summary of canopy heights within identified gaps.

Data source Mean of HALS

(m)
SD of HALS

(m)
Mean of HDAP

(m)
SD of HDAP

(m)

Fixed-height threshold
ALS 1.59 0.57 26.15 9.98
DAP 4.96 5.41 1.55 0.71

Variable-height threshold
ALS 14.51 6.02 24.25 9.79
DAP 17.37 9.02 13.95 5.93
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Fisher et al., 2008; Lloyd et al., 2009; Kellner and Asner, 2009; Boyd
et al., 2013; Asner et al., 2013) and to our knowledge, there has been no
research that compares the scaling parameters derived in tropical for-
ests to those in temperate or boreal forests. Lobo and Dalling (2014)
demonstrated that the height thresholds used in gap definition have an
impact on λ-values, and this effect is also evident in our results when
we compare the scaling parameters from gaps generated from the same
data source, but with a fixed- or variable-height threshold (e.g. DAP
λ=1.67 for fixed threshold and λ=2.04 for variable threshold).

In contrast to other studies that have demonstrated a similar per-
formance between ALS and DAP data for area-based forest inventory
estimation (e.g. Vastaranta et al., 2013; Stepper et al., 2014; White
et al., 2015), for this application, the DAP data failed to detect and map
gaps with the same level of accuracy as the ALS data, regardless of
whether fixed- or variable-height thresholds were applied. It should be
noted that our validation approach assesses the capacity of ALS and
DAP to detect the presence or absence of a gap, and does not inform on
the degree to which these data sources accurately characterize gap size
or shape. We have however assessed the amount of overlap between the
DAP and ALS detected gaps in order to get a relative sense of the si-
milarity in area for individual gaps (Table 7). Moreover, we noted no
difference in gap overlap as a function of image acquisition view angles.

Carefully constructed image-based point clouds derived from DAP
data can reliably characterize dominant canopy heights, which is a key
predictor that drives the area-based approach for estimating forest in-
ventory attributes of interest such as dominant height or volume (White
et al., 2013). However, our results indicate that stereo-image matching
does not consistently capture small canopy openings, which are critical
for accurate gap detection. Similar limitations for DAP data are

identified in Ali-Sisto and Packalén (2017), who reported that DAP data
performed poorly in the detection of minor forest changes. Vehmas
et al. (2011) used ALS data to detect and map gaps in boreal forests, and
then used gap characteristics to distinguish between semi-natural and
managed forests. In their application, the authors found that the most
useful metrics for discriminating between semi-natural and managed
forests were related to the vertical distribution of low vegetation within
the identified gaps. Based on the results of our study and earlier work
with DAP data in this forest type (White et al., 2015), we conclude that
DAP data would not be capable of supporting this form of detailed
within-gap analysis of vegetation. It should be noted that our results
and those of Zielewska-Büettner et al. (2016, 2017) convey the capacity
of DAP data derived from stereo matching, which is currently the most
common form of DAP data being used in forest applications. As noted
earlier, Hirschmugl et al. (2007) demonstrated the potential of multi-
image matching (enabled by greater forward image overlap) for gap
mapping, indicating a need for further research on the capacity of DAP
data derived from multi-image matching for this application.

As noted by Gobakken et al. (2014) investment decisions in 3D data
to support forest management must consider not only the costs of data
acquisition and processing, but also the full value of the information to
support decision making. The results of this study demonstrate some
important differences between ALS and stereo DAP data for detecting
and characterizing canopy gaps. These differences have implications for
gap surveys and for monitoring of gap dynamics over time and suggest
that, given the DAP data currently in widespread use, ALS data would
be the data source of choice for this application, particularly in coastal
temperate rainforests with complex canopy architecture.

Fig. 6. Height characteristics for gaps detected using ALS and DAP with fixed- and variable-height thresholds.
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5. Conclusions

Based on the results of this study in a complex coastal temperate
forest, DAP data generated via stereo-matching did not provide detailed
and accurate maps of canopy gaps that were analogous to results
achieved using ALS data with either the fixed- or variable-height
threshold approaches. Marked differences in the number and size of
canopy gaps identified using ALS and DAP data, their lack of spatial
correspondence, and the concentration of the DAP-derived gaps in early
seral stages suggest that DAP data are not capable of characterizing
small canopy openings and are confounded by the increased prevalence
of shadows and occlusions found in mature and old seral stage forest
canopies. Variable-height threshold approaches resulted in lower ac-
curacies for both ALS and DAP data and, as they are more computa-
tionally intensive to implement, they are not advantageous unless there
is a specific information need related to characterizing gaps in the
upper canopy. ALS data provided a detailed and accurate character-
ization of canopy gaps in this coastal temperate forest with a fixed-
height threshold approach. With the ALS data, the accuracy of the ap-
proach did not vary by seral stage and was robust across the range of

stand conditions present in the study area. Future research should ex-
plore further the characteristics of the presented approach to gap size
frequency distributions in temperate and boreal forest environments.
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