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Abstract

The purpose of this review is to present the most common and emerging DNA-based

methods used to generate data for biodiversity and biomonitoring studies. As environ-

mental assessment and monitoring programmes may require biodiversity information

at multiple levels, we pay particular attention to the DNA metabarcoding method and

discuss a number of bioinformatic tools and considerations for producing DNA-based

indicators using operational taxonomic units (OTUs), taxa at a variety of ranks and

community composition. By developing the capacity to harness the advantages pro-

vided by the newest technologies, investigators can “scale up” by increasing the num-

ber of samples and replicates processed, the frequency of sampling over time and

space, and even the depth of sampling such as by sequencing more reads per sample

or more markers per sample. The ability to scale up is made possible by the reduced

hands-on time and cost per sample provided by the newest kits, platforms and soft-

ware tools. Results gleaned from broad-scale monitoring will provide opportunities to

address key scientific questions linked to biodiversity and its dynamics across time and

space as well as being more relevant for policymakers, enabling science-based deci-

sion-making, and provide a greater socio-economic impact. As genomic approaches are

continually evolving, we provide this guide to methods used in biodiversity genomics.
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1 | INTRODUCTION

Biodiversity encompasses the diversity of organisms, their relation-

ships and their functions within ecosystems. Biodiversity assessment

using traditional methods mainly involves identifying morphological

characters whose states can be compared with taxonomic keys for

species identification. It is not uncommon that characters needed for

taxonomic assignment are not present or are difficult to discern even

for highly experienced taxonomists. The process of identifying smal-

ler taxa such as insects or microscopic organisms from environmental

samples often continues well beyond the field collection season, and

the results are taxonomic assignments with varying degrees of reso-

lution that is dependent on the availability of taxonomic keys, exper-

tise of the taxonomist and condition of the sample. The issues vary

by organism: for insects, damaged or juvenile specimens may not

contain the characters needed for identification (Sweeney, Battle,

Jackson, & Dapkey, 2011); for fungi, bacteria and other microscopic

organisms, it may be the difficulty in isolating and culturing individu-

als or the collection of samples in life stages that lack the characters

needed for identification (Bridge & Spooner, 2001). These are just a

few of the impediments to the morphology-based identification pro-

cess that also affect downstream users of taxonomic data for
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biodiversity research (Ebach, Valdecasas, & Wheeler, 2011). In

biomonitoring studies, sampling needs to be repeated across time

and space. Essentially, the pace that samples are collected in large-

scale biomonitoring programmes can quickly exceed the capacity for

taxonomists to identify them in a timely manner and this is where

DNA-based methods can help investigators identify more taxa using

methods capable of processing large data sets. In this review, we

specifically address how DNA-based methods with high-throughput

potential are scalable, that is, methods that can be easily adapted to

process larger numbers of samples collected across time and space

as well as automatically identify larger numbers of taxa from large-

scale studies.

Biodiversity genomics integrates different data types such as bio-

logical indicators from traditional specimen collection, biomass esti-

mates and biological activity assessments; environmental indicators

that describe site characteristics; as well as DNA-based indicators

which are the focus of this review (Figure 1). The use of DNA-based

methods to both detect organisms and assign putative functions

without having to isolate or identify individuals from environmental

samples has been revolutionary in many different fields (Aylagas,

Borja, Irigoien, & Rodr�ıguez-Ezpeleta, 2016; Elbrecht & Leese, 2017;

Gibson et al., 2015; Hajibabaei, Shokralla, Zhou, Singer, & Baird,

2011; Horton & Bruns, 2001; Langille et al., 2013; Nguyen et al.,

2016; O’Brien, Parrent, Jackson, Moncalvo, & Vilgalys, 2005; Taber-

let, Coissac, Hajibabaei, & Rieseberg, 2012; Torsvik & Ovreas, 2002).

In particular, high-throughput sequencing (HTS) of environmental

DNA (eDNA) for biomonitoring applications has been referred to as

BIOMONITORING 2.0 (Baird & Hajibabaei, 2012). We use the term eDNA

loosely to include the free degraded DNAs in the environment; DNA

emitted from living organisms through their DNA secretions, faeces

and shed cells; DNA contained within dead or dormant cells such as

seeds, spores and sclerotia; as well as the DNA from whole organ-

isms that are also recovered during the extraction process (Bohmann

et al., 2014; Pietramellara et al., 2009; Taberlet, Prud’homme, et al.,

2012). Biodiversity genomic methods are analogous in many ways to

microbiome studies in agricultural or biomedical studies. Methods

that start with total DNA extraction from a bulk sample such as soil,

water or sediments can detect what organisms are present or the

genomic potential of a community (Bik et al., 2012). The natural per-

sistence and turnover of DNA in the environment result in a snap-

shot of community diversity within a certain window of time that

depends on specimen biomass and density, temperature and trophic

status of the system (Dejean et al., 2011). Biological indicators such

as presence, abundance, or relative abundance of OTUs, taxa or

communities can be derived from eDNA using the methods

described below (Table 1, Box 1).

2 | MICROARRAYS

As shown in Table 1, this is a fluorescence-based method that can

be used to detect individuals or a community of taxa or genes. This

method enables highly parallel monitoring by miniaturizing traditional

tube- or plate-based assays. Microscopic spots of oligonucleotide

probes are attached to a solid surface called a microarray “chip”

(Sauer et al., 2005; Schena et al., 1998). A fluorescently labelled

sample containing sequences complementary to the probes is added

to the chip. When hybridization occurs, fluorescence is measured.

F IGURE 1 Integration of data types in biodiversity genomics. Boxes outline the various ways biodiversity can be sampled using DNA-based
or traditional methods that use biological and environmental ecological indicators

314 | PORTER AND HAJIBABAEI



The use of microarrays in biodiversity research transformed the field

by allowing pan-community assays to occur in a single reaction with-

out the complication of preparing gels for visualization (Gardner,

Jaing, McLoughlin, & Slezak, 2010; Metfies & Medlin, 2005; Schena

et al., 1998). Microarrays also enable samples to be evaluated with

replication, an important consideration in microbial ecology (DeSantis

et al., 2007). DNA microarrays can be used to answer questions

about the presence and relative abundance of a known set of taxa

using rDNA sequences or genes from mixed-community samples.

For example, various chips (e.g., Virochip, GreeneChipPm, PhyloChip,

Lawrence Livermore Microbial Detection Array) have been designed

to obtain a snapshot of viral and microbial (bacteria, protozoa, fungi)

diversity without the cost associated with the older generation of

HTS platforms and without the time-consuming bioinformatics

needed to process raw sequence data (Chou et al., 2006; DeSantis

et al., 2006, 2007; Gardner et al., 2010; Palacios et al., 2007).

TABLE 1 Summary of biodiversity genomic methods

Method Uses Pros Cons Scalability Future outlook

Microarrays (F;I/C) Detects the presence

or relative

abundance of suites

of markers or

expressed transcripts

from an individual

specimen or a

community sample

Simplified data analysis

compared with the

bioinformatics

processing required

with HTS methods

Not an appropriate

method for taxon

discovery. Data

produced are

fluorescence signals

not sequences

Requires one single-

use chip per sample.

Not easily scalable

Likely to be replaced

by sequencing-based

methods below as

cost per sequence

continues to

decrease and

bioinformatic

pipelines become

easier to use

Quantitative PCR

(qPCR) (F;I/C)

Detects the presence,

abundance or

relative abundance

of a single marker

from an individual

specimen or a

community sample

More sensitive than

PCR. Can be used to

quantify starting

template amounts

Can be complicated by

the background

mixture of organismal

DNAs co-isolated

from eDNA samples.

Data produced are

fluorescence signals

not sequences

Highly scalable as

many samples can be

run in batches on

plates

Likely to remain a

useful tool where

rapid monitoring is

needed to detect

target taxa until

integrated

microfluidic devices

are further

developed and

become a more cost-

effective option

Digital PCR (dPCR)

(F;I/C)

See qPCR above See qPCR above. Digital

PCR is more sensitive

than PCR or qPCR. As

only a single-template

molecule is amplified

per reaction, this

avoids the problem of

PCR bias with eDNA

samples. Can be used

as a target enrichment

method prior to HTS

Requires the purchase

of specialized

equipment. Data

produced are

fluorescence signals

not sequences

Current platforms are

scalable in terms of

the number of parallel

PCRs reactions that

occur, but typically,

only a single sample

can be run at a time

This platform is ideal

for analysing eDNA

samples, but the

need to purchase

specialized

equipment may be a

barrier to widespread

adoption among

laboratories that

already have

established qPCR

protocols

Metabarcoding

(S;C)

Gene marker surveys

are currently the

most popular

method for

biodiversity and

DNA-based

biomonitoring from a

community sample

Reference databases

and taxonomic

assignment tools are

available for the most

widely used DNA

barcoding regions.

Phylogenetic and

statistical analysis of

ESVs or OTUs can be

conducted even

without the

identification of

metabarcodes

Identification of

metabarcodes from

eDNA samples relies

on comparisons to

potentially incomplete

or inaccurate

reference sequence

databases. A single

DNA marker, a short

sequence or a lack of

similar reference

sequences may hinder

fine-level taxonomic

assignments

Highly scalable when

combined with HTS

and bioinformatic

analysis in a HPC

environment, see

Box 3

This method is likely

to be superseded by

whole-genome

assembly from

metagenomic

sequencing as: (i)

single-molecule

sequencing accuracy

is improved, and (ii)

as whole-genome

sequence reference

databases become

more representative

of environmental

diversity

(Continues)
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TABLE 1 (Continued)

Method Uses Pros Cons Scalability Future outlook

Organelle

sequencing (S;I)

Sequencing of

organelle DNA, for

example, mtDNA or

cpDNA from an

individual specimen

Can provide additional

sequence information

for improved

taxonomic assignment

All the markers are

linked and may only

reflect the evolution

of the organelle as

opposed to the

organism as a whole

This method is not as

scalable as methods

that simply isolate

eDNA without the

need for prior

isolation of individuals

As single-molecule

sequencing

technologies develop,

whole genome

sequencing will likely

become more

routinely applied in

biodiversity studies.

