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A B S T R A C T

Passive optical remotely sensed images such as those from the Landsat satellites enable the development of
spatially comprehensive, well-calibrated reflectance measures that support large-area mapping. In recent years,
as an alternative to field plot data, the use of Light Detection and Ranging (lidar) acquisitions for calibration and
validation purposes in combination with such satellite reflectance data to model a range of forest structural
response variables has become well established. In this research, we use a predictive modeling approach to map
forest structural attributes over the ~552 million ha boreal forest of Canada. For model calibration and in-
dependent validation we utilize airborne lidar-derived measurements of forest vertical structure (known as lidar
plots) obtained in 2010 via a> 25,000 km transect-based national survey. Models were developed linking the
lidar plot structural variables to wall-to-wall 30-m spatial resolution surface reflectance composites derived from
Landsat Thematic Mapper and Enhanced Thematic Mapper Plus imagery. Spectral indices extracted from the
composites, disturbance information (years since disturbance and type), as well as geographic position and
topographic variables (i.e., elevation, slope, radiation, etc.) were considered as predictor variables. A nearest
neighbor imputation approach based on the Random Forest framework was used to predict a total of 10 forest
structural attributes. The model was developed and validated on> 80,000 lidar plots, with R2 values ranging
from 0.49 to 0.61 for key response variables such as canopy cover, stand height, basal area, stem volume, and
aboveground biomass. Additionally, a predictor variable importance analysis confirmed that spectral indices,
elevation, and geographic coordinates were key sources of information, ultimately offering an improved un-
derstanding of the driving variables for large-area forest structure modeling. This study demonstrates the in-
tegration of airborne lidar and Landsat-derived reflectance products to generate detailed and spatially extensive
maps of forest structure. The methods are portable to map other attributes of interest (based upon calibration
data) through access to Landsat or other appropriate optical remotely-sensed data sources, thereby offering
unique opportunities for science, monitoring, and reporting programs.

1. Introduction

In Canada, forest ecosystems are a mosaic of trees, wetlands, and
lakes, occupying an area of ~650 million ha (Wulder et al., 2008b),
with a treed area of 347 million ha (Natural Resources Canada, 2016).
The boreal forest, an important source of both renewable and non-re-
newable resources, occupies an area of 552 million ha (with 270 mil-
lion ha of trees) and forms an east-west band across the country, re-
presenting a range of climatic, physiographic, and vegetation
conditions (Brandt, 2009). To effectively implement sustainable man-
agement and development practices aiming at accommodating both

conservation (e.g., preservation of wildlife habitats) and human use
needs (e.g., building materials, fuels), boreal forests require compre-
hensive, timely, and accurate inventory and monitoring efforts. To this
end, data collection campaigns are necessary to characterize and map
forest structure, determining attributes such as canopy cover, height,
biomass, stem volume as well as age, species, land-cover, and dis-
turbance history (White et al., 2014).

The availability of accurate national forest structural information,
often collected following sample-based inventories (Tomppo et al.,
2010), is the foundation for satisfying a variety of science and policy
information needs as well as for meeting national and international
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reporting obligations (Canadian Council of Forest Ministers, 1995).
However, there are important limitations of field plot-based measure-
ments such as their cost, lack of spatial coverage, and long updating
cycles. To cope with these field data collection issues, practitioners
often relied upon photo plots, an expert-based interpretation of aerial
imagery. For example, the Canadian National Forest Inventory (NFI) is
based upon a 1% national sample as represented by 2 × 2 km photo
plots established largely on a 20 × 20 km grid, supported by a subset of
ground plots, collected on a panel-basis over a 10 year update cycle
(Gillis et al., 2005).

More recently, Light Detection And Ranging (lidar) remote sensing
technology (Baltsavias, 1999) has gained popularity as a means to ob-
tain detailed 3-dimensional measurements of the structure of the ca-
nopy to represent forest conditions at a given place and time (Wulder
et al., 2008a). As reviewed in Nelson (2013), this potential of using
airborne laser-based acquisitions to study forested ecosystems was
identified in the 1970s. More specifically, transects of airborne lidar
data have been found to mitigate the costs of ground plot installation
and offer spatially extensive and representative sampling of calibration
and validation data to support the modeling of forest attributes (Wulder
et al., 2012b). Wulder et al. (2012a) outline the concept of lidar plots,
whereby samples of lidar are gathered (on a transect basis) to provide
regional representation and spatially referenced data suitable for the
development of such models.

At the same time, multispectral imagery from satellites platforms
has been demonstrated as a source of data to provide spatially com-
prehensive characterizations of forest attributes over large areas with a
level of spatial detail of relevance to the needs of forest inventory and
sustainable forest management (Brosofske et al., 2014; Cohen et al.,
2001; Woodcock et al., 1994). In particular, sensors of the Landsat
mission such as Thematic Mapper (TM) and Enhanced Thematic
Mapper Plus (ETM+) acquire reflectance products with suitable spec-
tral and spatial resolutions that can be used as support to map vege-
tation conditions and dynamics (Cohen and Goward, 2004). A known
limitation of medium resolution optical satellite imagery is radiometric
saturation of the recorded signal when estimating vertically distributed
attributes such as biomass or canopy height (Duncanson et al., 2010;
Lu, 2006, 2005). When utilizing this type of data to characterize large
areas, information on vertically distributed attributes can be obtained
by leveraging time-series of images providing insights on forest devel-
opment and succession through a reconstructed disturbance history
(Pflugmacher et al., 2012). In forest ecosystems the temporal series of
spectral information and related trends offers unique life-stage and
succession insights to aid in the modeling of structural attributes such
as stand height or biomass (Deo et al., 2017; Lu, 2006; Pflugmacher
et al., 2012; Powell et al., 2010; Zald et al., 2014). The opening of the
Landsat archive in 2008 (Woodcock et al., 2008) facilitated the im-
plementation of studies utilizing the complete spatial and temporal
depth of the Landsat archive (Hansen and Loveland, 2012; Wulder
et al., 2008b). Additionally, there has been extensive development in
routines to create composites free of atmospheric effects (Potapov et al.,
2011; Roy et al., 2010; White et al., 2014). These composites can be
used to detect and label change (Hermosilla et al., 2015a) as well as to
uncover and quantify trends (Ju and Masek, 2016).

In recent years, there has been wide interest in developing methods
relying on optical imagery to extrapolate forest structural data beyond
lidar or field data coverage to represent an entire area of interest. Such
approaches generally rely on statistical predictive modeling to relate
localized measurements of forest conditions (e.g., lidar) and image-
derived information covering broader areas (Wulder et al., 2012b). The
forest/vegetation attributes of interest (canopy cover, tree height, dia-
meter at breast height, basal area, biomass, stem volume, etc.) re-
present the response variables to be modeled, whereas features ex-
tracted from multispectral satellite images or other geospatial datasets
such as Digital Elevation Models (DEM) or climatic layers constitute the
predictor variables, or predictors. To implement these image-based

spatial predictions, common methods include linear regression or
Random Forest (RF) (Breiman, 2001). RF offers robust, accurate and
scalable solutions to both regression and classification problems, al-
lowing at the same time the user to gain insights on the model by means
of implicitly produced variable importance measures. Application ex-
amples of RF can be found in both the remote sensing (Belgiu and
Drăgu, 2016; Gislason et al., 2006) and forestry communities (Gleason
and Im, 2012; Latifi et al., 2010). In forestry, another increasingly
common approach is nearest neighbor (NN) imputation (Eskelson et al.,
2009; Ohmann and Gregory, 2002). In contrast to regression ap-
proaches that can distort marginal distributions and covariation be-
tween Y-variables, imputation fills in missing data by substituting va-
lues from donor observations, with the underlying assumption that two
locations with similar values of X-variables should be similar with re-
spect to Y-variables. A major strength of imputation approaches is these
donor-based methods are multivariate, non-parametric, and distribu-
tion-free (Eskelson et al., 2009).

Table 1 summarizes the key characteristics (type of input data,
methods employed, forest attributes modeled, study area) of recent
studies which combine lidar or field data and optical imagery to map
forest structural attributes, recognizing that a number of studies also
exist which produced carbon estimates in a laser profiling context (e.g.,
Nelson et al., 2017). The majority of these previous studies has tested
methodologies over small areas (e.g., Ahmed et al., 2015). At the re-
gional scale, Landsat imagery has been used in a number of studies to
interpolate or extrapolate airborne lidar-based estimates of forestry
productivity. Principally in forested areas these approaches have used a
variety of statistical and model-based approaches to predict a range of
attributes, most often height and aboveground biomass in either the US,
Canada or Europe. Statistical approaches range from conventional re-
gressions to more advanced ensemble methods like RF or regression
trees such as in Hansen et al. (2016) who extrapolated Geoscience Laser
Altimeter System (GLAS) tree height data with Landsat time-series in
Sub-Saharan Africa. Profiling lidar data collected by the Portable Air-
borne Laser System (PALS) has also been used to provide high precision
height measurements to be combined with GLAS pulses and Landsat-
derived land-cover strata to produce local biomass and carbon esti-
mates (Margolis et al., 2015; Neigh et al., 2013). Zald et al. (2016)
applied an imputation model to map forest attributes over 50 Landsat
WRS-2 scenes (forested ecozones of Saskatchewan) using a set of
Landsat spectral, change and topographical predictor variables with
reported accuracies in the 0.42–0.69 R2 range when validating against
independent lidar plots. Common to most of these approaches is the
recognition that these technologies can inform forest management and
reporting activities as well as to offer spatially explicit inputs to carbon
accounting models (White et al., 2014). The level of spatial detail ul-
timately dictates the application and utility of a given structural map
product. Studies that have been undertaken over large areas, have ne-
cessitated the use of more coarse spatial resolution imagery reducing
the applicability below the regional scale. For example, Lefsky (2010)
and Simard et al. (2011) both produced global tree height maps by
intersecting GLAS height estimates with forest layers obtained from
Moderate Resolution Imaging Spectroradiometer (MODIS) images. Also
relying on MODIS imagery, Beaudoin et al. (2014) produced Canada-
wide estimates of a large number of forest attributes using NFI photo
plot data for calibration and validation.

In this paper, building on the regional mapping effort by Zald et al.
(2016), we present a methodological framework to combine wall-to-
wall Landsat surface reflectance composites, forest change information,
and descriptors of topography/location to map forest attributes (in-
cluding canopy cover, height, aboveground biomass and stem volume)
longitudinally across a continent. In so doing, we generate information
products relating to forest structure at the unprecedented spatial re-
solution of 30 m for the entire 552 million ha Canadian boreal forest,
representing 2010 conditions. We address, document, and commu-
nicate challenges related to data processing architecture, modeling
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approach, and related implementation issues, as well as choice and
availability of predictor and response variables. Our objectives are four-
fold: we aim to (1) demonstrate opportunities and challenges when
extending large-area mapping studies to the national scale with the
synergistic use of Landsat pixel composites and lidar plots, (2) generate
accurate 30-m spatial resolution maps of forest attributes spanning the
Canadian boreal forest, (3) provide insights on the key drivers of the
modeling process over such large spatial extents by investigating the
relevance of the predictor variables, and (4) yield reliable estimates of
the average aboveground biomass and gross stem volume available in
each ecozone.

2. Study area

We focus our prediction and mapping on the Canadian boreal zone,
as defined by Brandt (2009), an area of 552 million ha. Ecozones are
used to summarize model predictions at meaningful ecological and
geographical scales (Ecological Stratification Working Group, 1996)
and enable focus on those which are in the boreal zone: Atlantic Mar-
itime, Boreal Cordillera, Boreal Plains, Boreal Shield East, Boreal Shield
West, Hudson Plains, Taiga Cordillera, Taiga Plains, Taiga Shield East,
Taiga Shield West. Fig. 1 shows the study area and the extent of the
lidar transects with respect to ecozones and boreal forest.

