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ABSTRACT
Interest in knowing more about the Earth’s land cover and
how it has changed over time motivated the mission and
sensor design of early terrestrial remote sensing systems.
Rapid developments in computer hardware and software in
the last four decades have greatly increased the capacity for
satellite data acquisition, downlink, dissemination, and end
user science and applications. In 1992, Townshend reviewed
the state of land cover mapping using Earth observation data
at a pivotal point in time and in the context of years of
research and practical experience with Landsat Thematic
Mapper (TM), Satellite Pour l’Observation de la Terre (SPOT)
High Resolution Visible (HRV) and Advanced Very-High-
Resolution Radiometer (AVHRR) data, demonstrating the
opportunities and information content possible with increased
spatial, spectral, and temporal resolutions. Townshend charac-
terized the state-of-the-art for land cover at that time, identi-
fied trends, and shared insights on research directions. Now,
on the 25th anniversary of Townshend’s important work, given
numerous advances and emerging trends, we revisit the status
of land cover mapping with Earth observation data. We posit
that a new era of land cover analysis – Land Cover 2.0 – has
emerged, enabled by free and open access data, analysis ready
data, high performance computing, and rapidly developing
data processing and analysis capabilities. Herein we character-
ize this new era in land cover information, highlighting institu-
tional, computational, as well as theoretical developments that
have occurred over the past 25 years, identifying the key
issues and opportunities that have emerged. We conclude
that Land Cover 2.0 offers efficiencies in information genera-
tion that will result in a proliferation of land cover products,
reinforcing the need for transparency regarding the input data
and algorithms used as well as adoption, implementation, and
communication of rigorous accuracy assessment protocols.
Further, land cover and land change assessments are no
longer independent activities. Knowledge of land change is
available to inform and enrich land cover generation.
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1. Introduction

Land cover is a critical descriptor of the Earth’s terrestrial surface and spatially explicit
land cover information and summary statistics are a requirement for a range of natural
resource management decisions at local, national, and international scales. Land cover
informs the functional relationship between terrain, climate and soils, providing biophy-
sical insights into the environment and drivers of change (DeFries et al. 2002;
Townshend et al. 2012; Franklin and Wulder 2002; Andrew, Wulder, and Nelson 2014).
Land cover is typically described as a set of hierarchical classes, each denoting the
dominant biotic and abiotic assemblages occupying the Earths’ surface (e.g., Grekousis,
Mountrakis, and Kavouras 2015). Spatially-explicit land cover data are important for
characterizing anthropogenic activity and biogeographical and eco-climatic diversity
(Loveland et al. 2000; Turner, Lambin, and Reenberg 2007).

The free and open availability of global coverage Earth observation data system-
atically collected and archived by space agencies, such as the European Space Agency
(ESA) Sentinel series, and the U.S. National Ocean and Atmospheric Administration
(NOAA) Advanced very-high-resolution radiometer (AVHRR), the National Aerospace
Science Administration (NASA) Moderate Resolution Imaging Spectroradiometer
(MODIS), and NASA and the United States Geological Survey (USGS) Landsat series,
have enabled the rapid development of private and public data commons. In the last
decade, rapid increases in computing power (and a significant reduction in associated
costs), combined with free and open satellite data, have led to a migration of programs
facilitating broad area land cover mapping from being exclusively the domain of public
agencies and a small number of well-financed research groups. Cloud-based computing
systems increasingly enable users to process data and develop land cover products
without significant investments in computing infrastructure (e.g., Gorelick et al. 2017;
Yang et al. 2017a). At the same time, there is increasing inclusion of these data (and
derived products), especially Landsat, in national and international activities and pro-
grams (e.g., GCOS 2016; Gong et al. 2013; Hansen et al. 2013; White et al. 2014; Pettorelli
et al. 2016).