This technology shift

may replace reduced

representation

methods such as

organelle sequencing

and genome

skimming

Genome skimming

(S;I)

Low-coverage

genome sequencing

of an individual

specimen

Can provide high

sequencing coverage

of high copy number

or highly repetitive

regions such as

mtDNA, rDNA or

cpDNA to improve

taxonomic

assignments. Can also

sample additional

markers that may be

useful for

phylogenomics

The isolation of a

sufficient amount of

high-quality DNA

from taxa that are not

readily cultured using

standard methods or

for those with small

body size may be

difficult. Single-copy

markers of interest

may not be detected

See Organelle

sequencing above

See Organelle

sequencing above

Whole-genome

sequencing (WGS)

(S;I)

Genome sequencing

of an individual

specimen

Provides a reference

sequence for the

further development

of molecular markers

and to aid taxonomic

assignment of

sequences derived

from a community

sample

The isolation of a

sufficient amount of

high-quality DNA

from taxa that are not

readily cultured using

standard methods or

for those with small

body size may be

difficult

See Organelle

sequencing above

See Organelle

sequencing above

Metagenomics

(S;C)

Shotgun DNA

sequencing of a

community sample

Provides an overview

of the metabolic

potential and

taxonomic diversity of

a community. For

simple communities

comprised of taxa

with small genomes, it

is possible to

reconstruct WGSs

Pathway genes or

markers of interest

may only be

recovered at low

frequency in a

metagenomic data set.

Taxonomic

assignments based on

markers that are not

commonly used may

not be possible

Highly scalable when

combined with HTS

and bioinformatic

analysis in a HPC

environment

As HTS methods

develop and

reference databases

grow, this method

may become more

useful in biodiversity

studies and

biomonitoring

applications

Metatranscriptomics

(S;C)

RNA-seq (cDNA

sequencing) of a

community sample

Provides an overview

of the actual

metabolic activity and

taxonomic diversity of

a community

It can be challenging to

extract high-quality

mRNA from

environmental

samples

See Metagenomics

above

Likely to see more

widespread use as

WGS reference

databases become

more representative

of environmental

diversity

F = Fluorescence-based detection/S = Sequencing-based detection; I = Used on an individual specimen/C = Used on mixed-community samples.
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BOX 1 Glossary

Amplicon: The short DNA sequence products of polymerase chain reaction (PCR) amplification using taxon- or gene-specific primers

to target a particular region of the genome.

Biodiversity: The diversity of life, their relationships and their functions within ecosystems.

Biodiversity genomics: Biodiversity assessed using high-throughput DNA-based methods or data from whole genomes integrated with

a broad array of metadata describing biological and environmental indicators.

Biomonitoring: Biodiversity analysis that is repeated across space and time that may focus on a target organism such as invasive or at-risk

species, an assemblage such as the bioindicator groups (amphibians, birds, macroinvertebrates) as an indicator of ecosystem status.

cDNA: Messenger RNA reverse-transcribed into its complementary DNA sequence.

DNA Barcoding: A minimal standardized signature DNA sequence is used for species identification, for example, a 658-bp region of

CO1 mtDNA is used for identification of animals. Other DNA barcode markers have been proposed for fungi, plants and protists.

16S rDNA has been used for the identification of bacteria.

eDNA: Environmental DNA comprised of free degraded DNAs in the environment as well as DNA co-extracted from whole organisms

such as microscopic organisms, arthropods, nematodes; shed cells; faeces; as well as the DNA contained within dead or dormant cells

such as seeds or spores.

ESV: Exact sequence variant. Also known as an amplicon sequence variant (ASV), zero-radius OTU (ZOTU) or simply an OTU defined

by 100% sequence similarity.

Genome: The complete set of genetic data contained in an organism including organellar DNA.

Genomics: The sequencing and analysis of the genetic material of an organism.

HPC: High-performance computing, computer clusters can be used to run the same analysis for many samples in parallel, or splitting

large jobs into many smaller ones for a quicker overall runtime. Available through private clusters or third-party cloud computing ser-

vices.

HTS: High-throughput sequencing, sometimes referred to as next-generation sequencing or second-generation sequencing. Distin-

guished by the high number of sequencing reactions that occur in parallel.

mRNA: Messenger RNA that encodes for a gene product.

Marker: A gene or signature region of DNA with a known location in the genome and can be used to identify individuals or species.

Metadata: Supplementary data linked to DNA sequences that provide information in a standard and searchable way such as organis-

mal or bulk environmental sample description.

Metagenomics: The study of genetic material isolated directly from environmental samples, such as water, soil or sediments, may also

be referred to as environmental genomics, ecogenomics or community genomics.

Metatranscriptomics: The study of the expressed portion of genomes, mRNAs, isolated directly from an environmental sample that

may be transcribed into cDNAs for high-throughput sequencing.

Mito-metagenomics: The assembly of whole mitochondrial DNA sequences from eDNA samples.

MIP: Molecular inversion probe used for target enrichment.

Multiplex sequencing: The addition of a unique DNA sequence tag to each sample, such as when multiple samples are pooled and

sequenced at the same time, allows sequences from different samples to be distinguished from each other during data analysis.

Oligonucleotides: Relatively short nucleotide molecules used as primers for PCR, as probes on microarrays, or baits during target

enrichment.

OTU: Operational taxonomic unit, a group of similar DNA sequences sometimes used as a proxy for “species” in diversity measures.

Primers: Short oligonucleotides that are complementary to a particular region of the genome and are a starting point for DNA replica-

tion by DNA polymerase during PCR.

rDNA: Ribosomal DNA that codes for the ribosomal RNA subunits that form ribosomes.

Super-barcoding: The use of whole-organelle DNA sequences for species identification.

Taxon: An organism identified to any taxonomic rank (e.g., species to kingdom); plural taxa.

TE: Target enrichment.

WGS: Whole-genome sequencing involves determining the complete DNA sequence of an organism’s genome, also known as com-

plete genome sequencing, full-genome sequencing, entire genome sequencing.
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Another way to assess biodiversity is to view it through a phyloge-

netic lens, which can be performed with PHYLOCHIP results using the

FAST UNIFRAC program for phylogeny-based large-scale community

analyses (Hamady, Lozupone, & Knight, 2010). To detect environ-

mental processes, the GeoChip has been designed to detect the

genes involved in nutrient cycling, metal reduction, resistance and

degradation (He et al., 2007). Custom oligonucleotides can also be

designed and spotted on arrays. In an environmental monitoring

example, a custom-designed microarray was developed to identify

genes potentially involved in environmental stress responses in a

widely cultivated marine clam (Milan et al., 2011). This method was

shown to be reproducible and allowed investigators to identify a

range of genes potentially involved in environmental stress

responses. Microarrays are also useful for detecting short degraded

sequences such as those extracted from eDNA and have even been

successfully applied to the analysis of highly degraded ancient DNAs

(Devault et al., 2014).

The most attractive feature of DNA microarrays for biodiversity

genomics, the ability to compile pan-community profiles, has been sur-

passed by other DNA-based HTS methods described below. A

microarray assay may cost hundreds of dollars per sample depending

on the chip and provider. For comparison, the cost of an Illumina

MiSeq run can be divided by 96 or more samples depending on the

desired sequencing coverage bringing the cost per sample down to

$100 or less if many samples are run together, notwithstanding the

time and cost associated with HTS bioinformatics. The resolution of a

microarray assay depends on the specificity of the oligonucleotides on

the chip and may be as specific as the species level using “detection”

probes or more general using “discovery” probes that only bind to

highly conserved regions (Gardner et al., 2010). Unfortunately,

microarrays are not suitable for detecting novel taxa or genes on their

own (DeSantis et al., 2007). This is a major limitation as the extent of

environmental biodiversity has yet to be fully described (Hawksworth,

1991; Torsvik & Ovreas, 2002). Another limitation of this method is

that only hybridization patterns are recorded not the DNA sequences,

which could be otherwise used for sequence-based inference methods

for biodiversity analysis or the development of new probes. As

microarrays are normally designed for a single use, the number of

chips that are purchased as well as access to specialized equipment to

analyse the chips may limit the number of samples and replicates that

can be processed. Overall, the scalability of this method is poor com-

pared with methods below that can be run in a multiwell format for

parallel batch sample processing. As shown in Table 1, we think

microarrays will eventually be phased out in favour of DNA sequence-

based methods (below) as bioinformatics tools become easier to use.

3 | QUANTITATIVE POLYMERASE CHAIN
REACTION (QPCR)

As shown in Table 1, this is a fluorescence-based method that can be

used to detect individual species or genes in biodiversity studies. This

is a PCR-based method similar to standard endpoint PCR except that

light is emitted and measured during every cycle as new DNA is syn-

thesized (Arya et al., 2005). Also called real-time PCR, this method

can be used in a quantitative manner with reference to a standard

curve or a semi-quantitative manner among samples. This method

can also be used with reverse-transcription qPCR to measure gene

expression levels. Quantitative PCR to detect and quantify taxa and

functional genes such as those involved in nutrient cycling or

biodegradation from environmental samples is attractive for monitor-

ing applications as well as more general biodiversity analysis (Smith &

Osborn, 2009). This method is appealing for biodiversity studies

because of the enhanced sensitivity of qPCR, compared with standard

PCR, making this method more suitable for detecting rare species of

interest for biosecurity (e.g., alien invasive species) or conservation

efforts (e.g., endangered species) (Wilcox et al., 2013). The genes in

pathways activated upon exposure to toxins or involved directly in

nutrient cycling are obvious targets for qPCR. In a biomonitoring

application, reverse-transcription qPCR was used to detect the

expression of two sets of biomarker genes in response to heavy metal

exposure in a marine mussel (Banni et al., 2007). In an ecotoxicologi-

cal study, qPCR was adapted to target very long amplicons to assess

DNA damage in different parts of the genome (Meyer, 2010). The

premise behind this assay is that DNA damage caused by genotoxins

may inhibit DNA polymerase progression along the template and

results in reduced amplification. To address the question of how long

DNA persists in the environment and the window of time captured in

eDNA samples, a freshwater mesocosm experiment found that DNA

became undetectable by qPCR 2 weeks after removal of animals

(Thomsen et al., 2012). This method is more sensitive and more

expensive than standard PCR and ideally suited for tracking single or

small suites of target taxa. Taxonomic resolution as well as prevalence

of false-positive and false-negative results depend on the specificity

of the primers designed for qPCR but can be used to detect species

even in the presence of congeneric species (Wilcox et al., 2013).

However, caution must be exercised when closely related species

might occur in the same sample at different concentrations as the

abundant templates may be preferentially amplified (Wilcox et al.,

2013). An advantage of this method for large-scale biodiversity stud-

ies is that the equipment needed to run qPCRs can accommodate 96-

well or 384-well plate formats and this allows for easy scalability to

parallelize the analysis of many samples at once. As a fluorescence-

based detection method, however, it does not provide the sequence

information that could be used for sequence-based biodiversity analy-

ses or for the development of new molecular probes and primers.