These forested ecozones of the Canadian boreal feature a patchwork
of land-cover categories dominated by trees, wetlands, lakes, and
shrubs. The treed lands are comprised of both deciduous and coniferous
tree species, dominated by white spruce (Picea glauca), black spruce
(Picea mariana), balsam fir (Abies balsamea), jack pine (Pinus banksiana),
trembling aspen (Populus tremuloides), and balsam poplar (Populus bal-
samifera). The main source of disturbance across the region is wildfire
(Kurz and Apps, 1999), with large areas of a variable extent that burn
on an annual basis in the unmanaged northern forests. The following
ecozones are especially impacted by this type of disturbance: Boreal
Cordillera, Boreal Plains, Boreal Shield East and West, Hudson Plains,
Taiga Cordillera, Taiga Plains, Taiga Shield East and West. The southern
reaches of the boreal forest (Atlantic Maritime, Boreal Plains, Boreal
Shield East and West, as well as Taiga Plains ecozones) are subject to
industrial and timber harvesting activities (White et al., 2017), as well
as fire suppression activities that serve to reduce the regional impact of
wildfires (Wulder et al., 2004). Another type of disturbance affecting
the boreal forest is related to insect-induced stand mortality (Brandt
et al., 2013; Kurz and Apps, 1999).

3. Data

3.1. Lidar data

During the summer of 2010, a national lidar data acquisition cam-
paign took place, comprising 34 survey transects (Fig. 1) of> 25,000
km in total length. A series of constraints (suitability of airports run-
ways, fuel availability, maintenance facilities) dictated the choice of the
flight lines. Discrete return lidar data was acquired by fixed-wing air-
craft equipped with an Optech ALTM 3100 laser scanner. The survey
specifications were the following: flying height of 1200 m above ground
level, 70 kHz pulse rate, scan angle of± 15 from nadir resulting in a
nominal pulse density of 2.8 returns per m2 with an expected nominal
footprint size of ~30 cm, given a laser beam divergence of 0.3 mRad
(see Wulder et al., 2012a; Wulder et al., 2012b for details). The effec-
tive swath width of the transect (~800 m) is the product of flight
parameters and instrument settings (Bater et al., 2011). Similar to best
practice guidelines in lidar-based forest inventory (White et al., 2013),
a 25 × 25 m grid was used to tessellate the lidar point cloud data into
grid-based metrics. From a total of> 32 million lidar plots, > 17
million were treed based on intersection with the land-cover data from
the Earth Observation for Sustainable Development of forests (EOSD)
map (see Wulder et al., 2008b, available online at: http://tree.pfc.Ta
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forestry.ca/). Using the publicly available software FUSION
(McGaughey, 2013), a number of variables describing the lidar returns
in each grid cell were calculated from classified lidar point cloud files
(ground vs. non-ground). These attributes describe the vegetation
structure in terms of height, cover, and vertical distribution of vegeta-
tion.

For this study, we selected six point cloud distribution metrics, or
lidar metrics, as response variables for our statistical modeling ap-
proach via imputation (first 6 rows of Table 2). To compute them, in-
itially, the lidar first returns found within the same cell are identified.
For the first four metrics (elev_mean, elev_sd, elev_cv, elev_p95), the
corresponding descriptive statistics (mean, standard deviation, coeffi-
cient of variation, 95th percentile) are calculated based on the recorded
height of these first returns. The metrics cover_2m and cover_mean are
derived by dividing the number of first returns above 2 m (or above the
mean height of the first returns) by the total number of first returns
within a given cell. Additionally, four derived forest structure variables
and total aboveground biomass estimates, hereafter referred to as forest
attributes, were considered in the mapping process, but only as aux-
iliary variables to be attached to each new sample whose values are

being imputed (last 4 rows of Table 2). These forest attributes were
derived from lidar metrics by applying regression models developed on
201 field plots located in Quebec, Ontario, and the Northwest Terri-
tories (see Wulder et al., 2012a for details). The plot positions were
measured following recommended practices (i.e., mapping-grade GPS
receivers, differential correction (White et al., 2013)). The potential
residual mismatch between these plots and the lidar acquisitions has
been deemed negligible in view of the spatial auto-correlation dis-
played by both the forest attributes and the lidar metrics (Zald et al.,
2014).

3.2. Landsat data

The source for the spectral and change-related predictor variables
consisted of a suite of Landsat pixel-based composites. Seamless surface
reflectance composites covering the forested ecosystems of Canada
were available for each year of the 1984–2012 period, as described in
detail in Hermosilla et al. (2015b). Following the Composite-to-Change
(C2C) approach presented in Hermosilla et al. (2015a), layers with the
year and type of disturbance for each pixel were also available. The C2C
disturbance products are open data and can be obtained at: https://
opendata.nfis.org/mapserver/nfis-change_eng.html. The main steps for
the generation of these products are summarized in Hermosilla et al.
(2016).

To generate the Landsat pixel composites addressing atmospheric
effects, ensuring gap-free coverage, and controlling for phenology, a
best-available-pixel (BAP) approach (White et al., 2014) has been im-
plemented (Hermosilla et al., 2015b). Candidate TM/ETM+ images
included those acquired± 30 days of August 1st (Julian day 213)
with< 70% cloud cover and were downloaded from the United States
Geological Survey (USGS) Landsat Archive as Level-1 Terrain Corrected
(L1 T) products. Surface reflectance was then calculated using LEDAPS
(Masek et al., 2006). Of the 1285 scenes (path/rows) of the Landsat
Worldwide Referencing System (WRS-2) that represent Canada, 73,544
images contributed to the generation of the final composite products
(3568 for the 2010 composite). Utilizing a scoring system that weighted
sensor type (prioritizing Landsat TM over ETM+ post-scan line cor-
rector failure beginning in 2003), distance to clouds/cloud shadows
(screened using Fmask (Zhu and Woodcock, 2012)), atmospheric opa-
city (from LEDAPS), and proximity to target date, at each pixel location
the BAP across all candidate images was determined and used to build
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Fig. 1. Study area encompassing the boreal forest of Canada with ecozone boundaries and the path of the ~25,000 km of airborne lidar transects.

Table 2
Response variables directly measured or derived from the lidar acquisitions. Basal area
and gross stem volume were calculated for trees at 1.3 m above ground level. Total
aboveground biomass includes estimates of foliage, branches, crown, bark, wood, and
stem biomass.

Source Variable name Description Unit

Directly measured
from lidar

elev_mean Mean of first returns height m
elev_sd Standard deviation of first

returns height
m

elev_cv Coefficient of variation of first
returns height

–

elev_p95 95th percentile of first returns
height

m

cover_2m Percentage of first returns above
2 m

%

cover_mean Percentage of first returns above
mean height of first returns

%

Derived from lidar loreys_height Lorey's tree height m
basal_area Basal area m2/ha
stem_volume Gross stem volume m3/ha
ag_biomass Total aboveground biomass t/ha
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the final annual composite. Additional assessment of each pixel from
the time series of annual imagery was undertaken using the temporal
sequence of reflectance for each pixel to remove any remaining atmo-
spheric effects (e.g., haze, smoke) and ensure complete spatial and
temporal coverage of the composites (Hermosilla et al., 2015b). As
such, data gaps that exist after the initial BAP compositing step (pixel
screening) are addressed with the assignment of proxy values following
a pixel-level time series analysis, as described in Hermosilla et al.
(2015b) and Hermosilla et al. (2016).

Using the pixel level temporal series, the C2C methodology enabled
the computation of several time-series trend metrics describing the
magnitude, duration, and date of the detected disturbances (Hermosilla
et al., 2015a). A RF classification model was trained based on a set of
change events labeled by photo-interpretation from high spatial re-
solution imagery enabling the classification of the detected change
events into a change type, including fire, harvesting, infrastructure, and
non-stand replacing changes (Hermosilla et al., 2015a).

3.3. Digital elevation model

The ASTER Global Digital Elevation Map (GDEM, v. 2) was used to
derive the variables describing the topography to inform models with
locally relevant information on landscape position. In June 2009, a first
version of the ASTER GDEM generated using stereo-pair images col-
lected by the ASTER instrument onboard the Terra satellite was re-
leased. In 2011, an additional 260,000 stereo-pairs to increase spatial
coverage and to reduce artifacts resulted in an improved version 2 of
the ASTER GDEM. The current version of this DEM, derived using an
updated set of algorithms, has an effective spatial resolution of 70 m
(with the final product oversampled to an application-ready 30 m grid
resolution), with reported improvements to horizontal (0.23 pixels) and
vertical (17 m at the 95% confidence level) accuracies (Tachikawa
et al., 2011). As a global product, GDEM v.2 provides both the spatial
coverage and spatial resolution (30 m grain) to be well matched as a
supplemental data layer for informing land-cover classification in
conjunction with Landsat imagery (Franklin et al., 2003).

4. Methods

The proof of concept study by Zald et al. (2016) provides the

foundation for the research presented herein, where the authors applied
an imputation model over a 37 million ha area (50 WRS-2 Landsat
scenes) corresponding to the forested ecozones of Saskatchewan, Ca-
nada. The model is based upon a set of spectral, change, and topo-
graphic predictor variables with reported accuracies in the 0.42–0.69
R2 range for all considered forest attributes when validating the maps
using 1085 independent lidar plots.

In Fig. 2, we graphically summarize the main methodological steps
of the approach we implemented in the present study. To build the
dataset with response and predictor variables values to develop the
statistical model, a series of co-located measurements of the 2010 lidar/
forest attributes and corresponding spectral/change/topographical
features was needed. After training, the RF-based imputation model is
assessed on independent validation plots and ultimately applied across
the boreal forest to obtain the forest attributes maps.

4.1. Sample selection

The 25-m resolution grid of lidar survey plots (see Section 3.1), was
sub-sampled to provide meaningful training and validation plots. To
avoid spatial autocorrelation, a 250-m hexagon lattice was overlain on
the lidar transects and the 25-m cell located in the center of each
hexagon was selected as a plot (see Zald et al., 2016). Subsequently, to
avoid biases stemming from high scan angles at transect edges, small
plot sizes, non-vegetation outliers (e.g., towers), forest edge effects and
mixed structural conditions (heterogeneous plots with multiple forest
conditions), lidar plots were retained if they met the following criteria:

• located< 300 m away from the center of the lidar transect,

• associated with 95th percentile of first returns height (elev_p95)
values lower than 60 m,

• in a 90 × 90 m polygon surrounding the plot, all of the plots were in
a treed area, as delineated in the EOSD project,

• all of the adjacent plots (3 × 3 neighborhood) were either disturbed
or undisturbed, as determined from the 1984–2012 disturbance
history for Canada (Hermosilla et al., 2015a), and

• in the same 3 × 3 neighborhood, the coefficient of variation of
elev_p95 was lower than 50%.

After filtering, the total number of lidar plots was 80,687, of which

Fig. 2. Workflow adopted for the modeling and mapping of forest attributes across the Canadian boreal forest.
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75% were randomly sampled to be included in the training set (60,505
samples), leaving the remaining 25% (20,182 samples) to form an in-
dependent validation set for model assessment. Table 3 breaks down by
ecozone the number of samples found in the training and validation
sets.

Fig. 3 shows the distribution by ecozone of the lidar metric elev_p95
across the training and validation data set. As expected, a latitudinal
gradient exists, with the northerly Taiga ecozones having the shortest
tree heights. Longitudinally, distribution of vegetation height across
Canada's boreal forest tends to decrease from the tallest trees located in
the easternmost Atlantic Maritime ecozone to shorter trees located in
the more northerly, wetland dominated, Hudson Plains, to then in-
crease again as moving westward towards the Boreal Cordillera.