The first terrestrial remote sensing data was provided by the Landsat (1972) and
NOAA AVHRR (1978) programs. Initially, large area (i.e., regional to global coverage) land
cover products were developed at coarse spatial resolutions using AVHRR data because
the data were free and the small number of coarse spatial resolution (approximately
1.1 km data at nadir) bands associated with these data resulted in data volumes that
could be stored and manipulated over large areas (Hansen et al. 2000; Loveland et al.
2000; Cihlar 2000; Franklin and Wulder 2002). The advent of the MODIS Terra and Aqua
sensors with a design heritage from AVHRR and Landsat (Justice et al. 1998) lead to the
development of a systematic global annual 500 m land cover product (Friedl et al. 2002),
which is currently being reprocessed and updated for a fifth time using reprocessed
MODIS data inputs. While AVHRR and MODIS afforded land cover classification at a
global scale with freely available data, the relatively large pixels limited the applicability
of the maps for management or planning activities (Cihlar 2000; Franklin and Wulder
2002), or to generate information at a level of detail informative to national or interna-
tional programs (e.g., sub-hectare minimum mappable units, Patenaude, Milne, and
Dawson 2005; Rosenqvist et al. 2003).
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Land cover mapping research was undertaken from the first availability of Landsat
data (Anderson et al. 1976), but was typically constrained to limited spatial extents
because of data cost and (at the time) limitations to data storage (Cihlar 2000), with
some notable exceptions including, for example, Landsat mapping of deforestation in
the Amazon (Skole and Tucker 1993). As reviewed in Franklin and Wulder (2002), circa
2000 there were a number of large area land cover mapping projects implemented, with
noteworthy examples including for the United Kingdom (Fuller, Groom, and Jones 1994),
Europe (Bossard, Feranec, and Otahel 2000), the United States (Vogelmann et al. 1998),
and Canada (Wulder et al. 2003; Wulder et al. 2008). Building upon these examples and
experience, Cihlar (2000) summarised the state-of-the-art in the remote sensing of land
cover at the turn of the century and offered an early understanding of how an end-to-
end processing stream could be designed to support land cover mapping. Based upon
experience in using MODIS data for monitoring, Townshend and Justice (2002) shared
lessons learned (including science team involvement, reprocessing, algorithm evolution,
systematic quality assessment, validation, and data systems) that continue to inform
terrestrial monitoring activities and underpin concepts around the need for product data
collections with periodic reprocessing, and the need for analysis-ready data products.

Despite the identification of end-to-end processing workflows, limitations associated
with data costs and availability persisted and reduced the capacity and ambition of
practitioners. Computing storage and processing power continued to increase as did the
number, options, and functionality offered by commercial software packages and
increasing acumen in image processing. The policy change by the USGS to provide all
the Landsat data for free via the internet significantly enabled capacity to meet user
ambition (Woodcock et al. 2008). Despite early issues with Landsat data access via the
internet in less connected parts of the world (Roy et al. 2010a), the free data access
policy was rapidly seen as a pivotal moment for land cover mapping and monitoring at a
spatial resolution that was capable of capturing human influence (Wulder et al. 2012).

For planning and management purposes, knowledge of how humans use the land is
often more important than knowledge of land cover. Land use describes the social,
economic, and cultural utility of the land (Turner 1997), and is known to alter how
ecosystems function (DeFries, Foley, and Asner 2004). Land use impacts ecosystem
services including biodiversity (Tuanmu and Jetz 2014; Andrew, Wulder, and Nelson
2014), mediating greenhouse gas emissions (DeFries et al. 2002; Li, W. et al. 2017) and
the temporal sequences of deforestation (Müller et al. 2016), as well as harvesting and
regeneration (White et al. 2017). Critical to capturing and relating phenomena at human
scales is the spatial resolution of the imagery (Townshend and Justice 1988; Small and
Sousa 2016). Can the phenomena be captured using many pixels, or are the phenomena
subsumed within a pixel? Strahler, Woodcock, and Smith (1986) outline the relationship
between spatial resolution, object detectability, and information content. Commercial,
high-spatial resolution, satellite data have only been available since 1999 and thus,
despite the increasing number of sensors available acquiring data at a high (<10 m)
and medium (10-100m) spatial resolution (Belward and Skøien 2015) no other satellite(s)
program offers the temporal depth, radiometric calibration, and open access of the
Landsat program (Roy et al. 2014; Wulder et al. 2016). As the Landsat-like ESA Sentinel 2
satellites (Drusch et al. 2012) acquire more data to archive, additional options emerge,
especially given cross-calibration with Landsat (Zhang et al. In review) allowing for a
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shared archive of free and characterized multi-sensor data for time series analysis. The
relative spatial and spectral compatibility of the Sentinel 2 and Landsat systems will
enable a virtual constellation (Wulder et al. 2015) allowing the integration of their data
to meet science and application needs and providing, for the first time, near weekly
cloud-free medium resolution surface global coverage observations (Li and Roy 2017).
The compatibility of Sentinel 2 with Landsat allows for new measures from Sentinel 2 to
be supplemented by Landsat (or vice versa) and for utilization of the historic archive of
Landsat to inform time series with Sentinel 2.