As qPCR is a sensitive method, there are a number of considera-

tions that need to be accounted for specifically when working with

mixed-community samples. First, the limits of detection would need

to be determined for different types of environmental samples. In

fact, any mixed-template PCR-based method is susceptible to similar

challenges as different types of eDNA samples will contain a differ-

ent background of DNAs from a community of organisms in addition

to PCR inhibitors such as polysaccharides, humic acids, tannins and

heavy metals (Braid, Daniels, & Kitts, 2003; Schrader, Schielke, Eller-

broek, & Johne, 2012). Additionally, this method on its own is not
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suitable for discovering novel genes or species because the primers

used for qPCR are specifically designed to target only known species

or genes. The primary advantages of using qPCR are sensitivity, scal-

ability, cost and speed for diagnostic screening of target taxa; how-

ever, issues caused by the complex eDNA background may be better

circumvented using digital PCR (below). As noted in Table 1, qPCR is

likely to remain the method of choice wherever rapid monitoring of

target taxa is needed, but this method could be supplanted by inte-

grated microfluidic devices if they become a more cost-effective

option in future (see Section 12).

4 | DIGITAL PCR

As shown in Table 1, this is another fluorescence-based detection

method that can be used to quantify individuals or be used as a target

enrichment method prior to HTS. Digital PCR is an alternative to tradi-

tional qPCR where a sample is separated into thousands of parallel

PCRs each with a single- or no-template molecule (Vogelstein & Kin-

zler, 1999). This method can be used to determine starting copy num-

ber without the use of reference standards. Depending on the

platform, reactions are carried out on a microfluidic device or in their

own individual micelle droplets. Chamber digital PCR (cdPCR) is when

a microfluidic device is used for digital PCR and can be used for real-

time DNA quantification. Digital droplet PCR (ddPCR) is when digital

PCR is carried out in micelle droplets, and this can be used for end-

point or real-time DNA quantification depending on the platform. In

digital PCR, a single template is amplified on its own and can avoid

problems from mixed-template PCR such as the generation of chimeric

sequences, primer-template bias and template competition (Boers,

Hays, & Jansen, 2015; Williams et al., 2006). ddPCR has been used to

estimate eDNA concentration, fish abundance and biomass (Doi et al.,

2015). ddPCR can also be used to target multiple markers in a single

run for enrichment prior to HTS (see Section 11 below). In a variation

of the above techniques, microfluidic, multiplex digital PCR was used

to co-amplify 16S rDNA and a metabolic gene from single bacterial

cells (Ottesen, Hong, Quake, & Leadbetter, 2006). In this example, ter-

mite gut endosymbionts previously known from a metabolic gene sur-

vey were linked with their 16S rDNA sequence for the first time. An

advantage of this method in place of traditional qPCR is that the com-

plexity of background DNAs is reduced to a single-template strand per

reaction. For example, in a study that directly compared ddPCR with

qPCR, ddPCR was found to quantify eDNA, fish abundance and fish

biomass more accurately than qPCR (Doi et al., 2015). For laboratories

that already have qPCR protocols, conditions would need to be re-

optimized for digital PCR. The sensitive nature of the method makes

the problem of contaminants in laboratory products more pernicious,

highlighting the importance of running negative controls (Salter et al.,

2014). As shown in Table 1, this method is similar to traditional qPCR

but is more sensitive and ideal for mixed templates derived from envi-

ronmental samples. Due to the requirement for specialized equipment,

this method may not be readily adopted by laboratories that already

have qPCR equipment and protocols.

5 | DNA METABARCODING

The marker gene DNA sequencing technique used for the original

prokaryote 16S ribosomal gene phylogenies and community sur-

veys were quickly adapted to other markers to target fungi and

then eukaryotes where the approach was rebranded as DNA

metabarcoding with the defining goal of “species identification”

from bulk environmental samples (Bik et al., 2012; O’Brien et al.,

2005; Taberlet, Coissac, Pompanon, Brochmann, & Willerslev,

2012; Torsvik & Ovreas, 2002). DNA metabarcoding is rooted in

efforts associated with DNA barcoding, where a standard species-

specific marker gene such as mitochondrial cytochrome c oxidase

1 (CO1) is used for identifying single specimens of animals

(Hebert, Cywinska, Ball, & deWaard, 2003). DNA metabarcoding

involves PCR-coupled HTS of one or more DNA barcode markers

(or other biodiversity markers) directly from mixed-community

samples without the need to isolate individuals. The term “DNA

metabarcoding” (Taberlet, Coissac, Pompanon, et al., 2012; Yu

et al., 2012) has also been referred to as “DNA metagenetics”

(Creer et al., 2010), “environmental barcoding” (Hajibabaei et al.,

2011), “DNA metasystematics” (Hajibabaei, 2012), metagenomic

amplicon sequencing or simply “marker gene surveys” (Bik et al.,

2012). Essentially, these methods transformed the fields of micro-

bial molecular ecology, biodiversity and biomonitoring by allowing

whole communities of organisms to be targeted, at the same time,

without the need to isolate individuals. Unlike the fluorescence or

PCR-based methods discussed in the sections above, the DNA

sequences produced by DNA metabarcoding provided greater res-

olution to distinguish among taxa and sparked discussions con-

cerning the significance of the “rare biosphere” (Huse, Welch,

Morrison, & Sogin, 2010; Reeder & Knight, 2009; Sogin et al.,

2006). DNA metabarcodes are amenable to phylogenetic analysis

and introduced a new way to analyse biodiversity using a phylo-

genetic diversity method that could be scaled up to keep pace

with the newest HTS methods (Faith, Lozupone, Nipperess, &

Knight, 2009; Hamady et al., 2010). Given the widespread applica-

tion of DNA metabarcoding, we provide more details on key

aspects of this approach as it is commonly used in biodiversity

and biomonitoring studies.

5.1 | Mixed-template PCR

Target enrichment/amplification from mixed communities using

PCR has been referred to as mixed-template or multitemplate

PCR (Kalle, Kubista, & Rensing, 2014). PCR-coupled DNA metabar-

coding is sensitive to the initial mixed-template PCR, including

PCR cocktail composition, primers and cycling conditions. PCR bias

caused by differential binding of PCR primers to template eDNA,

the generation of artefacts (heteroduplexes, chimeric sequences,

PCR duplicates), has been discussed at length in the literature (Bik

et al., 2012; Shokralla, Spall, Gibson, & Hajibabaei, 2012; Tedersoo

et al., 2015). Mixed-template PCR optimization often involves

steps such as reducing the number of PCR cycles and increasing
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extension time (Gohl et al., 2016; Haas et al., 2011; Ishii & Fukui,

2001; Kurata et al., 2004; O’Donnell, Kelly, Lowell, & Port, 2016;

Suzuki & Giovannoni, 1996; Wang & Wang, 1997). The resulting

amplicon sequences can be analysed as is or identified by compar-

ison with a reference sequence database. PCR is not the only

method that can be used for target enrichment prior to DNA

metabarcoding, however, and these are described below, see Sec-

tion 11.

5.2 | Marker selection

Research communities focusing on a variety of taxonomic groups

have identified their own signature DNA regions (Table 2) suitable

for high-throughput taxonomic identification using a variety of meth-

ods (Table 3). The metabarcoding approach gained much momentum

after the advancement of HTS technologies, and researchers focused

on differing taxonomic groups have established their own markers

and standard methods (Hajibabaei, 2012). Selection and standardiza-

tion of marker genes used for DNA metabarcoding remain an active

area of research as it can significantly influence results obtained in

metabarcoding studies (Deagle, Jarman, Coissac, Pompanon, &

Taberlet, 2014; Fahner, Shokralla, Baird, & Hajibabaei, 2016; Porter,

Shokralla, Baird, Golding, & Hajibabaei, 2016). Marker choice is

known to affect the subset of the community resolved due to differ-

ing levels of variability in sequences of different lengths, across taxo-

nomic groups and primer bias (Bellemain et al., 2010; Claesson et al.,

2010; Hollingsworth, Graham, & Little, 2011; Porter & Hajibabaei,

2017).

5.3 | Metabarcoding versus traditional
biomonitoring

In a study that directly compared traditional morphology-based and

metabarcoding methods for surveying macroinvertebrates from river

benthos, all species that comprised greater than 1% of the individu-

als in the sample mixture were detected (Hajibabaei et al., 2011). In

fact, the metabarcoding approach has already become a key tool in

some large-scale biomonitoring programmes looking to incorporate

DNA-based methods into their existing regional or national pro-

grammes (Baird & Hajibabaei, 2012; Gilbert, Jansson, & Knight,

2014; GRDI-EcoBiomics, 2016). A key question for biodiversity anal-

yses is how metabarcoding compares with traditional methods for

community profiling. Despite differences in the exact taxa recovered

using traditional methods and DNA metabarcoding (Hajibabaei et al.,

2011), recent studies have found that metabarcoding of insects,

birds, diatoms and zooplankton tends to recover more taxa than tra-

ditional methods, provide a finer level of resolution and can similarly

be used as a DNA-based biological indicator (Ji et al., 2013; Paw-

lowski, Esling, Lejzerowicz, Cedhagen, & Wilding, 2014; Sweeney

et al., 2011; Yang et al., 2017). Results from studies focusing on

plants and animals have been reviewed in Deiner et al. (2017) and

also found that DNA metabarcoding provided either complimentary

TABLE 2 A list of the commonly used markers for DNA metabarcoding, databases, and tools for various taxonomic groups. This is not an
exhaustive list, for generic tools we focus on those that seem to be most popular or are best suited for high-throughput preprocessing of
amplicon reads

Taxa Marker Reference databases Software tools

Prokaryotes 16S rDNA GreenGenes (DeSantis et al., 2006)

Ribosomal Database Project (RDP) (Cole et al., 2014)

SILVA (Pruesse et al., 2007)

PICRUST (Langille et al., 2013)

RDP classifier (Wang, Garrity, Tiedje, & Cole, 2007)

Fungi ITS rDNA ITS2 dbase (Ankenbrand, Keller, Wolf, Schultz, & F€orster,

2015)

UNITE (Abarenkov et al., 2010)

EMERENCIA (Ryberg, Kristiansson, Sj€okvist, & Nilsson,

2009)

ITSx (Bengtsson-Palme et al., 2013)

RDP classifier

Animals CO1

mtDNA

BOLD (Ratnasingham & Hebert, 2007)

CO1 Arthropod classifier (Porter & Hajibabaei, 2017)

CO1 Insect classifier (Porter et al., 2014)

BOLD (Ratnasingham & Hebert, 2007)

RDP classifier

Plants rbcL +

matK

See Generic databases below See Generic pipelines below

Other

Eukaryotes

18S rDNA GreenGenes

SILVA

See Generic pipelines below

Any Any Generic databases:

International Nucleotide Sequence Database (INSD)

Collaboration*

Generic pipelines:

DADA2 (Callahan et al., 2016)

Galaxy (Goecks, Nekrutenko, & Taylor, 2010)

MOTHUR (Schloss et al., 2009)

QIIME (Caporaso et al., 2010)

RDP pipeline (Cole et al., 2014)

USEARCH package (Edgar, 2013, 2016)

VSEARCH (Rognes, Flouri, Nichols, Quince, & Mah�e,

2016)

*The INSD is an international initiative between the National Centre for Biotechnology Information (NCBI), the DNA Data Bank of Japan (DDBJ) and

the European Nucleotide Archive (ENA).
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or increased richness compared with traditional methods. Although

many studies have successfully used metabarcoding to find differ-

ences in sites that are known to be distinct, a recent analysis used

metabarcoding to assess similar sites subject to natural variation and

low-intensity management (Emilson et al., 2017). This study showed

that freshwater invertebrate biodiversity obtained from metabar-

coding the CO1 BR5 region was positively correlated with stream

condition gradients (Emilson et al., 2017). Additionally, DNA

metabarcoding compares favourably to traditional methods for zoo-

plankton and diatom community profiling by alleviating the taxo-

nomic impediment—the bottleneck implicated in traditional

morphology-based specimen identification (Ji et al., 2013; Yang

et al., 2017; Zimmermann, Gl€ockner, Jahn, Enke, & Gemeinholzer,

2015). Although fieldwork is still a costly and time-consuming

endeavour, once samples are subsampled into tubes or plates, this

method becomes highly scalable and amenable to parallelization and

automation (Box 2).