4.2. Predictor variables

The initial predictor variables for the statistical analysis were
Landsat-derived spectral indices and change variables, topographic
variables, as well as the geographic coordinates (latitude and longitude)
(Table 4). They were selected to avail upon unique spectral information
(spectral channels and indices) as well as supplemental information to
offer increased predictive power and statistical separability, such as
landscape characteristics (from elevation data) or successional stage
(from change data). Aiming to use a parsimonious and statistically in-
formative set of predictors, we built upon the rationale, predictors, and
the variable importance analysis presented in Zald et al. (2016). The
Landsat composites for the year 2010 (see Section 3.2) enabled calcu-
lation of Tasseled Cap transformation brightness (TCB), greenness
(TCG), and wetness (TCW) (Crist and Cicone, 1984; Kauth and Thomas,
1976). From these variables, Tasseled Cap angle (TCA) (Powell et al.,
2008) and distance (TCD) (Duane et al., 2010) were calculated as fol-
lows: TCA = arctan(TCG/TCB), TCD = (TCG2 + TCB2)1/2. TCA relates
to the gradient of vegetation cover, whereas TCD is a function of ve-
getation composition and structure. Additionally, the Enhanced Vege-
tation Index (EVI) (Gao et al., 2000; Huete et al., 1997) and the Nor-
malized Burn Ratio (NBR) (Key and Benson, 2005) were also extracted
from the spectral bands.

The Landsat-derived forest-change metrics included the number of
years since greatest change (YrsSince_GrCh), and the attributed change
type (Ch_attr). YrsSince_GrCh was computed by subtracting from the
mapping year the year of the breakpoint associated with the change
whose magnitude is the greatest in that pixel's history (Hermosilla et al.,
2015a). Since changes could be detected only starting from 1985 for-
ward, possible values for this variable were [0, 1, …, 24, 25, 50], where
50 indicates a pixel that was never detected as changed during the
Landsat time series. The latter has been set arbitrarily to a value larger
than 25 to avoid confusion, recalling that for a RF model only the ranks
of the samples in each predictor variable matter. Ch_attr is a categorical
variable with 5 classes conveying the type of disturbance, as de-
termined in Hermosilla et al. (2015a): no change, wildfire, harvest, non-
stand replacing and infrastructure.

From the GDEM elevation data we calculated the slope (in degrees),

the topographic wetness index (TWI) (Beven and Kirkby, 1979)
and the topographic solar radiation index (TSRI) (Roberts and
Cooper, 1989). The TWI is a model of potential surface moisture
based local upslope contributing area and slope, where
TWI = ln(specific catchment area/tan(slope in radians)). TSRI is a
transformed measure of aspect (directional topographic exposure) ob-
tained as TSRI = 0.5− cos((π/180)(aspect− 30))/2. TSRI can range
between 0, indicating cold NE slopes, and 1, indicating warm SW slopes.
We therefore included as predictors the elevation (Elev), the slope
(Slope), the TWI and the TSRI. These topographic variables after re-
projection and resampling were aligned with the predictors extracted
from the Landsat pixel composites and at the same spatial resolution
(30 m).

For data organization and computational considerations, each raster
source dataset (surface reflectance BAP proxies, GDEM layer) was
partitioned into UTM zone-related processing tiles. The approach, in-
itially adopted to manage the Landsat datasets in Hermosilla et al.
(2016), consists of dividing the country longitudinally into bands cor-
responding to UTM zones 7 to 22 and then further dividing each one of
them into three latitudinal zones (South, North, Arctic). By sequentially
looping through the 17 UTM referenced tiles that intersected the lidar
transect, and by reprojecting the vector layers of the plot polygons into
the same UTM zone projection, we could extract the predictor variable
values in correspondence to each training and validation plot. As a
spatial mismatch between the lidar plot polygons and the pixels of the
raster layers (25-m vs. 30-m cell size, unaligned grids) still existed after
reprojection, to assign a unique value to each plot we computed a
weighted mean where the weight of each contributing pixel was equal
to the proportion of its surface covered by the plot polygon. We adopted
this method for all the variables except for YrsSince_GrCh and Ch_attr,
where the value of the pixel under the center of the plot was recorded.
As the forest attributes being mapped are spatially autocorrelated at a
local scale, the geographic position of the training plots relative to the
mapping grid was deemed an important factor. Thus, we added the
spatial coordinates of the samples, longitude (Long) and latitude (Lat),
as predictor variables.

Given the expectation that imputation could be impacted if too
many highly correlated predictors are provided as input, we analyzed
the correlation matrix of the predictors to select a meaningful subset to
provide as input to the models. The analysis was restricted to con-
tinuous variables, therefore retaining by default the change variables
(YrsSince_GrCh and Ch_attr). In the correlation matrix (Table 5), we
highlighted the pairs of variables having an absolute correlation coef-
ficient |R| ≥ 0.95. For each of these pairs, to ensure complementarity
among predictors, variables that presented the highest average |R| with
the remainder of the predictors were removed. This procedure resulted
in the elimination of EVI and TCD, leaving 13 predictors for the ana-
lysis: TCB, TCG, TCW, TCA, NBR, YrsSince_GrCh, Ch_attr, Elev, Slope,
TWI, TSRI, Long, Lat.

4.3. Imputation approach

Following Zald et al. (2016), we adopted a NN imputation metho-
dology (k-NN with k= 1), an approach that aims to fill in missing
observations for the response variables (Y-variables) with existing re-
ference measurements by relating them to predictor variables (X-vari-
ables) that exist for all samples. In contrast to other methods that model
each response variable separately, when k= 1, imputation associates
to each new sample the complete set of measured response variable
values of a particular training sample.

To find the optimal training sample to impute, that is, the nearest
neighbor, the method utilizes a multivariate measure of distance be-
tween samples that can be provided by techniques such as canonical
correlation analysis (Moeur and Stage, 1995), canonical correspon-
dence analysis (Ohmann and Gregory, 2002), or ensemble machine
learning methods such as RF (Deo et al., 2017; Henderson et al., 2014;

Table 3
Training and validation plots count by ecozone.

Ecozone # training samples # validation samples

Atlantic Maritime 2894 950
Boreal Cordillera 11,552 3853
Boreal Plains 2233 754
Boreal Shield East 13,418 4453
Boreal Shield West 12,069 4035
Hudson Plains 3797 1264
Taiga Plains 7125 2372
Taiga Shield East 5499 1868
Taiga Shield West 1918 633
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Hudak et al., 2008).
For the imputation approach used herein, the RF proximity matrix is

used to derive a nearest neighbor distance metric (Liaw and Wiener,
2002). This distance is a non-Euclidean measure computed as one

minus the proportion of trees where the new sample shares the terminal
node (leaf) with a training sample (Crookston and Finley, 2008). These
frequencies are computed across the trees of all the RF models that are
each tuned to a single response variable. This nearest neighbor is the
sample that best fits all the response variables at the same time. Once it
is found, the training sample identifier is returned and its response
variable scores, all together, are assigned to the new sample to be
predicted. One of the main characteristics of imputation is the pre-
servation of the covariance structure among the response variables
when k = 1. In addition, it is important to note that the methodology
will respect the range of values found in the training data, as the pre-
dicted values will be the exact same values of a plot found in the
training set.

In this study, we trained the imputation model on six response
variables from the lidar plots (see Table 2): elev_mean, elev_sd, elev_cv,
elev_p95, cover_2m and cover_mean. Derived forest structure and bio-
mass attributes of the corresponding training plots were then attached
as auxiliary variables to the imputation predictions for each new
sample. That is, these variables were not modeled by the different RFs,
but rather passively transferred after training plot identifiers were
predicted for each new sample.

We utilized the R package yaImpute (Crookston and Finley, 2008),
itself based on the package randomForest (Liaw and Wiener, 2002).
After preliminary exploratory analyses, the parameters retained were as
follows: the number of variables to test at each node was selected based
on the square root of the number of predictors (i.e., mtry = 3) and the
number of trees (ntree) was set to 100. As we did not observe marked
performance improvements by raising it, the number of trees has been
kept relatively low to ensure tractable computational times in the
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Fig. 3. Frequency distribution across the 9 sampled ecozones of the response variable elev_p95 (training and validation set).

Table 4
Predictor variables available across the mapping area.

Type Variable name Description

Spectral indices TCB Tasseled Cap brightness
TCG Tasseled Cap greenness
TCW Tasseled Cap wetness
TCA Tasseled Cap angle (Powell et al., 2008)
TCD Tasseled Cap distance (Duane et al., 2010)
EVI Enhanced Vegetation Index (Huete et al.,

1997)
NBR Normalized Burn Ratio (Key and Benson,

2005)
Change variables YrsSince_GrCh Year in which the greatest change

breakpoint occurs, subtracted from
prediction year (2010) (Hermosilla et al.,
2016)

Ch_attr Type of change attributed in Hermosilla
et al. (2016)

Topography Elev Elevation above sea level in meters
Slope Slope in degrees
TWI Topographic wetness index (Beven and

Kirkby, 1979)
TSRI Topographic solar radiation index (Roberts

and Cooper, 1989)
Geographical Long Longitude in degrees

Lat Latitude in degrees
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mapping phase involving such a massive dataset. It is worth noting that,
as the implementation in yaImpute shares the number of trees across the
individual RF models, when specifying the input parameters, we had to
multiply this value by the number of modeled response variables, six in
our case, to truly have RF models with 100 trees.

4.4. Model assessment

The model was assessed using 20,182 validation samples by com-
paring imputed to observed values using a series of goodness of fit
measures, including the coefficient of determination R2, root mean
squared error (RMSE) and RMSE expressed as a percentage of the ob-
served mean (RMSE%) for each response variable. We also report the
unsystematic (ACu, a measure of random error) and systematic (ACs, a
measure of bias) agreement coefficients (Ji and Gallo, 2006) as well as
the prediction bias (average of predicted minus observed values). The
agreement coefficients are based on the geometric mean functional
relationship (GMFR) regression line (Draper and Smith, 1998), which is
a symmetric regression model that assumes both X-variables and Y-
variables are subject to error (contrary to ordinary least squares re-
gression). ACs represents the difference between observed and pre-
dicted values that can be predicted by a simple linear model (bias from
the 1:1 line, with ACs = 1 if the GMFR line is perfectly aligned with the
1:1 line), whereas ACu represents differences which appear to be
random (scatter around the GMFR line, with ACu = 1 if all points fall
directly on it).

4.5. Variable importance in Random Forest-based imputation

To understand which predictive variables drive the model predic-
tions we studied the variable importance scores provided by RF
(Breiman, 2001). In a regression problem, these scores are determined
as follows. In each of the ntree trees of the RF, the out-of-bag Mean

Squared Error (MSE) is first stored. Then, in turn, each one of the
predictors is permuted (values randomly reassigned among the set of
out-of-bag samples) and the difference in MSE, usually an increase, is
computed and averaged over all the trees. Finally, normalization by the
standard deviation of the differences is carried out to represent the
output as a percentage of increase in MSE. In the case of a RF-based
imputation, this series of steps is carried out separately for each RF
model (one for each one of the 6 response variables). To ensure values
are expressed in a comparable scale, for each response variable, the
scores of all the predictors are standardized to have a zero-mean and a
unit standard deviation.