In this paper we review the key changes to land cover mapping over the past quarter
century using Townshend (1992) as a benchmark. We reflect on these advances and the
impacts on land cover generation, summarize the previous outlook for land cover, then
offer insights on the current status, with some thoughts on outstanding issues and
emerging trends. Building upon comparisons with conditions in the early 1990’s to
present, we overview the current status and future opportunities while offering a
conceptualization of a Land Cover 2.0.

2. Townshend: land cover

Townshend (1992) wrote a seminal paper describing the derivation of land cover
information from Earth observation data. His paper was written at a time when image
classification using visual photo interpretation was no longer considered a viable option,
as a result of increasing labour costs, long turn-around times for outputs, and human
subjectivity. At the same time, European remote sensing efforts were increasing with the
launch of the first of a series of French SPOT satellites in 1986 (Courtois and Traizet 1986)
and other satellite systems (Belward and Skøien 2015). At the time, land cover mapping
efforts using remotely sensed data were disparate and independent. Townshend (1992)
suggested that the provision of land cover information from remote sensing technology
was in its infancy, and that the reliable provision of operational land cover information
was a vision for the future. Through his synthesis, Townshend (1992) examined efforts
that were being undertaken to generate more unified (via increasing standardization of
common concepts and methods) land cover assessments, which in turn would herald an
array of new opportunities globally.

Townshend (1992) highlighted factors that limited the derivation of land cover infor-
mation from remotely sensed data. First and foremost were a lack of satellite data options,
which included the number of satellites, the limited types of sensors and their related
spectral and spatial characteristics. Limited data options resulted in an inability to distin-
guish land cover categories of interest due to a lack of spectral resolution (e.g., overly wide
band-passes). Opportunities were noted regarding the use of multi-temporal analysis to
derive phenological variation and reduce cloud impacts. Townshend forewarned that the
assumption that a single correct class is appropriate for every pixel is not necessarily
possible, especially at lower spatial resolution. He also suggested that radar data (speci-
fically ERS-1) could help deal with issues such as persistent cloud cover and that advances
in radar signal processing could result in improved land cover discrimination, especially
over time. This role of radar for land cover mapping has generally been unfulfilled, with
backscatter proving to be a complex response to understand and model (Dobson, Ulaby,
and Pierce 1995). The provision of radar data in a systematically and consistently
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processed open access form such as by the recently launched Sentinel-1A and 1B C-band
systems (Torres et al. 2012) is expected to lead to greater operational uptake. The second
limiting factor identified by Townshend (1992) was image processing tools. New image
processing tools were required that accounted for spatial variability, offering enhance-
ments over per-pixel classifiers incorporating knowledge based information, contextual
classifiers, and addressing the impact of mixed pixels.

Three main trends were noted by Townshend (1992). First, research into land cover
mapping was undertaken by small, independent research groups with little integration
between groups, and was constrained by limited data storage and computing power.
Second significant data pre-processing (e.g., geometric and radiometric correction) and
time consuming routines, such as reading data from tape archives, were required before
land cover classification could begin. Lastly, and perhaps most importantly, Townshend
(1992) highlighted a general need to refocus interest in the activity of land cover
monitoring through time, and expanding beyond the assessment of land cover itself
to include land cover dynamics and land use, with a special focus on the information
needs and requirements of the end-user community.

Townshend (1992) identified that for land cover mapping and monitoring, the spatial
resolution and related detail of Landsat TM (30 m) and SPOT-HRV (20 m) were essential.
Recognising the increasing availability of higher spatial resolution from both North
American and European programs, Townshend proposed that increased spatial resolu-
tion would not only improve discrimination between target land cover classes and
reduce mixed pixels for certain land cover catagories, but also improve cloud screening
(as more clouds would be visible, not subsumed within pixels), making inter- and intra-
annual monitoring more feasible. Concurrent with increasing use of Landsat TM and
SPOT-HRV data at that time was a resurgence in the use of coarse spatial resolution data,
such as AVHRR, for land cover mapping. AVHRR had a daily revisit promoting composit-
ing approaches (Holben 1986) leading to recognition of the value of having increased
temporal frequency for land cover discrimination (Hansen et al. 2000). The linkage
between easily accessible data and uptake is well known. For example, the number of
images delivered in the best year prior to the Landsat archive being opened in 2008 was
about 25,000 (Wulder and Coops 2014). In contrast, at present, over 1 million images are
downloaded per month, for a total of over 68 million downloads since 2008 (USGS
2018). Arguably, the lack of uptake of SPOT imagery over the previous two decades is
linked to data costs and the absence of a systematic collection to archive, even though
the data is of high quality.