5.4 | Quantitative or not?

Because PCR is commonly used for amplification of target genes in

DNA metabarcoding, read abundance does not necessarily reflect

organismal abundance, biomass, or activity (Amend, Seifert, & Bruns,

2010; Elbrecht & Leese, 2015; Klappenbach, Saxman, Cole, & Schidt,

2001; Polz & Cavanaugh, 1998; Tedersoo et al., 2010; V�etrovsk�y &

Baldrian, 2013). There have been reports, however, that read abun-

dance does scale with estimated biomass for fungi and zooplankton

under certain conditions (Amend et al., 2010; Yang et al., 2017).

Generally speaking, because of issues with primer bias and mixed-

template PCR bias, natural variation in copy number, as well as varia-

tion in biomass and density among organisms, it has been suggested

that a conservative approach is to treat DNA metabarcoding data as

presence–absence data only (Elbrecht & Leese, 2015; Hajibabaei,

Spall, Shokralla, & van Konynenburg, 2012; Hajibabaei et al., 2011).

In a study of marine benthic fauna, ecological indices using abun-

dance or presence-only data performed similarly (Ranasinghe, Stein,

Miller, & Weisberg, 2012).

5.5 | Bioinformatics

With advances from new HTS platforms and a growing need for

more efficient data analysis and interpretation, the bioinformatics

considerations are varied and constantly evolving (Box 3). Bioinfor-

matic challenges related to plant and animal metabarcoding are dif-

ferent than those faced by DNA barcoding methodologies (Coissac,

Riaz, & Puillandre, 2012). The taxonomic resolution gained by this

TABLE 3 Commonly used methods for taxonomic assignment of signature DNA sequences from DNA metabarcoding studies. In this table,
we have specifically omitted species delineation methods that should not be conflated with taxonomic assignment methods. Additionally, some
of these methods were originally developed for the taxonomic assignment of metagenomic reads but can be applied to amplicon sequences

Taxonomic
assignment
method Description Programs

Similarity-based Includes methods that use a score calculated from pairwise sequence

alignments or a comparison between a sequence and a profile hidden Markov

model (HMM) (generated from a multiple sequence alignment)

BLAST (Altschul, Gish, Miller, Myers, & Lipman,

1990)

BOLD identification engine (Ratnasingham &

Hebert, 2007)

METAPHYLER (Liu et al., 2010)

MG-RAST (Meyer et al., 2008)

Phylogeny-

based

Based on the concept of orthology and phylogenetic theory, this method

requires a multiple sequence alignment and a model of sequence evolution.

The results are a phylogenetic hypothesis of evolutionary relatedness and a

measure of statistical support for branch points

NJ K2P analysis (Hebert et al., 2003)

SAP (Munch, Boomsma, Huelsenbeck, Willerslev,

& Nielsen, 2008; Munch, Boomsma, Willerslev,

& Nielsen, 2008)

PPLACER (Matsen, Kodner, & Armbrust, 2010)

EPA (Berger, Krompass, & Stamatakis, 2011)

Composition-

based

Query and reference sequences are broken down into libraries of shorter words

of size “k.” Taxonomic assignment is based on k-mer frequencies in the query

and reference library sequences

KNN Classify.seqs method (Schloss et al., 2009)

QIIME OTU-picking uses UCLUST by default

(Caporaso et al., 2010)

RDP Classifier (Wang et al., 2007)

UCLUST (Edgar, 2010)

Hybrid methods Combines different approaches from above, sometimes with other methods

where indicated, to make taxonomic assignments

FUZZYID2 (Shi et al., 2017)

MEGAN (Huson, Mitra, Ruscheweyh, Weber, &

Schuster, 2011)

PhymmBL (Brady & Salzberg, 2009)

Bayesian tree-

less methods

Based on the coalescent theory of speciation, uses Bayesian tree-less methods

that use either the coalescent or a proxy for the coalescent, the number of

segregating sites

Coalescent Assigner (Abdo & Golding, 2007)

Segregating Sites Assigner (Lou & Golding,

2010).

Machine

learning

Uses theories from machine learning such as support vector machines and

artificial neural networks

BPSI (Zhang, Sikes, Muster, & Li, 2008)

SVM classifier (Seo, 2010)
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method depends on the resolution of the signature DNA sequence

targeted (e.g., species level for DNA barcodes) and availability of

sequences in reference databases. There are a variety of platforms

available for biodiversity analysis, some particularly well-suited for

beginners in the field because they can provide smooth wrappers

around commonly used command-line tools as well as well-docu-

mented usage examples in online forums (Table 4).

Often, results from DNA metabarcoding are used to inform

researchers as to which samples are worth a deeper look using

metagenomic, metatranscriptomic or target-enriched sequencing. The

data generated using DNA metabarcoding are more tractable in

amount and computational resources required for analysis than

those generated from whole metagenome or metatranscriptome

sequencing, and the most popular platform is currently the Illumina

MiSeq (Box 5). For current biomonitoring applications, DNA

metabarcoding leads the way over other methods of biodiversity

analysis in terms of scalability, cost and tractability. As summarized

in Table 1, this method is likely to remain the preferred choice for

routine biodiversity and biomonitoring applications until the cost of

sequencing whole genomes is decreased to the point that it can

become routine so that genome databases become more representa-

tive of the biodiversity found in nature.

BOX 2 Scaling up

DNA metabarcoding is a highly scalable method that can be used to increase both the breadth and depth of sampling in biodiversity

and biomonitoring studies as shown in Box Figure 1. The barcoding marker is enriched from eDNA samples in the metabarcoding

step. Using kits for substrate-specific DNA extraction can increase efficiency and reproducibility, as well as reduce laboratory-to-

laboratory variability across large projects. Using automation, liquid-handling robots, can reduce pipetting errors. Working with sam-

ples in multi-well plates can improve throughput by conducting many reactions in parallel. When samples are prepared for high-

throughput sequencing (HTS), sequencing breadth and depth can be adjusted by varying the number of pooled (multiplexed) samples

loaded on an Illumina MiSeq lane. For instance, samples collected from different field sites or multiple markers from the same sample

can be tagged, pooled, and run together. To adjust the depth of sequencing, the total number of samples run in a lane can be varied

up or down. The large amount of data generated by HTS often necessitates analysis via high-performance computing (HPC). Cloud

computing, in particular, can be used to store and analyze data in an environment with more computing resources than typically avail-

able to most individual researchers. Bioinformatic pipelines can be run on batches of samples across multiple runs in parallel to reduce

computational time. As data analysis methods develop, data flows can be developed, documented, and versioned to ensure analysis

reproducibility (Falster, FitzJohn, Pennell, & Cornwell, 2017).

Kits and automation

Sample tagging and pooling

Pipelines, versioning, parallelization

AGCTAAGCTAAGCTAAGC
TAAGCTAAGCTAAGCTAA
GCTAAGCTAAGCTAAGCT

AAGCTAAGCTAAGC

AGCTAAGCTAAGCTAAGC
TAAGCTAAGCTAAGCTAA
GCTAAGCTAAGCTAAGCT

AAGCTAAGCTAAGC

AGCTAAGCTAAGCTAAGC
TAAGCTAAGCTAAGCTAA
GCTAAGCTAAGCTAAGCT

AAGCTAAGCTAAGC

Meta
barcoding

HTS

Repeated field
sampling across
time and space

HPC

BOX F IGURE 1 DNA metabarcoding is a scalable DNA-based biodiversity analysis method. At each step, methods can be easily
scaled upwards to accommodate more samples if needed. HPC, high-performance computing; HTS, high-throughput sequencing.
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BOX 3 Bioinformatics considerations for using DNA metabarcoding for biodiversity analysis

Two key resources for making DNA metabarcoding a suitable tool for biodiversity analysis are as follows: (i) comprehensive metadata

and (ii) comprehensive reference databases.

METADATA

The deposition of rich metadata ensures the long-term utility of published amplicon sequences and encourages comparative studies

(Bik et al., 2012). As a result, sequence annotation standards can facilitate the comparison of sequence data across studies (Yilmaz

et al., 2011).

REFERENCE DATABASES

High quality reference databases for taxonomic assignment are essential for successful DNA metabarcoding. There are several issues

that affect current reference database quality:

Insufficiently identified records. This is a problem that affects all metabarcode markers and public records can have differing levels of

taxonomic annotation from strain or BIN or species to a variety of more inclusive taxonomic ranks. It has been shown for fungal ITS

sequences that with the increasing use of high-throughput DNA metabarcoding from eDNA, the number of unnamed anonymous

DNA sequences has been accumulating in GenBank and vastly exceeds the number of known taxonomically identified reference

sequences (Hibbett et al., 2011; Nilsson, Kristiansson, Ryberg, & Larsson, 2005).

Incorrectly annotated records. This is an issue that affects all metabarcode markers. Unexpected annotation errors can arise due to

contamination or misidentification by collectors. For fungal ITS sequences, the reliability of taxonomic records in public databases

have been questioned and there has even been a call for third-party annotation of GenBank records (Bidartondo, 2008; Nilsson et al.,

2006).