4.6. Forest attributes mapping and estimates by ecozone

The validated imputation model was ultimately applied on the
raster layers of the predictor variables (spectral indices, change and
topography variables, plus the extracted coordinates) across the extent
of the Canadian boreal forest. Training plot IDs were predicted at each
pixel location and the corresponding attribute profile was assigned.
This assignment was undertaken for all pixels in treed areas, as de-
termined from a 2010 Canada-wide land-cover map (Hermosilla et al.,
2018). Based on their respective attributes maps, exhaustive estimates
of gross stem volume and total aboveground biomass were derived from
all the mapped pixels in each ecozone within the boreal forest. In this
step, the Atlantic Maritime ecozone was not considered, as only a small
area of this ecozone is included within the boreal zone.

5. Results

5.1. Model assessment

5.1.1. Global accuracy assessment in the boreal forest
Table 6 summarizes the results of the accuracy assessment

Table 5
Correlation matrix among predictors (with the exclusion of YrsSince_GrCh and Ch_attr) computed over the complete set of sampled plots (80,687). |R|≥ 0.95 are in bold.

TCB TCG TCW TCA TCD EVI NBR Elev Slope TWI TSRI Long Lat

TCB 1.00
TCG 0.57 1.00
TCW −0.62 0.04 1.00
TCA 0.10 0.84 0.47 1.00
TCD 0.98 0.70 −0.53 0.26 1.00
EVI 0.70 0.97 −0.12 0.73 0.80 1.00
NBR 0.01 0.68 0.70 0.90 0.15 0.57 1.00
Elev −0.16 −0.16 0.06 −0.09 −0.17 −0.16 −0.06 1.00
Slope −0.06 0.07 0.10 0.12 −0.03 0.06 0.10 0.56 1.00
TWI 0.01 0.03 0.00 0.03 0.02 0.04 0.01 0.24 0.22 1.00
TSRI 0.06 0.03 −0.05 0.01 0.06 0.04 −0.01 −0.03 −0.03 −0.08 1.00
Long 0.25 0.31 0.05 0.25 0.28 0.31 0.26 −0.50 −0.18 0.04 0.01 1.00
Lat −0.26 −0.49 −0.14 −0.46 −0.33 −0.46 −0.43 0.50 0.18 −0.01 −0.01 −0.88 1.00

Table 6
Summary statistics for the observed and predicted lidar metrics and forest attributes with associated accuracy measureson the 20,182 validation plots.

Observed Predicted Accuracy metrics

Resp. variable Units Mean Min Max Std. dev. Mean Min Max Std. dev. R2 RMSE RMSE% ACu ACs Bias

elev_mean m 6.38 2.11 29.84 3.16 6.36 2.13 31.03 3.17 0.49 2.45 38.4 0.259 1 −0.02
elev_sd m 2.36 0.06 54.17 1.31 2.33 0.11 11.12 1.24 0.377 1.12 47.5 −0.007 0.996 −0.02
elev_cv – 0.37 0.03 4.37 0.1 0.37 0.05 1.02 0.1 0.126 0.11 29.7 −0.86 0.994 0
elev_p95 m 10.39 2.22 34.94 4.64 10.33 2.25 36.34 4.61 0.495 3.56 34.3 0.297 1 −0.06
cover_2m % 42.17 0.27 100 27.94 42.21 0.37 100 27.89 0.612 18.41 43.7 0.51 1 0.04
cover_mean % 20.45 0.1 71.47 15.21 20.51 0.12 68.78 15.22 0.584 10.44 51.1 0.459 1 0.06
loreys_height m 11.11 3.72 27.16 3.57 11.06 3.76 27.95 3.54 0.5 2.72 24.5 0.309 1 −0.05
basal_area m2/ha 13.59 0.87 79.75 9.51 13.53 1.07 74.3 9.51 0.544 6.89 50.7 0.366 1 −0.06
stem_volume m3/ha 90.85 1.67 1031 92.27 90.31 2.24 919.7 92.57 0.491 71.51 78.7 0.241 1 −0.54
ag_biomass t/ha 52.89 1.92 448.6 45.72 52.62 2.42 407.4 45.79 0.515 34.37 65.0 0.302 1 −0.26
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conducted on the 20,182 validation plots distributed across the entire
lidar transect. The main descriptive statistics (mean, range and standard
deviation) of the observed and predicted values match closely, as was
expected due to the nature of the imputation approach (i.e., assign as a
set the values of an existing plot). The R2 metric is in the 0.49–0.61
range for all response variables except for those conveying the varia-
bility of lidar first returns height (elev_cv: R2 = 0.126, elev_sd:
R2 = 0.377). RMSE values in the prediction of the height of the trees in
the plot are of approximately 2.5 m for the mean height (elev_mean),
3.6 m for the height of the tallest trees (elev_p95) and 2.7 m for the
mean height weighted by basal area (loreys_height). Response variables
related to canopy cover present an RMSE of 18.4% (cover_2m) and
10.4% (cover_mean). Gross stem volume and aboveground biomass
values registered RMSE values of 71.5 m3/ha and 34.4 t/ha, respec-
tively. The agreement coefficients ACu and ACs indicate that, although
the model presents little bias (ACs values very close or equal to 1), there
is still significant amount of variability in the estimates that it is not

able to explained, especially for attributes relating to the variance of
first returns height (ACu scores that are negative).

In Fig. 4, we report the corresponding scatterplots of observed
versus predicted values for the response variables. The absence of bias
is visible as there is no underestimation of high values or over-
estimation of low values in all the plots (1:1 line and GMFR line are
almost indiscernible). The scatter around the 1:1 line is within rea-
sonable limits for the vast majority of the samples. Outliers with large
errors (both over- and under-estimates) are present, but are associated
with a minority of the dataset.

5.1.2. Accuracy assessment in each ecozone
Fig. 5 depicts the mapping accuracy on validation plots within each

boreal ecozone covered by the transect for three response variables
representing key forest structural attributes: elev_p95, cover_2m, ag_-
biomass. For the majority of ecozones and attributes, R2 exceeds 0.4,
with the greatest accuracies, on average, being observed in the Taiga

Fig. 4. Observed versus predicted values for selected response variables (omission of loreys_height) on the 20,182 validation plots. 1:1 line in solid black, GMFR line between observed
and predicted values in dashed black. Point density is indicated with a blue (low-density regions) to red (high-density regions) color gradient. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
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Plains, Boreal Plains and Boreal Cordillera ecozones. The figure high-
lights poorer predictions for the Atlantic Maritime and Taiga Shield
West ecozones, both of which have R2 < 0.3 for all these three vari-
ables. Fig. 6 shows the distribution of the residuals by ecozone for the
elev_p95 variable and reveals how these are highly symmetrical with
respect to the residual value of zero, indicating no systematic bias in the
predictions. The spread of the bins around the zero value is relatively
small for all the ecozones except Atlantic Maritime, the ecozone whose
variability in tree height was the most difficult to capture by our model.

5.2. Variable importance analysis

Fig. 7 depicts the variable importance for each predictor when
modeling each response variable of the 6 modeled by RF in the training
phase of the imputation approach. Overall, the most relevant pre-
dictors, listed by median variable importance score, are Elev, Lat, TCB,
and Long. After these four, which registered importance scores for a
given response variable up to 2 standard deviations above the average,
there is a considerable drop in variable importance scores. When
modeling response variables related to the height of the trees (elev_-
mean and elev_p95), the model markedly relies on Lat. Alternatively,
when predicting canopy cover attributes (cover_2m and cover_mean),
Elev and Long are crucial. As regards the change variables, the average
importance scores for YrsSince_GrCh are decidedly larger than for
Ch_attr, ultimately ranked as the least relevant variable of our set of
predictors.
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5.3. Forest attributes maps

The result of applying the imputation model across Canada's boreal
forest is presented in Fig. 8. The central panel shows the aboveground
biomass map (ag_biomass). Latitudinal trends as well as local patterns
of large biomass density estimates, highlighting high-productivity re-
gions of the boreal forest (e.g., southern areas of the Boreal Shield) are
clearly visible. The top and bottom panels display some details of the
boreal-wide map for the same attribute as well as for the maps of ca-
nopy height (elev_p95) and gross stem volume (stem_volume). One can
appreciate the high spatial resolution of the maps revealing how the
forest develops in various environments, shaped by disturbance history
(see fire scar in bottom left panel or harvesting cut blocks in bottom
right panel) or by local landforms (see water courses in top panel).

5.4. Average estimates per ecozone

The distribution of the estimates for gross stem volume and total
aboveground biomass computed over the entirety of the treed pixels
within each ecozone is shown in Fig. 9. Our predictions indicate Boreal
Plains has the largest average stem_volume and ag_biomass, with
119.6 m3/ha and 67.6 t/ha respectively, whereas the Hudson Plains
present the lowest, with 40 m3/ha and 26 t/ha, respectively. Among the
most productive ecozones, we also find the Boreal Cordillera, Boreal
Shield East, and Boreal Shield West.

If we consider the median value of the distributions for stem_volume
and ag_biomass, there is a consistent gap between the four most pro-
ductive boreal ecozones and the remainder. The Boreal Plains ecozone
has the largest spread in the overall distribution of both forest attributes
(standard deviation of 111.8 m3/ha and 54.5 t/ha for stem_volume and
ag_biomass, respectively), reflecting the heterogeneity of forest condi-
tions in this part of the boreal zone.

6. Discussion

A key novelty of this research lies in the fusion of lidar plots, a
means to increase the distribution and sample size of local data to

inform on stand structure (Wulder et al., 2012a), with Landsat BAP
composites, to map forest attributes over very large areas. The frame-
work presented herein provides an approach to obtain wall-to-wall
estimates of forest structure, resulting in a suite of otherwise unavail-
able information products. We anticipate these products could aid
studies of the Boreal forest providing insights into forest dynamics
useful for sustainable forest management and understanding climate
change. The application of the developed imputation model at the scale
of the Canadian boreal forest is unprecedented at a spatial resolution of
30 m, and is a major operational advance in the mapping of forest
structure over large areas that leverages the benefits of two com-
plementary remote sensing technologies. In the following sub-sections,
we highlight the challenges faced in extending the mapping to the
boreal level and the decisions we had to make to properly address them
as well as the current limitations of the proposed methodology.

6.1. Global map accuracy in the boreal zone and comparison to other
similar large-area products

For a more general comparison with other forestry studies, we refer
to a meta-analysis of 81 NN-based experiments aimed at estimating
growing stock volume, biomass or carbon from various sources of re-
motely sensed data (including a large number of studies using Landsat
data) conducted by Chirici et al. (2016). The meta-analysis relied on the
RMSE% to facilitate the comparison of the prediction accuracies across
the different studies considered. It revealed an average RMSE% of 37%,
with a standard deviation of± 31.6% (across these types of attributes).
With an RMSE% of 78.7% and 65.0% for stem_volume and ag_biomass,
respectively (see Table 6), the results obtained by our RF-based im-
putation can be deemed as highly comparable relative to these bench-
marks. Given the challenging exercise of predicting forest attributes
longitudinally across an entire continent, this can be considered a
promising result. Furthermore, by comparing these figures with those
obtained by Zald et al. (2016), where the RMSE% for stem_volume and
ag_biomass were 63.0% and 76.9% respectively, it is apparent there
was no tangible loss of accuracy when extending the mapping proce-
dure from a regional/provincial scale to the entire Canadian boreal
forest.

At the national level, Beaudoin et al. (2014) reported an RMSE% of
69% for estimates of aboveground biomass derived from an imputation
approach using NFI ground plots and 250 m MODIS data. This value
can be compared to the overall RMSE% for aboveground biomass re-
ported herein of 65.0%. Such a difference is notable when considering
that the spatial resolution of the Beaudoin et al. (2014) estimates
(250 m) is significantly coarser than that of the results reported herein
(30 m). For canopy height, one of the main indicators of aboveground
biomass, we compare our estimates to two maps covering the Canadian
territory that have been produced by Lefsky (2010) and Simard et al.
(2011) as part of their global mapping effort. A thorough assessment of
these GLAS-based products has been carried out in Bolton et al. (2013)
on the same nationwide lidar transect we used to calibrate our forest
structure models. As reported by Bolton et al. (2013), the average RMSE
values across the considered ecozones were 7.4 (Lefsky, 2010) and
3.9 m (Simard et al., 2011). While not entirely comparable, our
elev_p95 estimates had a global RMSE of 3.56 m, a more accurate re-
sult, especially if we consider the averaging effect induced by the
spatial unit (925-m cell) used for the assessment of the maps produced
by Lefsky (2010) and Simard et al. (2011).