3. Land cover 2.0

3.1. Key concepts

Today, 25 years after Townshend’s (1992) review, the rationale for land cover mapping
remains relevant and now includes clearly-defined information needs associated with
understanding and mitigating climate change, monitoring habitats, deforestation, land
abandonment, land conversion to agriculture, and urbanization. Users at all levels
recognise that data used to address these needs should be accurate, synoptic, spatially
and thematically detailed, and regularly updated in a consistent and systematic manner.
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In the past 25 years, significant changes in land cover mapping and monitoring have
occurred. Here we draw a parallel with how the internet has evolved over time: from
early development and exploration in the 1990s where users could view and download
relatively static content, to today and the era of ‘Web 2.0’ where the content may
change in near real time and users can interact directly with the content and participate
in transparent and collaborative activities.

Various science and application advances have combined to form a newly integrated
change detection and land cover mapping paradigm that we term Land Cover 2.0. This
new paradigm for generating land cover products captures current understanding of
automated data processing of analysis-ready and open-access data using flexible classi-
fication algorithms that result in timely and accurate land cover maps. Land Cover 2.0
can be characterized as empowering users to bring algorithms to analysis ready data, to
access and include supplemental data to improve and validate classification results, and
enable generation of classification maps with more user-specific legends given appro-
priate training data. In contrast to previous practices (Table 1), this emerging paradigm is
enabled by open access to satellite imagery, new image processing techniques focused
both on land cover classification, as well as land cover change that allows for increased
flexibility in map training and production. Critical to Land Cover 2.0 is the capacity for
integrated detection of change to inform and guide land cover mapping outcomes. The
presence of change (e.g., wildfire), when combined with ecological knowledge or
expectation of a given process post-change, can provide for a priori expectations of
land cover. For example, treed areas that are burned by wildfire typically transition
initially to non-treed herbaceous vegetation cover, followed by a succession of other
classes, ultimately returning to a treed class, provided no change in land use or condi-
tion has occurred. As such, incorporation of change information into the classification
process allows for insights regarding expected land cover class transitions related to
successional process, and likewise provides a mechanism to identify illogical class
transitions (e.g., tree to water). It should be noted that neither Land Cover 1.0 nor 2.0

Table 1. Comparison of general characteristics of previous and current land cover paradigms.
Land Cover 1.0 Land Cover 2.0

Limited data options in terms of spectral, spatial, and
temporal resolutions

A broad range of data options

Limited data availability Mass data availably (free, open archives)
Significant time and resources required to pre-process Earth
observation data

Standardized, analysis-ready data products to greatly
reduce or eliminate the need for pre-processing

Pre-processing and classification approaches developed on
an ad hoc basis, often unique to the group developing the
product or to the geographic area

Increasingly standardized and transparent
approaches

Classification algorithms that are simplistic and make
assumptions regarding the nature of the input data

Advanced algorithms that are flexible and make
fewer assumptions regarding input data

High cost of data and processing Low cost of data and processing
Single date representation, state not trends Time series informed land cover, allows for both state

and trends
Lack of agreement between land cover and land change
products

Integration of land change information into land
cover product development

Products not systematically generated Systematically generated
Static products More frequent products
Periodically updated, not necessarily temporally integrated Frequently updated and temporally integrated
Difficulties in disseminating derived products Ease of access and sharing of derived products
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are a singular set of methods, but rather an overarching approach, aimed at capturing
and relating the state-of-art for different eras of land cover mapping.