Biased record collection. For any metabarcode marker, there can be variability in taxon representation across different geographic loca-

tions, habitats, and taxonomic groups. For instance, CO1 sequences in the BOLD database are dominated by Diptera (Insecta) and

Lepidoptera (Insecta) sequences from Canada (Porter et al., 2014). This is particularly problematic for metabarcoding studies in areas

where endemic diversity is expected to be high, such as in the tropics or for microbes—particularly in forest soils (Basset et al., 2012;

Hawksworth, 1991; Tedersoo et al., 2014).

Incomplete databases. It is known that sequence-based identification of samples can be hindered by incomplete reference databases

(Porter & Golding, 2011, 2012; Porter et al., 2014; Sundquist et al., 2007; Taberlet, Coissac, Pompanon, et al., 2012). Most studies

assume that their taxa will be identified through metabarcoding, however, the extent of database incompleteness is not known for

every group. For example, despite Insecta being one of the largest groups of CO1 sequences in GenBank, it has been estimated that

only about 12% of extant insect genera are represented by a CO1 sequence (Porter et al., 2014).

The significance of these issues lies in the level of undetected false-positive taxonomic assignments in metabarcoding studies. Type II

error, incorrectly rejecting a true null hypothesis, is also referred to as a false-positive assignment and has been discussed in the liter-

ature (Virgilio, Backeljau, Nevado, & De Meyer, 2010; Porter et al., 2014). See Taxonomic assignment below.

SEQUENCE READ ERRORS

PCR and sequencing errors can produce artefactual sequences. The removal of these sequences is essential to avoid inflating richness

counts and including sequence artefacts in community analyses (Huse et al., 2010; Reeder & Knight, 2009). There are several meth-

ods for handling sequence errors in metabarcoding studies, especially those that use PCR for enrichment.

The use of paired-end sequencing, especially for short amplicons, can provide sequence overlap between the forward and reverse

reads and provide redundancy in the regions where sequence error rates start to increase (i.e., at the ends of each read). Chimeric

sequences can be generated during PCR. A chimera removal step is included in many of the widely used bioinformatic pipelines

(Table 4). Clustering reads into OTUs can absorb highly similar reads with sequence errors. Clustering reads into OTUs defined by

some distance threshold (or sequence similarity cutoff) is often the default approach in most metabarcode bioinformatic pipelines

(Table 4). Additionally, a generic method to remove sequence artefacts is to simply remove low frequency OTUs such as singletons

and doubletons (Huse et al., 2010; Tedersoo et al., 2010). A step including the removal of low frequency OTUs are integrated into

many of the most widely used bioinformatic pipelines (Table 4).

The term denoising was first introduced as a sequencing platform-specific method to remove sequences with distinctive errors

produced during the sequencing step (Quince, Lanzen, Davenport, & Turnbaugh, 2011). Since then, it has become a more general

term to describe the process of removing reads with predicted errors from any source. The denoising method can be as simple

as removing low frequency OTUs. For example, ‘rare’ OTUs such as singletons and doubletons or OTUs containing a particularly low
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frequency of total reads. This step is implemented in most bioinformatic pipelines (Table 4). The USEARCH UNOISE algorithm

attempts to predict and remove low read frequency amplicons as containing possible sequence errors if there is a high similarity high

frequency amplicon present (Edgar, 2016). Part of the denoising process can also include the removal of contaminant sequences. The

USEARCH unoise algorithm will remove PhiX contaminant sequences automatically, however, the removal human, host, or common

lab contaminants requires extra steps outside of this pipeline (Edgar, 2016). Finally, the removal of nonspecific amplification products

(e.g., nuclear pseudogenes of mitochondrial genes; NUMTs) can be challenging to implement in high-throughput pipelines, but for pro-

tein coding genes, such as CO1, these can include removing reads that contain frameshifts or indels that disrupt the open reading

frame (Song, Buhay, Whiting, & Crandall, 2008).

DETERMINING THE BASIC UNIT FOR DNA-BASED BIODIVERSITY ANALYSES

There are three main types of DNA-based indicators generated by DNA metabarcoding: (i) taxa (at one or several taxonomic ranks),

(ii) operational taxonomic units (OTUs), or (iii) exact sequence variants (ESVs). For simple biological inventories, taxonomy-based lists

are probably the most relevant output (see Table 3). For a simple calculation of richness, one could count the number of unique taxa,

ESVs, or OTUs. Moving from taxon lists to community analyses, however, involves the creation of data matrices. These matrices may

be based simply on taxonomy (at any rank or variable ranks), or they can be based on OTUs or ESVs. OTUs (or ESVs) in turn can be

global OTUs (clustered from reads from all samples at once) or OTUs created for a single sample at a time. The advantage of using

global OTUs is that these are directly comparable across all samples. The advantage of OTU-based analyses is that all the data can be

analysed together whether or not they can be taxonomically assigned with confidence. The advantage of taxonomy-based analyses is

that known taxonomy can be used to help narrow down a complex data set into groups of indicator taxa that are known be ecologi-

cally relevant such as members of the insect orders Ephemeroptera, Plecoptera and Trichoptera (EPT) that have been shown to be

sensitive to water pollution as they require clean water with a high level of dissolved oxygen or members of the Chironomidae that

can be an indicator of poor water quality as they are rapid colonizers and have been previously shown to be tolerant of high water

pollution (Buss, Baptista, Silveira, Nessimian, & Dorvill�e, 2002; Emilson et al., 2017).

CHOOSING A SEQUENCE CLUSTERING METHOD

Metabarcode clustering can be performed using a variety of methods: phylogenetic clustering (Box 4); single-linkage, average-linkage,

or furthest-linkage clustering, or other hybrid methods. Reads can be clustered against a reference in open- or closed-reference meth-

ods. Closed-reference clustering is when reads are clustered against a reference database directly. Open-reference clustering is much

like closed-reference clustering except that reads that do not cluster with the references are then clustered de novo into their own

new clusters using a distance threshold as a cut-off. For example, the Galaxy, MOTHUR, QIIME, and USEARCH pipelines all provide

methods to perform reference-based clustering using the 16S rDNA Green Genes or SILVA databases, or the ITS reference databases.

Reference-based clustering is popular with markers where extensive reference databases exist, but a recent study has shown that

OTU richness and beta-diversity are often greatly exaggerated with these methods (Edgar, 2017). De novo clustering, on the other

hand, may outperform closed- and open-reference clustering with 16S sequences by better representing actual distances between

sequences (Westcott & Schloss, 2015). De novo clustering is when all reads are clustered among themselves using any of a variety of

algorithms, then subsequently taxonomically assigned (Table 3). A consideration with this approach is the cut-off that is used to delin-

eate the OTUs. A range of 1–3% sequence dissimilarity is popular in the literature and was once used to approximate species units

for measuring or estimating diversity, but it is now recognized to be somewhat arbitrary as sequence variation within and among spe-

cies varies across taxa. To avoid the ‘lumping’ of similar reads from different species into a single OTU, the use of exact sequence

variants (ESVs) has been proposed (Callahan, McMurdie, & Holmes, 2017; Edgar, 2017b). The DADA2 and USEARCH unoise method

both specifically produce ESVs as output (Callahan et al., 2016; Edgar, 2016). Another hybrid clustering method is SWARM and it can

be run on its own or as a part of the QIIME pipeline (Mah�e, Rognes, Quince, de Vargas, & Dunthorn, 2014). A comparison of OTU

clustering methods with 16S rDNA data showed that the most stable and accurate OTUs could be produced using different algo-

rithms and may vary according to data set (Westcott & Schloss, 2015).

TAXONOMIC ASSIGNMENT

One of the simplest taxonomic assignment methods is incorporated into the reference-based clustering approaches described above.

Alternatively, there are a variety of methods for taxonomic assignment that use different parameters for optimization such as similar-

ity, phylogeny, or composition among others (Table 3). The most popular method for metabarcode taxonomic assignment is the

similarity-based top BLAST hit approach. Though the method is relatively easy to implement and run in parallel, studies that have

shown that type II error (false-positive rates) are high with this method and that the top hit is not always the closest phylogenetic

BOX 3 Continued
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6 | ORGANELLE SEQUENCING

As shown in Table 1, this is a sequencing-based method suitable for

characterizing individual organelle genomes. In this method, organelle

DNA is either isolated from an individual or the organelle genome can

be bioinformatically assembled from an individual’s shotgun genomic

sequences with or without prior enrichment (Cronn et al., 2008;

McPherson et al., 2013; Nock et al., 2011; Parks, Cronn, & Liston,

2009). Individual or combinations of organelle genes from mitochon-

dria and plastids have a long history of use in biosystematics as a basis

for classification (Hollingsworth et al., 2011). The term “super-barcod-

ing” has been used when whole-organelle genomes are used specifi-

cally for taxonomic assignment (Li et al., 2015). For plants in

particular, this has been shown to circumvent the lack of variation

seen in some groups when single barcode markers are used for taxo-

nomic assignment (Li et al., 2015). Recent advances in sequencing

technologies now enable whole chloroplast or mitochondrial genomes

to be sequenced and used for a wide range of population genetic to

phylogenetic studies not only from individuals but also from eDNA

samples. Specifically, researchers have proposed a mito-metagenomics

approach for eDNA (Tang et al., 2014). This involves computationally

assembling all mitochondrial genes sequenced from eDNA into whole

mitochondria. With respect to the amount of DNA sequence data

generated, organelle sequencing sits between DNA metabarcoding

and whole-genome sequencing. It provides a way to obtain more

genetic information at a much lower cost compared with whole-gen-

ome analysis. Unfortunately, even if a whole mitochondrial genome is

sequenced and used for comparative analysis, it essentially behaves as

a single marker because all the mitochondrial genes are linked. The

utility of organellar genomes for addressing challenging biosystematics

questions is limited because the bulk of genetic information comes

from unlinked nuclear markers whose evolution can follow a different

evolutionary trajectory (Hollingsworth, Li, van der Bank, & Twyford,

2016). Also, in an eDNA framework, mito-metagenomics has not been

applied to large sample sizes and varied sample types presumably

because the sequencing depth needed for whole mitochondrial gen-

ome reconstruction is high and reference databases for mitochondrial

genomes are very small compared with reference databases for the

commonly used DNA metabarcoding markers (Table 2). As summa-

rized in Table 1, this method will likely be phased out in favour of

whole-genome sequencing as single-molecule methods develop, accu-

racy improves and costs decrease.