6.2. Map accuracy in each ecozone and comparison of average estimates

The variations in structure that exist across the boreal forest explain
the difficulty in accurately predicting the forest attributes with a single
model. High variability in canopy height across the ecozones is visible
in Fig. 3 and, can be related to the R2 barplots of Fig. 5 and to the plots
of the residuals of Fig. 6. Indeed, the ecozones that are more difficult to

Fig. 7. Variable importance values (measured as the % increase in MSE, standardized for
each response variable) for the predictors (columns sorted left to right by decreasing
median importance) in each one of the 6 RF models tuned to the response variables
(rows).
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appropriately model (i.e., R2 < 0.3 for height, volume, and biomass)
are Atlantic Maritime and Taiga Shield West, two ecozones that dis-
played either very large or very small tree height values. Especially the
Atlantic Maritime ecozone is critical to capture with a global model
because of the different forest conditions encountered therein,

particularly the mild climate and diversity in forest types. Additionally,
only a relatively small portion of the lidar transects covers the zone,
leading to fewer samples coming from this area.

The reasons for the best performances being observed in the Taiga
Plains, Boreal Plains and Boreal Cordillera ecozones are less clear.
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Given the diversity of forest conditions and variability in sample sizes
for each ecozone, caution must be exercised when interpreting small
differences in model accuracy. Also, we point out that the transects
themselves were not optimized to be representative of within-ecozone
conditions but dictated by a range of factors (from spatial coverage
aims to practical considerations such as airport locations, runway
conditions, fuel availability and maintained schedules, as per Wulder
et al., 2012a, 2012b).

Our mean aboveground biomass estimates for each terrestrial eco-
zone (denoted by circles in Fig. 9) generally agree with the values re-
ported by the Canadian NFI (https://nfi.nfis.org/en/customized_report,
statistics for “forest land”). Taiga Cordillera and Taiga Plains, with a
reference biomass values of 76.7 t/ha and 82.7 t/ha, respectively, are
the only ecozones where our estimated mean values markedly differ:
39.6 t/ha and 52.2 t/ha, respectively. The reference values in rest of the
inventoried ecozones we considered are more closely matching the NFI
figures: Boreal Cordillera 70.9 (NFI's estimate) vs. 62.6 t/ha (our esti-
mate), Boreal Plains 75.9 vs. 67.6 t/ha, Boreal Shield 76.5 vs. 58.7
(Boreal Shield West) or 63.8 t/ha (Boreal Shield East), Hudson Plains
22.5 vs. 26.0 t/ha, Taiga Shield 48.5 vs. 34.3 (Taiga Shield East) or
28.2 t/ha (Taiga Shield West). The general match between the outputs
of our model and these reference estimates confirms the validity of our
approach.

6.3. Relevance of the types of predictor variables

In the variable importance results presented in Section 5.2, the
considerable relevance of predictors describing the geographical posi-
tion of the plots in the three dimensions is noteworthy. Elevation above
sea level (Elev) plays an important role in our model because it provides
a continuous variable that characterizes the change in forest conditions

as a function of the altitude above sea level. Likewise, the spatial co-
ordinates, longitude (Long) and latitude (Lat), capture large-area trends
in temperature gradients, growing season length, and productivity.

In addition to the broad-scale patterns captured by elevation, lati-
tude, and longitude, fine-scale spatial information is needed to generate
accurate high-resolution maps of forest structure. To this end, the
spectral indices derived from Landsat pixel composites were crucial for
the mapping. The Tasseled Cap components, in particular the bright-
ness component (TCB), were important in the modeling of every lidar
metric considered in this study. The use of this type of spectral data in
such a large-area mapping task was enabled by the latest developments
in BAP compositing techniques combined with the opening of the
Landsat archive. Looking forward, the integration of Landsat
Operational Land Imager (OLI) data, being acquired starting from 2013,
will improve the availability of cloud-free scenes (Roy et al., 2014),
hence reducing compositing artifacts. Similarly, due to its comparable
spectral characteristics and spatial resolution, Sentinel-2 data could
also be considered as a viable source of spectral information (Drusch
et al., 2012). The addition of topographic variables (e.g., slope, the 5th
most important predictor overall) further informs on site properties,
enabling a model that captured local variation in canopy structure,
yielding meaningful forest attributes maps.

We found that the time since largest change for a given pixel
(YrsSince_GrCh) is also important in many models, a confirmation that
the inclusion of such a temporal indicator is relevant to capture forest
regrowth patterns. Indeed, the more years since a significant dis-
turbance event have passed, the more advanced the recovery of the
forest stand will be (Bartels et al., 2016). This effect was particularly
marked for response variables related to the height of the canopy (see
elev_p95, elev_mean and elev_sd in Fig. 7). Conversely, the type of
change (Ch_attr) does not prove to be that important in the RF models,

Fig. 9. Boxplots of the distribution in each ecozone of (top) gross stem volume (stem_volume in m3/ha) and (bottom) total aboveground biomass (ag_biomass in t/ha). Whiskers denote
the 10th and 90th centiles of the distribution. Mean values are shown with black circles.
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being ranked last. Indeed, the vast majority of the sampled plots
(90.6%) have never experienced a disturbance in the monitored period,
thus limiting the number of instances where such a change variable can
impact the modeling. Of note, the inclusion of time since disturbance
and change type allowed us to maintain the same model accuracy of
Zald et al. (2016), whose model used a larger number of change vari-
ables (e.g., spectral magnitude of the changes).

6.4. Challenges posed by the large-area mapping of forest structure

The extension of the regional imputation model prototyped by Zald
et al. (2016) to a boreal-wide implementation involved a number of
crucial decisions to address the challenges associated with a large-area
application. We list and discuss these below with the purpose of pro-
viding insights for those aiming to implement similar applications of
wall-to-wall forest structure mapping:

1. Single global model vs. multiple ecozone-level models
2. Availability and coverage of lidar data
3. Spatial invariance of the surface reflectance pixel composites
4. Modeling approach: imputation vs. prediction
5. Choice of response variables to model
6. Data processing architecture.

Firstly, a crucial factor to consider is the number of distinct forested
ecological domains mapped, which in this study included nine eco-
zones, extending west to east across the North American continent,
compared to the portions of three ecozones mapped by Zald et al.
(2016). Differences in vegetative ecosystems require the applied model
to capture and differentiate several types of local forest conditions. One
option to handle such heterogeneity could be to consider each ecozone
separately by building individual imputation models rather than a
single global model. However, in our framework, we used a global
model to avoid boundary effects when adjacent pixels are predicted at
the interface between two ecozones by two different models. Moreover,
our lidar transects do not provide for a representative sample within
each ecozone. To account for these local ecological conditions, which
are driven by factors such as temperature, precipitation and con-
tinentality, we decided to include the geographic coordinates of the
samples (latitude and longitude) as predictor variables to inform the
model. This ensured the model relied more heavily on plots located in
the same geographical area when imputing values at a given mapping
location, resulting in a local model better capturing the forest condi-
tions in each ecozone. Such an idea is taken from the field of geosta-
tistcs and accounts for spatial autocorrelation among the response
variables (Matheron, 1963).

The spatial representativeness of the lidar data is an important
criterion for the generation of locally accurate maps of forest attributes.
When moving from regional predictions to predictions undertaken
across much broader geographic and environmental domains, the
availability of consistent lidar-derived plots is a key factor for model
development. In our case, the lidar transect data acquired in the 2010
national campaign spans an area that closely matches the region of
interest for this study: the Canadian boreal zone. In the imputation
process, when imputing values in a given sub-region of the boreal
forest, suitable donor plots from reasonably comparable forest condi-
tions could always be found (with the exception of the ecozones
Atlantic Maritime and Taiga Shield West, see Fig. 5). Moreover, the
lidar plots represented the broad range of forest structural conditions
present in the boreal forest. This representativeness is critical for an
imputation approach, which cannot extrapolate beyond the range of
conditions present in the calibration data used in model development.

Spectrally consistent and spatially comprehensive optical data is the
other essential condition for a large-area mapping effort. In fact, robust
surface reflectance image composites are key to ensuring that stands
with similar characteristics across the mapped area also present similar

associated spectral values. For Landsat imagery, this transformation to
surface reflectance is currently implemented as an analysis-ready data
product by the USGS. This ease of access to high-quality optical pro-
ducts opens opportunities for mapping projects covering large surfaces
in any part of the world. To consistently map forest attributes in space,
besides the physically-based transformation from digital numbers to
surface reflectance values, additional steps are required to obtain the
spatial/temporal coverage required by the application. The BAP and
temporal interpolation approaches used to composite and fill gaps in
the image time-series (Hermosilla et al., 2015a) are effective and are
largely applicable across the global terrestrial ecosphere, given caveats
on spatial and temporal coverage of archival data (Wulder et al., 2016).

In terms of type of statistical model to apply, when mapping mul-
tiple attributes at the same time, two main options can be considered:
an imputation approach (one single model for all of the response
variables) or a parametric/non-parametric regression approach
(whereby a separate model is generated per response variable). The
challenge one faces with the imputation is that the model is more
constrained when assigning a value to a new mapping location. It will
be bound to selecting the plot that best fits, on average, a number of
response variables at a time. In the latter case, instead, the focus is on
one single attribute only and the model can provide a solution opti-
mized to explain the variance of each response variable. The advantage
of the imputation approach is that one will map consistent and realistic
forest conditions, as all the attributes describing a patch of forest are
assigned as a set. Critically, as demonstrated in Zald et al. (2016), the
lidar metrics themselves can be imputed, providing flexibility for model
refinement and/or other modeling applications (as new models can be
applied to mapped metrics directly). Maintenance of the covariance
structure between variables is another advantage of the imputation
approach, although often coming at the cost of lower model accuracy.

Closely linked to the selection of the modeling approach is the
choice of the attributes one wants to include in the mapping process,
especially when using an imputation model. Indeed, the subset of re-
sponse variables to model has to appropriately capture the forest con-
ditions one is interested in. They should be measurements that are
consistent across all the sub-regions included in the sampling/mapping
task and should not be subject to noise contaminations or to un-
certainties deriving from another modeling process. In our study, we
focused on the lidar metrics in this phase and attached as ancillary
variables the actual derived forest attributes. In other words, the im-
putation is guided by the structural metrics derived from lidar. The
forest attributes of interest (basal area, biomass, volume, Lorey's height)
are carried as ancillary variables in the plot matching process, as per
Zald et al. (2016).

Any large-area mapping task requires massive amounts of geospatial
data. Thus, defining an appropriate data processing scheme is a major
challenge to ensure the robustness and efficiencies of the mapping task.
A tile-based approach that partitions the area of interest into manage-
able units (i.e. to avoid memory issues and computational limitations)
is often required. Access to advanced computing facilities that provide
for a large number of parallel processing tasks, is also advantageous. In
our case, we partition our large study area, which spanned long-
itudinally the North-American continent, into UTM zone tiles, thereby
maximizing the memory potential offered by the local and remote high
performance computing facilities utilized.