7 | GENOME SKIMMING

As shown in Table 1, this is a DNA sequencing-based detection

method applied to individual specimens. This method differs from

neighbour (Koski & Golding, 2001; Virgilio et al. 2010). One way to reduce false positive rates is to use a method that produces a

measure of statistical confidence to filter out uncertain taxonomic assignments (Munch, Boomsma, Willerslev, & Nielsen, 2008;

Munch, Boomsma, Willerslev, et al., 2008; Porter & Hajibabaei, 2017; Wang et al., 2007). Additionally, the top BLAST hit method is

slow compared to other widely used methods. In large-scale biodiversity and biomonitoring studies, taxonomic assignment methods

need to be fast and provide a statistical measure of confidence for taxonomic assignments at all ranks. A popular method is the Ribo-

somal Database Project na€ıve Bayesian classifier which is implemented in most popular bioinformatics pipelines (Table 4) or can be

run on it’s own. This method can be trained for any metabarcode marker and reference sets already exist for the prokaryote 16S,

fungal ITS and LSU rDNA regions, as well as for the CO1 animal barcode marker (Cole et al., 2009; Liu, Porras-Alfaro, Kuske, Eichorst,

& Xie, 2012; Porter et al., 2014; Porter & Hajibabaei, 2017; Wang et al., 2007).

DATA NORMALIZATION

It has been shown that uneven sequencing effort can skew community comparisons because false negatives (undersampling) can

emphasize differences between communities (Gihring, Green, & Schadt, 2012). There are methods to normalize or accommodate

uneven sequence numbers among samples to avoid library size bias. Most recently, it has been pointed out that metabarcoding data

are inherently compositional. As such, the most appropriate normalization technique would be a log ratio transformation (Gloor,

Macklaim, Pawlowsky-Glahn, & Egozcue, 2017). Traditionally, however, randomly subsampling all libraries down to the smallest library

size prior to OTU creation has been a simple solution to avoid diversity estimator sample size bias; however, this involves throwing

away sequence information. Alternatively, rarefaction estimates of samples can be compared at some common level of sequencing

depth. Both these methods also work when comparing obviously different sample types using presence–absence data. For finding

species showing different abundances among samples, however, it has also been shown that rarefaction, as well as the common

approach where sequence numbers are converted to simple proportions for each library, results in a high rate of false positives

(McMurdie & Holmes, 2014). Instead, the use of alternative methods such as ANCOM (a compositional approach) or DESEQ2 may be able

to more accurately identify differential taxon abundances among samples (Mandal et al., 2015; McMurdie & Holmes, 2014). A com-

parison of these methods using 16S rDNA has shown that rarefaction is an effective method for normalizing data and that for com-

paring abundances the best method to use may depend on data characteristics such as the total number of samples and how uneven

the library sizes are, as well as composition of microbial communities among samples (Weiss et al., 2017).

BOX 3 Continued
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BOX 4 Phylogenetics in biodiversity analysis

Phylogenetic methods can be used to analyse biodiversity data in several ways: (i) for OTU delimitation, (ii) for single-marker taxo-

nomic assignments, (iii) for phylogenomic taxonomic assignments and (iv) for comparing beta-diversity across communities. These

methods are included here because phylogenetics can complement the use of traditional biodiversity metrics by taking into considera-

tion the evolutionary history of the sampled lineages across sites (Faith, 1996, 2013; Hamady et al., 2010; Parks, Porter, et al., 2009).

OTU DELIMITATION

There are instances when defining an OTU based on sequence similarity alone can be problematic. For example, choosing a sequence

similarity cut-off to define an OTU is arbitrary, often based on community consensus, or chosen to approximate “species” even

though it is known that Linnaean taxa do not necessary coincide with DNA-based OTUs across lineages. It is possible instead to use

a phylogeny-based method to define OTUs, like a single gene application of the phylogenetic species concept where the members of

a terminal clade may comprise one OTU or taxon, although this is usually a manual process, difficult to apply in large-scale studies as

this method can be computationally time consuming as the number of sequences analysed grows. This approach is best used to refine

OTU membership for target taxa of interest as opposed to clustering whole communities of organisms. Once OTUs are delimited,

they can be analysed as is or they can be taxonomically assigned (Table 3).

TAXONOMIC ASSIGNMENT

Phylogenetic methods can be used to make taxonomic assignments. For example, the sequence variability in the fungal barcode mar-

ker, the ITS rDNA region, is an advantage for making fine-level taxonomic assignments but is problematic for phylogeny-based taxo-

nomic assignments across diverse groups of taxa. It is common that only congeneric taxa can be analysed in the same multiple

sequence alignment and thus to analyse a community of diverse taxa would require many independent alignments and phylogenetic

trees to identify their closest relatives for taxonomic assignment (Porter & Golding, 2011). To overcome this difficulty, phylogeny-

based programs are available that can automate this process for any marker (Table 3). These methods can help investigators apply

consistent cut-offs based on statistical support values to identify taxonomic assignments that they can be confident in. A major draw-

back of these methods is that they can be relatively slow and computationally intensive compared with alternative methods.

PHYLOGENOMICS

When markers are sampled by genome mining from whole-genome sequences, genome skimming or transcriptome sequencing, com-

bined to make phylogenies, this is referred to as phylogenomics (Eisen, 1998). With respect to biodiversity studies, phylogenomics

may be most useful for refining species identifications of target taxa as well as to understand their evolutionary histories at multiple

taxonomic levels (Steele & Pires, 2011). For example, highly resolved phylogenies of yeast species have been produced by concate-

nating up to 106 genes (Rokas, Williams, King, & Carroll, 2003). Although most studies aim to identify taxa using single signature

DNA markers, some groups can be problematic and may require multiple markers for correct species assignments. For example, to

correctly identify plant taxa, multiple regions can be used (Straub et al., 2012). Comparative analyses can identify key genes and path-

ways that can be used as markers in future work (Riley et al., 2014). Comparisons among taxa in this way can help predict clades rep-

resenting feature diversity worthy of special consideration for conservation efforts and can be used to guide topological restrictions

on trees based on less data (see Phylogenetic diversity below).

PHYLOGENETIC DIVERSITY

Perhaps the most practical use for phylogenetic methods in biodiversity analysis is to use this as a way to compare phylogenetic

diversity across samples providing another window on beta-diversity. The concept of phylogenetic diversity is based on the assump-

tion that branch lengths among taxa from different samples represent the underlying feature diversity of these taxa (Faith, 2013).

Unlike the traditional richness measure where each species is given an equal weight of 1, using a phylogenetic diversity metric, com-

munities can be compared according to the amount of unique branch lengths they represent (Tucker & Cadotte, 2013). In such a sce-

nario, it is possible that a site with high richness may reflect low phylogenetic diversity if the species are closely related. This may

have an impact in conservation studies where decisions on which sites to protect are driven by how diversity is measured. To facili-

tate the processing of large data sets, software tools need to be chosen carefully. For example, heuristics exist to construct very large

trees such as with FastTree (Hamady et al., 2010; Price, Dehal, & Arkin, 2009). Branch lengths can then be used to calculate phyloge-

netic beta-diversity in large data sets using Fast UniFrac (Faith et al., 2009). A drawback of this method is that is may not be possible

to produce a good phylogeny based on a single marker. Topological restrictions based on previous multi-marker work, however, can

be used to structure single-gene trees. Fortunately, the calculation of phylogenetic diversity using the UniFrac method has been

shown to be robust to sequencing effort and phylogenetic method (Lozupone, Hamady, Kelley, & Knight, 2007).

326 | PORTER AND HAJIBABAEI



organelle sequencing because there is no need for prior isolation or

targeting of organelle DNA prior to sequencing individuals. Genome

skimming involves shallow- or low-coverage sequencing of an organ-

ism’s genome (including organelle genomes) to obtain sequence data

that can be used to address biodiversity-related questions. Experi-

mental work has shown that even shallow sequencing (e.g., 1–2 Gb)

can provide surprisingly deep coverage of high copy number orga-

nelle DNA (plastids, mitochondria) and other repetitive sequences

such as the full ribosomal cistron (Straub et al., 2012) often used in

biosystematics (Hollingsworth et al., 2016; Li et al., 2015). This

method has primarily been employed in plants due to the difficulty

in obtaining species-level resolution using DNA barcodes (Hollings-

worth et al., 2016). Genome skimming can provide sequence data

suitable for biodiversity analysis without the need to pick and

choose marker genes or optimizing PCR protocols for individual

genes. With museum or eDNA samples with degraded DNAs, focus-

ing on high copy regions by genome skimming may be more success-

ful than targeting low copy regions of the genome (Dodsworth,

2015). In plants where the variation in plastid DNA can be especially

valuable for taxonomic assignment, the natural variation of cpDNA

per cell in different life stages of a leaf can result in more or less

coverage of cpDNA versus other repetitive regions such as rDNA

(Dodsworth, 2015). Additionally, the genome skimming approach

may not be easily applicable to smaller organisms (e.g., small insects)

and difficult to cultivate organisms where it could be difficult to

extract enough genomic material. These issues, combined with the

need to isolate individuals before sequencing, could make scalability

a problem for large-scale ecological investigations. As summarized in

Table 1, as single-molecule sequencing methods advance further,

accuracy improves and cost reduces, this method is likely to be

phased out in favour of WGS.

8 | WHOLE-GENOME SEQUENCING

As shown in Table 1, this is another DNA sequence-based method

applied to individual specimens. This involves obtaining a tissue sam-

ple or pure culture of an individual organism, DNA extraction and

sequencing of the entire nuclear genome as well as any mitochondrial

and plastid genomes. Initially, genome sequencing was such an expen-

sive and time-consuming process (Lander et al., 2001; Venter et al.,

2001) that the application of this method for biodiversity research was

not yet feasible. With the continued development of HTS and now

third-generation nanopore single-strand sequencing, the associated

increase in sequence throughput and reduced cost per base pair, it is

now possible to sequence whole nuclear genomes that can be used as

a resource for further biodiversity and evolutionary analyses.

8.1 | Whole-genome sequencing projects

Numerous projects are contributing to the population of whole-gen-

ome sequences in databases such as the i5K initiative that aims to

BOX 5 HIGH-THROUGHPUT SEQUENCING PLATFORMS

First-generation sequencing, also known as dideoxy sequencing or Sanger sequencing, generally produces read lengths of 600–800 bp in

batches of 96 to 384 samples at a time and up to 16 plates can be loaded in the queue on the most advanced instruments. The most pop-

ular platforms are the Applied Biosystems capillary sequencers. Second-generation sequencing became popular in the mid-2000s and

was initially referred to as “next-generation sequencing” in the literature, but with the development of third-generation single-molecule

sequencing platforms, it is often now simply referred to as high-throughput sequencing. The most commonly used method for DNA

metabarcoding is currently the Illumina MiSeq platform a second-generation method that uses clonal amplification on a plate followed by

sequencing by synthesis (SBS) technology (BOX TABLE 1). Third-generation sequencing, also known as single-molecule sequencing, is not

yet widespread but is characterized by not needing PCR before sequencing and producing a signal that is captured in real time (Liu, Li,

et al., 2012).