6.5. Limitations of the imputation mapping across the boreal zone

One limitation of our study concerns the data source for the derived
forest attributes. Indeed, as mentioned in Section 3.1, the input values
for our model for the response variables Lorey's tree height (lorey-
s_height), basal area (basal_area), gross stem volume (stem_volume) and
total aboveground biomass (ag_biomass), are themselves the result of a
modeling process by linear regression based on field plots (Wulder
et al., 2012a). The accuracy of such predictions ranges from 0.64 to
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0.83 R2. For this reason, the accuracy metrics presented in this paper for
the four forest attributes are to be interpreted with caution, similar to
forest inventory data where visually interpreted polygons are the basis
for look-up table based estimates of unmeasured attributes.

Another source of error in our estimates of forest attributes is re-
lated to our predictions being independent of species. The issue of in-
cluding species within structural based predictions is complex, with
species influencing wood density and structure of the canopy which, in
turn, impact biomass (Lambert et al., 2005). However, previous work
has highlighted that, at least for estimating tree volume, precise canopy
height measurements are more crucial than species knowledge
(Tompalski et al., 2014), and presently, no detailed species information
is available at a commensurate resolution.

6.6. Temporal extension of the model

The study presented herein opens future research opportunities for a
temporal extension of the predictions made by the current model. The
temporal transferability of single year imputation models has been
suggested in Deo et al. (2017); Fekety et al. (2014) and offers promise
for the estimation of forest growth and development over time, with
research required to incorporate appropriate successional insights, such
as availing upon forestry growth and yield experience.

To enable this temporal extension, on the one hand, the current
Landsat BAP composites time-series and derived change products cov-
ering the period from 1984 to 2012 can be extended with new data
from the OLI sensor onboard Landsat 8 (Hermosilla et al., 2017). On the
other hand, an improved understanding of Landsat Multispectral
Scanner System (MSS) radiometry and its subsequent integration in the
C2C routines may allow for further extension back in time prior to 1984
(Braaten et al., 2015; Pflugmacher et al., 2012).

7. Conclusions

Detailed, spatially explicit maps of forest structure over large areas
are increasingly required to support science, policy, and reporting in-
formation requirements. In this research, we demonstrated the oppor-
tunities and challenges associated with the synergistic use of Landsat
and lidar data to map forest structural attributes across Canada's boreal
forest representing 2010 conditions. We investigated the use of wall-to-
wall Landsat surface reflectance pixel composites and their associated
spectral and change-related features to extrapolate over the entire
Canadian boreal zone a set of lidar metrics and derived forest attributes
utilizing a> 25,000 km boreal-wide transect of airborne lidar data.
These records of forest structure and aboveground biomass, summar-
ized on a grid of lidar plots, have been mapped for the area with a NN
imputation approach that uses RF as base method to relate response
variables to the spatially comprehensive set of predictor variables.
Promising goodness of fit statistics were obtained when validating the
predictions globally in the boreal forest and at the ecozone level.
Concurrently, we undertook a variable importance analysis to gain in-
sights into the driving factors in our predictions, allowing us to de-
termine the relevance of positional and elevation attributes, when
combined with Landsat-derived spectral indices and disturbance-re-
lated metrics. Our resulting outputs yielded reliable estimates of the
average aboveground biomass (26–67.6 t/ha) and gross stem volume
(40–119.6 m3/ha) available within each of the boreal ecozones, which
were previously unavailable from data at a 30-m spatial resolution. The
results presented in this research indicate the utility of lidar-sample
supported mapping of forest structural attributes over large areas using
optical satellite data, such as Landsat, with opportunity indicated for
Sentinel-2. The geospatial layers produced provide spatially consistent,
transparent and accurate data regarding key forest structure attributes
suitable to be integrated in large-area forest inventory and monitoring
efforts.

Acknowledgments

This research was undertaken as part of the “National Terrestrial
Ecosystem Monitoring System (NTEMS): Timely and detailed national
cross-sector monitoring for Canada” project jointly funded by the
Canadian Space Agency (CSA), Government Related Initiatives Program
(GRIP), and the Canadian Forest Service (CFS) of Natural
Resources Canada. This research was enabled in part by support pro-
vided by WestGrid (www.westgrid.ca) and Compute Canada
(www.computecanada.ca). This work has also been supported by a
mobility grant offered by the University of Lausanne, Switzerland, for
the project titled: “Fusion of lidar and optical remote sensing data for
forestry applications: a machine learning approach”. The authors thank
Dr. Douglas Bolton for the fruitful discussions had throughout the
study. We also thank the two anonymous reviewers for their helpful
suggestions on earlier versions of this paper.

References

Ahmed, O.S., Franklin, S.E., Wulder, M.A., White, J.C., 2015. Characterizing stand-level
forest canopy cover and height using Landsat time series, samples of airborne LiDAR,
and the random forest algorithm. ISPRS J. Photogramm. Remote Sens. 101, 89–101.

Baltsavias, E.P., 1999. Airborne laser scanning: basic relations and formulas. ISPRS J.
Photogramm. Remote Sens. 54, 199–214.

Bartels, S.F., Chen, H.Y.H.H., Wulder, M.A., White, J.C., 2016. Trends in post-disturbance
recovery rates of Canada's forests following wildfire and harvest. For. Ecol. Manag.
361, 194–207. http://dx.doi.org/10.1016/j.foreco.2015.11.015.

Bater, C.W., Wulder, M.A., Coops, N.C., Hopkinson, C., Coggins, S.B., Arsenault, E.,
Beaudoin, A., Guindon, L., Hall, R.J., Villemaire, P., Woods, M., 2011. Model
Development for the Estimation of Aboveground Biomass Using a Lidar-Based Sample
of Canada's Boreal Forest, SilviLaser 2011. Hobart, Tasmania, Australia.

Beaudoin, A., Bernier, P.Y., Guindon, L., Villemaire, P., Guo, X.J., Stinson, G., Bergeron,
T., Magnussen, S., Hall, R.J., 2014. Mapping attributes of Canada's forests at mod-
erate resolution through kNN and MODIS imagery. Can. J. For. Res. 44, 521–532.
http://dx.doi.org/10.1139/cjfr-2013-0401.

Belgiu, M., Drăgu, L., 2016. Random forest in remote sensing: a review of applications
and future directions. ISPRS J. Photogramm. Remote Sens. 114, 24–31. http://dx.doi.
org/10.1016/j.isprsjprs.2016.01.011.

Beven, K.J., Kirkby, M.J., 1979. A physically based, variable contributing area model of
basin hydrology. Hydrol. Sci. J. 24, 43–69.

Bolton, D.K., Coops, N.C., Wulder, M.A., 2013. Investigating the agreement between
global canopy height maps and airborne Lidar derived height estimates over Canada.
Can. J. Remote. Sens. 39, S139–S151.

Boudreau, J., Nelson, R.F., Margolis, H.A., Beaudoin, A., Guindon, L., Kimes, D.S., 2008.
Regional aboveground forest biomass using airborne and spaceborne LiDAR in
Québec. Remote Sens. Environ. 112, 3876–3890. http://dx.doi.org/10.1016/j.rse.
2008.06.003.

Braaten, J.D., Cohen, W.B., Yang, Z., 2015. Automated cloud and cloud shadow identi-
fication in Landsat MSS imagery for temperate ecosystems. Remote Sens. Environ.
169, 128–138. http://dx.doi.org/10.1016/j.rse.2015.08.006.

Brandt, J.P., 2009. The extent of the North American boreal zone. Environ. Rev. 17,
101–161.

Brandt, J.P., Flannigan, M.D., Maynard, D.G., Thompson, I.D., Volney, W.J.A., 2013. An
introduction to Canada's boreal zone: ecosystem processes, health, sustainability, and
environmental issues. Environ. Rev. 21, 207–226.

Breiman, L., 2001. Random forests. Mach. Learn. 45, 5–32.
Brosofske, K.D., Froese, R.E., Falkowski, M.J., Banskota, A., 2014. A review of methods

for mapping and prediction of inventory attributes for operational forest manage-
ment. For. Sci. 60, 733–756. http://dx.doi.org/10.5849/forsci.12-134.

Canadian Council of Forest Ministers, 1995. Defining Sustainable Forest Management: A
Canadian Approach to Criteria and Indicators. Canadian Council of Forest Ministers
by Canadian Forest Service, Natural Resources Canada.

Chen, G., Wulder, M.A., White, J.C., Hilker, T., Coops, N.C., 2012. Lidar calibration and
validation for geometric-optical modeling with Landsat imagery. Remote Sens.
Environ. 124, 384–393. http://dx.doi.org/10.1016/j.rse.2012.05.026.

Chirici, G., Mura, M., McInerney, D., Py, N., Tomppo, E.O., Waser, L.T., Travaglini, D.,
McRoberts, R.E., 2016. A meta-analysis and review of the literature on the k-Nearest
Neighbors technique for forestry applications that use remotely sensed data. Remote
Sens. Environ. 176, 282–294.

Cohen, W.B., Goward, S.N., 2004. Landsat's role in ecological applications of remote
sensing. Bioscience 54, 535–545.

Cohen, W.B., Maiersperger, T.K., Spies, T.A., Oetter, D.R., 2001. Modelling forest cover
attributes as continuous variables in a regional context with Thematic Mapper data.
Int. J. Remote Sens. 22, 2279–2310.

Crist, E.P., Cicone, R.C., 1984. Application of the tasseled cap concept to simulated the-
matic mapper data. Photogramm. Eng. Remote. Sens. 50, 343–352.

Crookston, N.L., Finley, A.O., 2008. yaImpute: an R package for kNN imputation. J. Stat.
Softw. 23, 1–16.

Deo, R.K., Russell, M.B., Domke, G.M., Woodall, C.W., Falkowski, M.J., Cohen, W.B.,
2017. Using Landsat time-series and LiDAR to inform aboveground forest biomass

G. Matasci et al. Remote Sensing of Environment 209 (2018) 90–106

104

http://www.westgrid.ca
http://www.computecanada.ca
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0005
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0005
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0005
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0010
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0010
http://dx.doi.org/10.1016/j.foreco.2015.11.015
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0020
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0020
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0020
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0020
http://dx.doi.org/10.1139/cjfr-2013-0401
http://dx.doi.org/10.1016/j.isprsjprs.2016.01.011
http://dx.doi.org/10.1016/j.isprsjprs.2016.01.011
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0035
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0035
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0040
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0040
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0040
http://dx.doi.org/10.1016/j.rse.2008.06.003
http://dx.doi.org/10.1016/j.rse.2008.06.003
http://dx.doi.org/10.1016/j.rse.2015.08.006
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0055
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0055
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0060
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0060
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0060
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0065
http://dx.doi.org/10.5849/forsci.12-134
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0075
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0075
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0075
http://dx.doi.org/10.1016/j.rse.2012.05.026
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0085
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0085
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0085
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0085
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0090
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0090
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0095
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0095
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0095
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0100
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0100
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0105
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0105


baselines in Northern Minnesota, USA. Can. J. Remote. Sens. 43, 28–47. http://dx.
doi.org/10.1080/07038992.2017.1259556.

Draper, N.R., Smith, H., 1998. Applied Regression Analysis. John Wiley & Sons.
Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F., Hoersch, B.,

Isola, C., Laberinti, P., Martimort, P., Meygret, A., 2012. Sentinel-2: ESA's optical
high-resolution mission for GMES operational services. Remote Sens. Environ. 120,
25–36.

Duane, M.V., Cohen, W.B., Campbell, J.L., Hudiburg, T., Turner, D.P., Weyermann, D.L.,
2010. Implications of alternative field-sampling designs on Landsat-based mapping of
stand age and carbon stocks in Oregon forests. For. Sci. 56, 405–416.

Duncanson, L.I., Niemann, K.O., Wulder, M.A., 2010. Integration of GLAS and Landsat TM
data for aboveground biomass estimation. Can. J. Remote. Sens. 36, 129–141. http://
dx.doi.org/10.5589/m10-037.

Ecological Stratification Working Group, 1996. A National Ecological Framework for
Canada. Environment Conservation Service, Environment Canada, Ottawa. http://
ecozones.ca/.

Eskelson, B.N.I., Temesgen, H., Lemay, V., Barrett, T.M., Crookston, N.L., Hudak, A.T.,
2009. The roles of nearest neighbor methods in imputing missing data in forest in-
ventory and monitoring databases. Scand. J. For. Res. 24, 235–246. http://dx.doi.
org/10.1080/02827580902870490.

Fekety, P. a, Falkowski, M.J., Hudak, A.T., 2014. Temporal transferability of LiDAR-based
imputation of forest inventory attributes. Can. J. For. Res. 45, 422–435. http://dx.
doi.org/10.1139/cjfr-2014-0405.

Franklin, J., Rogan, J., Phinn, S.R., Woodcock, C.E., 2003. Rationale and conceptual
framework for classification approaches to assess forest resources and properties. In:
Wulder, M.A., Franklin, S.E. (Eds.), Remote Sensing of Forest Environments: Concepts
and Case Studies. Springer, US, Boston, MA, pp. 279–300. http://dx.doi.org/10.
1007/978-1-4615-0306-4_10.

Frazier, R.J., Coops, N.C., Wulder, M.A., Kennedy, R., 2014. Characterization of above-
ground biomass in an unmanaged boreal forest using Landsat temporal segmentation
metrics. ISPRS J. Photogramm. Remote Sens. 92, 137–146. http://dx.doi.org/10.
1016/j.isprsjprs.2014.03.003.

Gao, X., Huete, A.R., Ni, W., Miura, T., 2000. Optical-biophysical relationships of vege-
tation spectra without background contamination. Remote Sens. Environ. 74,
609–620.

Gillis, M.D., Omule, A.Y., Brierley, T., 2005. Monitoring Canada's forests: the national
forest inventory. For. Chron. 81, 214–221.

Gislason, P.O., Benediktsson, J.A., Sveinsson, J.R., 2006. Random forests for land cover
classification. Pattern Recogn. Lett. 27, 294–300.

Gleason, C.J., Im, J., 2012. Forest biomass estimation from airborne LiDAR data using
machine learning approaches. Remote Sens. Environ. 125, 80–91.

Hansen, M.C., Loveland, T.R., 2012. A review of large area monitoring of land cover
change using Landsat data. Remote Sens. Environ. 122, 66–74.

Hansen, M.C., Potapov, P.V., Goetz, S.J., Turubanova, S., Tyukavina, A., Krylov, A.,
Kommareddy, A., Egorov, A., 2016. Mapping tree height distributions in Sub-Saharan
Africa using Landsat 7 and 8 data. Remote Sens. Environ. 185, 221–232. http://dx.
doi.org/10.1016/j.rse.2016.02.023.

Henderson, E.B., Ohmann, J.L., Gregory, M.J., Roberts, H.M., Zald, H.S.J., 2014. Species
distribution modelling for plant communities: stacked single species or multivariate
modelling approaches? Appl. Veg. Sci. 17, 516–527.

Hermosilla, T., Wulder, M.A., White, J.C., Coops, N.C., Hobart, G.W., 2015a. Regional
detection, characterization, and attribution of annual forest change from 1984 to
2012 using Landsat-derived time-series metrics. Remote Sens. Environ. 170,
121–132.

Hermosilla, T., Wulder, M.A., White, J.C., Coops, N.C., Hobart, G.W., 2015b. An in-
tegrated Landsat time series protocol for change detection and generation of annual
gap-free surface reflectance composites. Remote Sens. Environ. 158, 220–234.

Hermosilla, T., Wulder, M.A., White, J.C., Coops, N.C., Hobart, G.W., Campbell, L.B.,
2016. Mass data processing of time series Landsat imagery: pixels to data products for
forest monitoring. Int. J. Digital Earth 9, 1035–1054.

Hermosilla, T., Wulder, M.A., White, J.C., Coops, N.C., Hobart, G.W., 2017. Updating
Landsat time series of surface-reflectance composites and forest change products with
new observations. Int. J. Appl. Earth Obs. Geoinf. 63, 104–111. http://dx.doi.org/10.
1016/j.jag.2017.07.013.

Hermosilla, T., Wulder, M.A., White, J.C., Coops, N.C., Hobart, G.W., 2018. Disturbance-
informed annual land cover classification maps of Canada for a 29-year Landsat time
series. Can. J. Remote Sens.

Huang, S., Ramirez, C., Conway, S., Kennedy, K., Kohler, T., Liu, J., 2017. Mapping site
index and volume increment from forest inventory, Landsat, and ecological variables
in Tahoe National Forest, California, USA. Can. J. For. Res. 47, 113–124.

Hudak, A.T., Lefsky, M.A., Cohen, W.B., Berterretche, M., 2002. Integration of lidar and
Landsat ETM+ data for estimating and mapping forest canopy height. Remote Sens.
Environ. 82, 397–416.

Hudak, A.T., Crookston, N.L., Evans, J.S., Hall, D.E., Falkowski, M.J., 2008. Nearest
neighbor imputation of species-level, plot-scale forest structure attributes from LiDAR
data. Remote Sens. Environ. 112, 2232–2245.

Huete, A.R., Liu, H.Q., Batchily, K. v, Van Leeuwen, W., 1997. A comparison of vegetation
indices over a global set of TM images for EOS-MODIS. Remote Sens. Environ. 59,
440–451.

Ji, L., Gallo, K., 2006. An agreement coefficient for image comparison. Photogramm. Eng.
Remote. Sens. 72, 823–833.

Ju, J., Masek, J.G., 2016. The vegetation greenness trend in Canada and US Alaska from
1984–2012 Landsat data. Remote Sens. Environ. 176, 1–16.

Kauth, R.J., Thomas, G.S., 1976. The tasselled cap-a graphic description of the spectral-
temporal development of agricultural crops as seen by Landsat. In: LARS Symposia,
pp. 159.

Key, C.H., Benson, N.C., 2005. Landscape Assessment: Remote Sensing of Severity, the
Normalized Burn Ratio and Ground Measure of Severity, the Composite Burn Index,
FIREMON: Fire Effects Monitoring and Inventory System Ogden. USDA Forest
Service, Rocky Mountain Res. Station, Utah.

Kurz, W.A., Apps, M.J., 1999. A 70-year retrospective analysis of carbon fluxes in the
Canadian forest sector. Ecol. Appl. 9, 526–547.

Lambert, M.C., Ung, C.H., Raulier, F., 2005. Canadian national tree aboveground biomass
equations. Can. J. For. Res. 35, 1996–2018.

Latifi, H., Nothdurft, A., Koch, B., 2010. Non-parametric prediction and mapping of
standing timber volume and biomass in a temperate forest: application of multiple
optical/LiDAR-derived predictors. Forestry 83, 395–407.

Lefsky, M.A., 2010. A global forest canopy height map from the moderate resolution
imaging spectroradiometer and the geoscience laser altimeter system. Geophys. Res.
Lett. 37.

Lefsky, M.A., Turner, D.P., Guzy, M., Cohen, W.B., 2005. Combining lidar estimates of
aboveground biomass and Landsat estimates of stand age for spatially extensive va-
lidation of modeled forest productivity. Remote Sens. Environ. 95, 549–558.

Liaw, A., Wiener, M., 2002. Classification and regression by random Forest. In: R News.
2. pp. 18–22.

Lu, D., 2005. Aboveground biomass estimation using Landsat TM data in the Brazilian
Amazon. Int. J. Remote Sens. 26, 2509–2525.

Lu, D., 2006. The potential and challenge of remote sensing-based biomass estimation.
Int. J. Remote Sens. 27, 1297–1328.

Margolis, H.A., Nelson, R.F., Montesano, P.M., Beaudoin, A., Sun, G., Andersen, H.-E.,
Wulder, M.A., 2015. Combining satellite lidar, airborne lidar, and ground plots to
estimate the amount and distribution of aboveground biomass in the boreal forest of
North America. Can. J. For. Res. 45, 838–855. http://dx.doi.org/10.1139/cjfr-2015-
0006.

Masek, J.G., Vermote, E.F., Saleous, N.E., Wolfe, R., Hall, F.G., Huemmrich, K.F., Gao, F.,
Kutler, J., Lim, T.-K., 2006. A Landsat surface reflectance dataset for North America,
1990–2000. IEEE Geosci. Remote Sens. Lett. 3, 68–72.

Matheron, G., 1963. Principles of geostatistics. Econ. Geol. 58, 1246–1266.
McGaughey, R.J., 2013. FUSION/LDV: Software for LIDAR Data Analysis and

Visualization. US Department of Agriculture, Forest Service, Pacific Northwest
Research Station, Seattle, WA.

Moeur, M., Stage, A.R., 1995. Most similar neighbor: an improved sampling inference
procedure for natural resource planning. For. Sci. 41, 337–359.

Natural Resources Canada, 2016. The state of Canada's forests. Annu. Rep. 2016.
Neigh, C.S.R., Nelson, R.F., Ranson, K.J., Margolis, H.A., Montesano, P.M., Sun, G.,

Kharuk, V., Næsset, E., Wulder, M.A., Andersen, H.E., 2013. Taking stock of cir-
cumboreal forest carbon with ground measurements, airborne and spaceborne
LiDAR. Remote Sens. Environ. 137, 274–287. http://dx.doi.org/10.1016/j.rse.2013.
06.019.

Nelson, R., 2013. How did we get here? An early history of forestry lidar. Can. J. Remote
Sens. 39, S6–S17. http://dx.doi.org/10.5589/m13-011.

Nelson, R., Margolis, H., Montesano, P., Sun, G., Cook, B., Corp, L., Andersen, H.E.,
DeJong, B., Pellat, F.P., Fickel, T., Kauffman, J., Prisley, S., 2017. Lidar-based esti-
mates of aboveground biomass in the continental US and Mexico using ground, air-
borne, and satellite observations. Remote Sens. Environ. 188, 127–140. http://dx.
doi.org/10.1016/j.rse.2016.10.038.

Ohmann, J.L., Gregory, M.J., 2002. Predictive mapping of forest composition and
structure with direct gradient analysis and nearest-neighbor imputation in coastal
Oregon, USA. Can. J. For. Res. 32, 725–741.

Pflugmacher, D., Cohen, W.B., Kennedy, R.E., 2012. Using Landsat-derived disturbance
history (1972–2010) to predict current forest structure. Remote Sens. Environ. 122,
146–165. http://dx.doi.org/10.1016/j.rse.2011.09.025.

Potapov, P., Turubanova, S., Hansen, M.C., 2011. Regional-scale boreal forest cover and
change mapping using Landsat data composites for European Russia. Remote Sens.
Environ. 115, 548–561.

Powell, S.L., Cohen, W.B., Yang, Z., Pierce, J.D., Alberti, M., 2008. Quantification of
impervious surface in the Snohomish water resources inventory area of western
Washington from 1972-2006. Remote Sens. Environ. 112, 1895–1908.

Powell, S.L., Cohen, W.B., Healey, S.P., Kennedy, R.E., Moisen, G.G., Pierce, K.B.,
Ohmann, J.L., 2010. Quantification of live aboveground forest biomass dynamics
with Landsat time-series and field inventory data: a comparison of empirical mod-
eling approaches. Remote Sens. Environ. 114, 1053–1068.