BOX TABLE 1 Commonly used high-throughput sequencing platforms. Throughput refers to the number of sequences on the high
end that can be produced in a sequencing run, but this will vary depending on the kit used to prepare the reads for sequencing. Read
length refers to total read length after pairing forward and reverse reads and will vary by kit. Error rates are generalized for easy
comparison. Prices are in Canadian dollars. Abbreviations: billion (B), million (M), thousand (K)

Brand/Model Number of reads Read length (bp) Error rate ~Price (CDN$) ~Annual service (CDN$)

Illumina/MiSeq 25 M 600 Very low 140 K 25 K

Illumina/NextSeq 400 M 300 Very low 400 K 50 K

Illumina/HiSeq 2.5 B to 10 B 300 Very low 1.1 M 100 K

Illumina/NovaSeq 1.6 B to 10 B 300 Very low 1.3 M 100 K

Ion/Proton PI 60 M 200 Moderate 300 K 50 K

Ion/PGM 318 4 M 400 Moderate 100 K 20 K

PacBio/Sequel 370 K 20 K High 500 K 35 K
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sequence 5000 arthropod genomes (i5K Consortium, 2013), the

1000 fungal genome project (approximately 800 fungal genomes are

currently available through the U.S. Department of Energy’s Joint

Genome Institute MycoCosm portal) (Grigoriev et al., 2014), the

GIGA project targeting 7000 noninsect and non-nematode inverte-

brates (mostly marine taxa) for sequencing (GIGA Community of Sci-

entists, 2014), the Genome 10K project that aims to sequence one

individual from every vertebrate genus (Koepfli, Paten, & O’Brien,

2015), the Genomic Encyclopedia of Bacteria and Archaea (GEBA)

initiative that sequenced and released 1000 bacterial and archaeal

genomes (Mukherjee et al., 2017), as well as other projects targeting

plant and crop genomes (Li, Wang, & Zeigler, 2014). All of these data

are essential resources for the further development of molecular pri-

mers, probes and, in some cases, identification of eDNA sequences

generated by other genomic methods discussed in this review.

In a biodiversity or biomonitoring context, WGS data from single

organisms are useful for both taxonomic or functional assignments

as well as marker and primer development for qPCR, digital PCR or

phylogenetics (Box 4). As summarized in Table 1, as single-molecule

sequencing methods become more available and accurate, this

method may become as routine as single gene sequencing is today

in biodiversity studies and biomonitoring applications. At present,

WGS of organisms from eDNA is only feasible for microbes with the

smallest genomes and simplest organization (a single or few circular

chromosomes) (see Sections 6 and 9).

9 | METAGENOMICS

As shown in Table 1, this is a DNA sequencing-based method that

can used to profile mixed communities. Metagenomics involves

sequencing all the genomic material from many different taxa whose

bulk DNA was extracted directly from environmental samples such

as soil, biofilms, water, sediments, benthos and air (Venter et al.,

2004). This approach is also known as “shotgun sequencing,” “envi-

ronmental genomics,” “ecogenomics” or “community genomics.”

Although this approach was first introduced based on Sanger

sequencing technology, the advances of HTS approaches have gen-

erated much momentum in metagenomics research and applications.

Typically, this technique samples genes from across the genome, not

just DNA barcode regions, so the functional potential of a sample

can be explored. Comparative metagenomics can be used to com-

pare the metabolic potential of organisms from different environ-

mental samples and even determine taxonomic and functional

TABLE 4 Commonly used generic bioinformatics pipelines and packages to analyse signature DNA regions from metabarcoding studies

Pipeline Description Features

DADA2 Runs in the R environment. Processes data from FASTQ files,

removes errors and chimeras, and produces sample abundances

and taxonomic assignments

Produces exact sequence variants (ESVs) instead of OTUs for

greater resolution than OTU-based methods

Galaxy Provides an environment where scripts can be assembled into

pipelines to assist with raw data processing

Graphical user interface

MOTHUR Command-line driven. Semi-automated pipeline allows raw

sequence data to be processed through to community analysis

using OTU- or taxonomy-based methods

Initially offered a way to create OTUs, remove putatively chimeric

sequences using a variety of methods, calculate ecological

indices and create Venn diagrams. Now also offers a variety of

pipelines to process raw reads and make taxonomic assignments

QIIME Command-line driven. Semi-automated pipeline allows raw

sequence data to be processed through to community analysis

Wrapper for many commonly used programs for analysing DNA

metabarcoding reads, particularly 16S sequences. Pipeline

automatically formats the input and output files to work with a

variety of programs to allow easy comparison of results using

the most popular methods. QIIME2 also comes with an easy to

use graphical user interface and an application programmer

interface for data scientists

RDP

pipeline

Provides a graphical user interface to process amplicon sequences

from raw reads, performs 16S and 28S rDNA taxonomic

assignments, as well as provides 16S and 28S secondary structure,

and diversity analysis tools

Provides access to the RDP classifier for classifying SSU rDNA for

bacteria and archaea, as well as ITS and LSU rDNA for fungi

USEARCH Command-line driven, normally used for sequence clustering into

operational taxonomic units, but can also be used for sequence

similarity searches, denoising and newer versions can handle raw

sequence data

Initially offered a way to cluster reads into operational taxonomic

units (OTUs), a method to search for similar sequences and

identify putatively chimeric sequences. This package now offers

pipelines to process raw reads, denoise reads, and cluster reads

while automatically removing chimeric sequences, sequence

errors and PhiX reads. 32-bit version is available for all users free

of charge, but is limited to 4-Gb memory at most. 64-bit version

available and allows users to use all the memory available on a

64-bit computer

VSEARCH Performs many of the functions available in USEARCH except

denoising

Open-source software available free of charge and allows users to

use all the memory available on a 64-bit computer

328 | PORTER AND HAJIBABAEI



profiles from the thousands of gene markers from communities of

organisms (Tringe et al., 2005). This method has been proposed as a

way to detect uncultured organisms that are difficult to identify by

traditional means (Handelsman, 2004). Genes and gene families can

be identified from metagenomic sequences. Identifying the taxa that

these genes belong to, however, can be challenging. As signature

DNA regions suitable for taxonomic analysis will also be present in

the sample, these can be used to identify individual taxa (Liu, Gib-

bons, Ghodsi, & Pop, 2010; Manichanh et al., 2008). Reconstruction

of individual genomes is also possible depending on the sequencing

depth, taxonomic complexity and size of organismal genomes in the

sample. In a recent study, nearly 8,000 metagenome-derived

prokaryote genomes were assembled from 1,500 public metagen-

omes (Parks et al., 2017). This type of achievement is not yet possi-

ble for eukaryotes due to the size and complexity of their genomes,

but it may be in future as sequencing technologies and bioinformat-

ics methods progress. Metagenomics has found application in

ancient DNA studies looking at the evolution of antibiotic resistance,

studies of the microbes involved in honey bee colony collapse disor-

der (Cox-Foster et al., 2007; D’Costa et al., 2011). Metagenomics is

a widely used technique to explore microbiomes on a small scale

and can be scaled upwards for broad-scale ecological surveys (The

Human Microbiome Project Consortium, 2012; Venter et al., 2004).

An advantage of this method is that amplification-free metagenomic

sample preparation avoids the PCR bias that other methods may

otherwise be subject to. A challenge with this method is that with

sequencing effort spread over all genomic regions, not just the signa-

ture DNA regions suitable for taxonomic assignment, there may be a

reduced set of taxa that can be identified with confidence. Unfortu-

nately, taxonomic assignment of nonsignature DNA regions may be

biased towards organisms whose whole genomes are present in

databases (false positives). The sequencing depth required to capture

a community would be much higher than the sequencing depth

required to saturate taxon sampling using DNA metabarcoding. As

summarized in Table 1, as HTS and single-molecule sequencing tech-

nologies advance, output grows, and costs decrease (Box 5), this

method is likely to be even more widely used as amplification-free

methods are very appealing to many investigators hoping to circum-

vent the many known issues with mixed template PCR in PCR-

coupled DNA metabarcoding. As with many other methods, as the

number of annotated genomes in public databases grows, the ability

to annotate metagenomic samples should continue to improve.

10 | METATRANSCRIPTOMICS

As shown in Table 1, this is a sequencing-based detection tool suit-

able for identifying genes from individuals in a community. Whereas

metagenomics can provide information on taxonomic composition

and metabolic potential, metatranscriptomics can be used to provide

a snapshot of the metabolic activity in a community. Metatranscrip-

tomics involves HTS of reverse-transcribed complementary DNA

(cDNA) from messenger RNA (mRNA) isolated directly from

environmental samples (Carvalhais, Dennis, Tyson, & Schenk, 2012;

Mason et al., 2012). This method has already been used to look at

functional diversity of microbes and eukaryotes in soil (Bailly et al.,

2007; Urich et al., 2008). It has been shown that while metage-

nomics can show metabolic potential (e.g., of deep-sea microbial

communities), the results from metatranscriptomics may yield very

different insights as to which genes are actually being expressed

(Mason et al., 2012). Whereas reverse transcriptase PCRs can only

detect the expression of a single gene at a time, metatranscriptomics

is a high-throughput method that can survey thousands of genes at

a time. Unfortunately, the proportion of an RNA extraction that con-

tains mRNA is very low (2–3%) and may need to be amplified to

obtain enough material for sequencing. If a PCR-based amplification

step is used, then the diversity in downstream steps may not reflect

initial relative abundances. Obtaining high-quality samples with intact

mRNA may be challenging for many types of environmental samples.

As the number of organisms with sequenced genomes increases, so

too should the ability of investigators to annotate their metatran-

scriptomes. As this method provides a snapshot of the genes and

pathways that are expressed in an environmental sample, this is a

very attractive method of generating a very large set of functional

gene information from across a community of organisms playing a

variety of functional roles while using rather generic methods. When

coupled with HTS, this method is highly scalable. As summarized in

Table 1, as WGS reference databases become more representative

of environmental diversity, this method is likely to become a more

reliable source of functional community profiling.

11 | TARGET ENRICHMENT

The terms “target” or “targeted” enrichment refers to a general tech-

nique that can be used in combination with many of the above-

mentioned methods. Target enrichment resides between single gene

metabarcoding and whole-genome sequencing approaches because it

allows a suite of markers to be targeted and enriched prior to

sequencing. Commonly used enrichment methods include the follow-

ing: (i) hybrid capture, (ii) selective circularization and (iii) PCR ampli-

fication. The use of target enrichment is to increase the efficiency of

HTS for biodiversity analyses (Mamanova et al., 2010; Mertes et al.,

2011). Generally, these methods are used to enrich for taxa/genes

present at low abundance in a sample (e.g., parasites/pathogens), or

to reduce the detection of taxa/genes present at high abundance in

a sample (e.g., the host). Because this method relies on designing

oligonucleotides to capture target sequences, this method may limit

the detection of new taxa not currently represented in public data-

bases.