Roberts, D.W., Cooper, S.V., 1989. Concepts and Techniques of Vegetation Mapping.
Roy, D.P., Ju, J., Kline, K., Scaramuzza, P.L., Kovalskyy, V., Hansen, M., Loveland, T.R.,

Vermote, E., Zhang, C., 2010. Web-enabled Landsat Data (WELD): Landsat ETM+
composited mosaics of the conterminous United States. Remote Sens. Environ. 114,
35–49.

Roy, D.P., Wulder, M.A., Loveland, T.R., Woodcock, C.E., Allen, R.G., Anderson, M.C.,
Helder, D., Irons, J.R., Johnson, D.M., Kennedy, R., et al., 2014. Landsat 8: science
and product vision for terrestrial global change research. Remote Sens. Environ. 145,
154–172.

Simard, M., Pinto, N., Fisher, J.B., Baccini, A., 2011. Mapping forest canopy height
globally with spaceborne lidar. J. Geophys. Res. Biogeosciences 116, 1–12. http://dx.
doi.org/10.1029/2011JG001708.

Tachikawa, T., Kaku, M., Iwasaki, A., Gesch, D.B., Oimoen, M.J., Zhang, Z., Danielson,
J.J., Krieger, T., Curtis, B., Haase, J., Abrams, M., 2011. ASTER Global Digital
Elevation Model Version 2-Summary of Validation Results.

Tompalski, P., Coops, N.C., White, J.C., Wulder, M.A., 2014. Simulating the impacts of
error in species and height upon tree volume derived from airborne laser scanning
data. For. Ecol. Manag. 327, 167–177.

Tomppo, E., Olsson, H., Ståhl, G., Nilsson, M., Hagner, O., Katila, M., 2008. Combining
national forest inventory field plots and remote sensing data for forest databases.

G. Matasci et al. Remote Sensing of Environment 209 (2018) 90–106

105

http://dx.doi.org/10.1080/07038992.2017.1259556
http://dx.doi.org/10.1080/07038992.2017.1259556
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0115
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0120
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0120
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0120
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0120
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0125
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0125
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0125
http://dx.doi.org/10.5589/m10-037
http://dx.doi.org/10.5589/m10-037
http://ecozones.ca/
http://ecozones.ca/
http://dx.doi.org/10.1080/02827580902870490
http://dx.doi.org/10.1080/02827580902870490
http://dx.doi.org/10.1139/cjfr-2014-0405
http://dx.doi.org/10.1139/cjfr-2014-0405
http://dx.doi.org/10.1007/978-1-4615-0306-4_10
http://dx.doi.org/10.1007/978-1-4615-0306-4_10
http://dx.doi.org/10.1016/j.isprsjprs.2014.03.003
http://dx.doi.org/10.1016/j.isprsjprs.2014.03.003
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0160
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0160
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0160
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0165
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0165
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0170
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0170
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0175
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0175
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0180
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0180
http://dx.doi.org/10.1016/j.rse.2016.02.023
http://dx.doi.org/10.1016/j.rse.2016.02.023
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0190
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0190
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0190
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0195
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0195
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0195
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0195
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0200
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0200
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0200
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0205
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0205
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0205
http://dx.doi.org/10.1016/j.jag.2017.07.013
http://dx.doi.org/10.1016/j.jag.2017.07.013
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0215
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0215
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0215
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0220
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0220
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0220
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0225
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0225
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0225
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0230
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0230
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0230
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0235
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0235
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0235
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0240
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0240
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0245
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0245
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0250
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0250
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0250
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0255
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0255
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0255
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0255
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0260
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0260
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0265
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0265
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0270
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0270
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0270
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0275
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0275
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0275
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0280
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0280
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0280
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0285
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0285
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0290
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0290
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0295
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0295
http://dx.doi.org/10.1139/cjfr-2015-0006
http://dx.doi.org/10.1139/cjfr-2015-0006
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0305
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0305
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0305
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0310
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0315
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0315
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0315
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0320
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0320
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0325
http://dx.doi.org/10.1016/j.rse.2013.06.019
http://dx.doi.org/10.1016/j.rse.2013.06.019
http://dx.doi.org/10.5589/m13-011
http://dx.doi.org/10.1016/j.rse.2016.10.038
http://dx.doi.org/10.1016/j.rse.2016.10.038
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0345
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0345
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0345
http://dx.doi.org/10.1016/j.rse.2011.09.025
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0355
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0355
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0355
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0360
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0360
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0360
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0365
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0365
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0365
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0365
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0370
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0375
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0375
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0375
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0375
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0380
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0380
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0380
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0380
http://dx.doi.org/10.1029/2011JG001708
http://dx.doi.org/10.1029/2011JG001708
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0390
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0390
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0390
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0395
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0395
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0395
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0400
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0400


Remote Sens. Environ. 112, 1982–1999.
Tomppo, E., Gschwantner, T., Lawrence, M., McRoberts, R.E., Gabler, K., Schadauer, K.,

Vidal, C., Lanz, A., Ståhl, G., Cienciala, E., 2010. National forest inventories. In:
Pathways Common Reporting. Eur. Sci. Found, pp. 541–553.

Wang, X., Huang, H., Gong, P., Biging, G.S., Xin, Q., Chen, Y., Yang, J., Liu, C., 2016.
Quantifying multi-decadal change of planted forest cover using airborne LiDAR and
Landsat imagery. Remote Sens. 8, 62.

White, J.C., Wulder, M.A., Varhola, A., Vastaranta, M., Coops, N.C., Cook, B.D., Pitt, D.,
Woods, M., 2013. A Best Practices Guide for Generating Forest Inventory Attributes
from Airborne Laser Scanning Data Using an Area-Based Approach, Information
Report FI-X-10. Canadian Forest Service, Canadian Wood Fibre Centre, Pacific
Forestry Centre, Victoria, B.C.

White, J.C., Wulder, M.A., Hobart, G.W., Luther, J.E., Hermosilla, T., Griffiths, P., Coops,
N.C., Hall, R.J., Hostert, P., Dyk, A., et al., 2014. Pixel-based image compositing for
large-area dense time series applications and science. Can. J. Remote. Sens. 40,
192–212.

White, J.C., Wulder, M.A., Hermosilla, T., Coops, N.C., Hobart, G.W., 2017. A nationwide
annual characterization of 25 years of forest disturbance and recovery for Canada
using Landsat time series. Remote Sens. Environ. 194, 303–321. http://dx.doi.org/
10.1016/j.rse.2017.03.035.

Woodcock, C.E., Collins, J.B., Gopal, S., Jakabhazy, V.D., Li, X., Macomber, S., Ryherd, S.,
Harward, V.J., Levitan, J., Wu, Y., Warbington, R., 1994. Mapping forest vegetation
using Landsat TM imagery and a canopy reflectance model. Remote Sens. Environ.
50, 240–254.

Woodcock, C.E., Allen, R., Anderson, M., Belward, A., Bindschadler, R., Cohen, W., Gao,
F., Goward, S.N., Helder, D., Helmer, E., Nemani, R., 2008. Free access to Landsat
imagery. Science 80 (320), 1011. http://dx.doi.org/10.1126/science.320.5879.
1011a.

Wulder, M.A., Kurz, W.A., Gillis, M., 2004. National level forest monitoring and modeling

in Canada. Prog. Plan. 61, 365–381.
Wulder, M.A., Bater, C.W., Coops, N.C., Hilker, T., White, J.C., 2008a. The role of LiDAR

in sustainable forest management. For. Chron. 84, 807–826.
Wulder, M.A., White, J.C., Cranny, M., Hall, R.J., Luther, J.E., Beaudoin, A., Goodenough,

D.G., Dechka, J.A., 2008b. Monitoring Canada's forests. Part 1: completion of the
EOSD land cover project. Can. J. Remote. Sens. 34, 549–562.

Wulder, M.A., White, J.C., Bater, C.W., Coops, N.C., Hopkinson, C., Chen, G., 2012a. Lidar
plots - a new large-area data collection option: context, concepts, and case study. Can.
J. Remote. Sens. 38, 600–618. http://dx.doi.org/10.5589/m12-049.

Wulder, M.A., White, J.C., Nelson, R.F., Næsset, E., Ørka, H.O., Coops, N.C., Hilker, T.,
Bater, C.W., Gobakken, T., 2012b. Lidar sampling for large-area forest character-
ization: a review. Remote Sens. Environ. 121, 196–209. http://dx.doi.org/10.1016/j.
rse.2012.02.001.

Wulder, M.A., White, J.C., Loveland, T.R., Woodcock, C.E., Belward, A.S., Cohen, W.B.,
Fosnight, E.A., Shaw, J., Masek, J.G., Roy, D.P., 2016. The global Landsat archive:
status, consolidation, and direction. Remote Sens. Environ. 185, 271–283. http://dx.
doi.org/10.1016/j.rse.2015.11.032.

Zald, H.S.J., Ohmann, J.L., Roberts, H.M., Gregory, M.J., Henderson, E.B., McGaughey,
R.J., Braaten, J., 2014. Influence of lidar, Landsat imagery, disturbance history, plot
location accuracy, and plot size on accuracy of imputation maps of forest composition
and structure. Remote Sens. Environ. 143, 26–38.

Zald, H.S.J., Wulder, M.A., White, J.C., Hilker, T., Hermosilla, T., Hobart, G.W., Coops,
N.C., 2016. Integrating Landsat pixel composites and change metrics with lidar plots
to predictively map forest structure and aboveground biomass in Saskatchewan,
Canada. Remote Sens. Environ. 176, 188–201. http://dx.doi.org/10.1016/j.rse.2016.
01.015.

Zhu, Z., Woodcock, C.E., 2012. Object-based cloud and cloud shadow detection in
Landsat imagery. Remote Sens. Environ. 118, 83–94.

G. Matasci et al. Remote Sensing of Environment 209 (2018) 90–106

106

http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0400
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0405
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0405
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0405
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0410
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0410
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0410
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0415
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0415
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0415
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0415
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0415
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0420
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0420
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0420
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0420
http://dx.doi.org/10.1016/j.rse.2017.03.035
http://dx.doi.org/10.1016/j.rse.2017.03.035
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0430
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0430
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0430
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0430
http://dx.doi.org/10.1126/science.320.5879.1011a
http://dx.doi.org/10.1126/science.320.5879.1011a
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0440
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0440
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0445
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0445
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0450
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0450
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0450
http://dx.doi.org/10.5589/m12-049
http://dx.doi.org/10.1016/j.rse.2012.02.001
http://dx.doi.org/10.1016/j.rse.2012.02.001
http://dx.doi.org/10.1016/j.rse.2015.11.032
http://dx.doi.org/10.1016/j.rse.2015.11.032
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0470
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0470
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0470
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0470
http://dx.doi.org/10.1016/j.rse.2016.01.015
http://dx.doi.org/10.1016/j.rse.2016.01.015
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0480
http://refhub.elsevier.com/S0034-4257(17)30595-3/rf0480

	Large-area mapping of Canadian boreal forest cover, height, biomass and other structural attributes using Landsat composites and lidar plots
	Introduction
	Study area
	Data
	Lidar data
	Landsat data
	Digital elevation model

	Methods
	Sample selection
	Predictor variables
	Imputation approach
	Model assessment
	Variable importance in Random Forest-based imputation
	Forest attributes mapping and estimates by ecozone

	Results
	Model assessment
	Global accuracy assessment in the boreal forest
	Accuracy assessment in each ecozone

	Variable importance analysis
	Forest attributes maps
	Average estimates per ecozone

	Discussion
	Global map accuracy in the boreal zone and comparison to other similar large-area products
	Map accuracy in each ecozone and comparison of average estimates
	Relevance of the types of predictor variables
	Challenges posed by the large-area mapping of forest structure
	Limitations of the imputation mapping across the boreal zone
	Temporal extension of the model

	Conclusions
	Acknowledgments
	References