Hybrid capture uses long oligonucleotides, either bound to a

microarray or to beads in solution, to capture target sequences

(Mamanova et al., 2010). This is sometimes referred to as “PCR-free”

enrichment. For biodiversity analyses where the objective is to

detect as many different taxa as possible, hybridization capture has

been shown to recover a greater diversity of arthropod and insect
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orders compared with traditional morphological taxonomic assign-

ment methods and PCR-coupled metabarcoding (Shokralla et al.,

2016). Hybrid capture is a reproducible method, produces relatively

uniform coverage of target sequences and has good capture rates

(Tewhey et al., 2009). This method may be able to generate suffi-

cient template for library preparation that the initial mixed-template

PCR step in DNA metabarcoding can be avoided (Shokralla et al.,

2016). Additionally, hybrid capture tends to select for short frag-

ments with higher specificity than longer fragments. This is because

longer fragments will have a higher proportion of off-target sequence

compared with the probe and because of possible cross-hybridization

within longer fragments (Mamanova et al., 2010). This bias towards

short fragments makes hybrid capture suitable for processing poten-

tially degraded samples from eDNA and producing the short sequence

libraries typically prepared for Illumina MiSeq DNA metabarcoding

(Box 5). Bead-based hybridization is highly scalable across many sam-

ples and can be used to detect thousands of targets at a time. Baits

targeting highly repetitive elements are known to work especially well

compared with baits targeting low copy regions, but this may not be a

problem for studies targeting rDNA or mtDNA across many taxa. This

method is likely to see increased use in biomonitoring and ecological

studies, particularly those studies targeting relatively low abundance

taxa such as arthropods from soil samples where bacteria and fungi

tend to dominate DNA metabarcoding libraries. Hybridization-based

capture is easy to implement and is a low-cost approach to improve

the efficiency of high-throughput DNA metabarcoding. It has been

suggested that the integration of hybridization enrichment in biodiver-

sity analyses of signature DNA regions could mean a shift to a more

meaningful interpretation of read numbers for CO1 metabarcoding

studies, that is, reflecting biomass, but this needs further study as data

on mitochondrial number variation and body size variation can be

quite different even across a single taxonomic group such as the

Insecta (Shokralla et al., 2016). Bead-based hybridization in solution

can be conducted in 96-well plates and is more scalable than on-array

enrichment, which also requires special equipment (Mamanova et al.,

2010).

Selective circularization using molecular inversion probes (MIPs)

works much like hybridization capture except that a universal

sequence is flanked by target-specific sequences, such as restriction

sites, and these constructs hybridize to sheared or digested DNA-

forming loops. Once the MIPs have hybridized to their targets,

nucleotides are added to fill the gap and ligation closes the circles.

This method is highly specific. It has been shown that a large portion

of sequences, however, map to the universal sequence and target-

specific sequences (Tewhey et al., 2009). This method has the

potential to detect fewer taxa for biodiversity analyses compared

with hybridization capture so is less likely to be adopted by the

molecular ecology community for biodiversity studies.

Target enrichment using PCR is often the first step in PCR-

coupled DNA metabarcoding. Digital PCR (discussed above) can also

be used for target enrichment prior to HTS (Tewhey et al., 2009).

The main advantage of using PCR is its low cost, ease of implemen-

tation and the production of large volumes of template for library

prior to HTS. However, there are many issues regarding amplification

bias and subsequent changes from the original template ratios in

mixed-template reactions and have already been discussed (Metabar-

coding, above). Additionally, even digital PCR has its own biases and

requires careful optimization. Because of the biases associated with

mixed-template PCR, any method that avoids this is an attractive

option for investigators who want to see a less-biased view of biodi-

versity in their samples.

12 | FUTURE OUTLOOK AND CHALLENGES

The purpose of this review was to provide a guide to commonly

used as well as newer and lesser-known methods for genomics anal-

ysis of biodiversity data. Along with this, we also presented data-

bases, tools and methods used with the widely popular and highly

scalable DNA metabarcoding method for conducting biodiversity and

biomonitoring studies. Despite widespread use of many of the

techniques we review here, there remain challenges to DNA-based

biodiversity analyses that need to be addressed before the field can

move from descriptive works to a form that can be used to inform

policy and management decisions or be utilized in long-term large-

scale studies: (i) continued development of highly scalable laboratory

methods, (ii) improving bioinformatic algorithms and their accessibil-

ity through robust software tools, (iii) large-scale integration of dif-

ferent data types and (iv) growth of reference databases.

12.1 | Scalable laboratory methods

The most popular data generation methods for high-throughput bio-

diversity and biomonitoring studies are scalable; that is, they can

accommodate increases in number of samples to be processed

because they are amenable to automation and parallelization. Kits

are currently available to process samples from DNA extraction

through to sequencing in plate-formatted batches. Microfluidics,

however, can further miniaturize a reaction’s footprint to micro-

scopic lengths and to microlitre or picolitre volumes. Microfluidics, or

lab-on-a-chip solutions, could play a role in biodiversity studies by

reducing sample sizes, decreasing reaction times, increasing automa-

tion and eventually reducing cost (Dutse & Yusof, 2011; Liu & Zhu,

2005; Wu, Kodzius, Cao, & Wen, 2014). An integrated microfluidic

solution that allows for DNA extraction, PCR and DNA fragment size

detection on a single chip already exists (Easley et al., 2006). In the

future, we could see how an integrated microfluidic solution that

manages nucleic acid extraction through to sequencing could

become the “sample-in-answer-out” holy grail for truly high-through-

put biomonitoring that is rapid, reproducible, and eventually portable

and easy to use by nonspecialists.

12.2 | Bioinformatics

We use the term bioinformatics to include not just raw sequence

processing, but the implementation of algorithms for the analysis of

330 | PORTER AND HAJIBABAEI



large-scale data sets. Current bioinformatic methods are a moving

target, continually striving to keep up with the increasingly large

data sets being generated by HTS platforms. Current challenges

include improving the existing taxonomic and functional assignment

tools, generally moving away from similarity- and phylogeny-based

assignments in large-scale studies and moving towards composi-

tion-based, machine learning, and other hybrid methods that are

faster and produce meaningful confidence values for assignments.

We predict the next generation of algorithms will not only classify

sequences, but attempt to predict which ones represent new spe-

cies (Lan, Wang, Cole, & Rosen, 2012). The newest trends are ran-

dom forest classifiers that can be used, for example, to predict

sample origin based on community composition, that is, classifica-

tion of whole communities as opposed to single taxa. Additionally,

Bayesian classifiers can be used not only for taxonomic assignment

but also for determining source/sink environmental interactions.

For example, the Earth Microbiome Project analysed 2.2 billion 16S

rDNA sequence reads from more than 23,000 samples, and they

used a portion of this extensive microbial catalog to train a random

forest sample classifier to predict the origin of the remaining sam-

ples (Thompson et al., 2017). They also used a leave-one-out cross-

validated model with all source environments to determine which

other environments were most similar. Another bioinformatic bot-

tleneck is the production of reports and visualizations in an intu-

itive manner without the need for extensive programming skills.

For example, a drag-and-drop type platform that allows users to

explore different data visualizations, such as from microbiome

studies, is already being developed (Bik, 2014). The ability to

reduce large amounts of data into usable results, a process that

can take just as long or even longer than the sampling process, will

go a long way towards understanding complicated systems, and

informing management decisions in a more timely manner.

12.3 | Integration of different data types

Biodiversity studies greatly benefit from databases containing DNA

sequences (National Center for Biotechnology Information (NCBI),

1988; Ratnasingham & Hebert, 2007; Cole et al., 2014). Sequence

data are not particularly meaningful on its own, however, without

their metadata. A future challenge will involve strengthening linkages

among the usual biodiversity metadata such as taxonomy, geo-

graphic information, local biotic and abiotic measurements, as well as

incorporate earth observation data such as numerical weather data

as well as photograph, radar and sonar imagery. For instance,

addressing management impacts on a large scale to inform science-

based decision-making will require marrying environmental data from

Earth observation with biodiversity information for comprehensive

modelling (Bush et al., 2017).

12.4 | Growth of reference databases

In the future, the ability to concurrently sample large numbers of

unlinked markers from individuals as well as from eDNA samples in

large-scale biodiversity studies will likely come from PCR-free tech-

niques such as target enrichment, metatranscriptome, and metagen-

ome sequencing (Hollingsworth et al., 2016). Each of these

methods allows multiple regions of the genome to be captured,

increasing the DNA sequence information per taxon and increasing

the chances of detecting the greatest number of taxa. This infor-

mation can only be fully leveraged when comprehensive reference

sequence databases are richly annotated as well as designed to

allow for efficient data mining and report generation.

Focusing on individual specimens and alpha taxonomy has been

the tradition in biodiversity surveys of macroscopic organisms.

Although specimens are necessary for assembling vouchers and ref-

erence sequence libraries, biomonitoring projects have gained

momentum by including genomic analysis of environmental samples.

It has already been shown that techniques such as DNA barcoding

and metabarcoding can make significant contributions to biodiversity

and biomonitoring studies (Janzen et al., 2005; Meier, Wong, Sri-

vathsan, & Foo, 2016; Shokralla, Hellberg, Handy, King, & Hajibabaei,

2015). For better or worse, DNA-based methods are supplementing

and, in some cases, even supplanting individual specimen-based col-

lection for large-scale biomonitoring (Baird & Hajibabaei, 2012).

Although multi-omics are often considered the future of community

studies, in the microbial world, the thinking has come full circle.

There has been a call for more work on isolating and cultivating

specimens together with ecological observations to improve their

understanding of microbial communities (Vilanova & Porcar, 2016).

To provide some perspective, we borrow the analogy used by E.O.

Wilson (Wilson, 2017), that DNA-based biodiversity and biomonitor-

ing studies are like an aerial-survey; what we need are more “boots-

on-the-ground”. Ultimately, the continued growth of high-quality ref-

erence sequences will only be possible in collaboration with tax-

onomists who have the expertise to find, collect, culture, and

identify new specimens for DNA barcoding and WGS. If every

“metabarcoder” reached out to include such experts in their projects,

this could help to build a stronger foundation for the community as

a whole. We hope this review provides some insight on how scalable

DNA-based methods are currently becoming the leading source for

acquiring biodiversity information.
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