3.2. Elements of land cover 2.0

Land Cover 2.0 is a flexible and iterative approach to deriving land cover information. In
Figure 1, we indicate the thematic elements of Land Cover 2.0; however, this concep-
tualization is not intended to be prescriptive or exhaustive, but rather illustrates the
elements of an overall approach to land cover classification. These elements include: (i) a
clearly defined information need; (ii) the definition of appropriate and realistic land
cover legends; (iii) the acquisition of independent calibration and validation data; (iv) a
standardised image analysis approach that incorporates image preprocessing innova-
tions, derivation of spectral time series metrics, and integration of auxiliary data; (v) the
use of classifiers able to deal with big datasets; (vi) post-classification error reduction and
iterated accuracy assessment; and (v) innovative product delivery methods.
Fundamentally, the element that most strongly distinguishes Land Cover 2.0 is the
critical role of change information, which can be fully integrated into the land cover
classification process.

Figure 1. Conceptual diagram contrasting Land Cover 1.0 and Land Cover 2.0 (see text for elaboration).
Both paradigms are driven by clearly articulated information needs, which in turn are used to define
desired products and traits. Chiefly, Land Cover 2.0 shows the integration of land cover and change
detection, with opportunities to iterate and improve products prior to digital delivery.
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3.2.1. A clearly defined information need
As a prerequisite to a successful land cover mapping project, it is important to be clear
of the information needs of the end users. Is the product intended to support climate
change mitigation or for monitoring habitats or land conversion to agriculture? Often
land cover products fulfill a variety of information needs related to management, policy,
and science (GCOS 2011; GCOS 2016). How a land cover product will be used and
applied should guide decisions, ranging from the selection of land cover classes and the
spatial and temporal extent of the map products, to how the outcomes are delivered.
Usually the spatial and temporal extent is straightforward to define, although there may
be limitations resulting from data availability. For example, outside of a few regions, the
availability of historic Landsat data can be limited (Wulder et al. 2016). Also of regional
concern is the presence and persistence of cloud cover, which can significantly reduce
the number of surface observations available for land cover classification (Kovalskyy and
Roy 2013).

3.2.2. Land cover legend
The information needs motivating the development of the land cover information
should define the legend to be utilized. The land cover class definitions should be
mutually exclusive and comprehensive (or include an unknown class) (Anderson et al.
1976). The classification scheme should reflect the information content of the data to be
classified (Running et al. 1995; Tsendbazar, De Bruin, and Herold 2015). For example,
even with comprehensive amounts of high quality training data, classifications become
increasingly difficult to produce reliably as the number of classes increase. The spectral
and spatial resolution of the satellite data may constrain the adoption of an appropriate
class legend and when considering small areas and single images, it has been common
practice to quantify class separability as part of the classification approach. The advent
of large-area classifications, where the same land cover class may have quite different
spectral signature geographically (Henderson 1976; Woodcock et al. 2001), and the use
of multi-temporal satellite data to capture between-class phenological and other surface
condition differences (DeFries, Hansen, and Townshend 1995; Zhang and Roy 2016),
have reduced the applicability of this kind of class separability analysis. For many
projects, there may be a programmatic and predetermined class legend, and the
suitability of the classification scheme is inferred from class-specific accuracy assessment
procedures. For example, the United States Department of Agriculture (USDA) 30 m
Cropland Data Layer (CDL) provides an annual conterminous United States land cover
product with more than 100 classes but with a high overall classification accuracy of
about 85% due to the significant amounts of training data that are used (Boryan et al.
2011; Johnson and Mueller 2010). Standard classification schemes, such as the Land
Cover Classification System (LCCS) (Di Gregorio 2005), may provide utility as pre-devel-
oped and portable classification scheme and be used when an information needs
specific classification is not required.

The increasing availability of land cover products has logically led to some users
comparing land cover maps as a means of better understanding their differences and
strengths (Wulder et al. 2004; Herold et al. 2008) and to subsequently apply these
combined products to meet science and application needs (Tuanmu and Jetz 2014;
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Jung et al. 2006). Map inter-comparisons however inform on the agreement and
differences between products rather than provide insights on the classification accuracy.
The degree of classification correspondence among land cover maps can be as much
due to biases in the classification approaches, or data used, as much as it is a statement
about accuracy. Despite this, general agreement between maps may highlight which
classes are most likely to be reliably mapped or are dominant on a landscape (Herold
et al. 2008). While inter-comparison of land cover maps does not provide insights into
accuracy directly, it can be useful if map harmonisation is the goal. For example, to
compare individual land cover classes in a given region derived from multiple sensor
systems or at different spatial scales. These considerations highlight the utility of a
robust accuracy assessment, while also buttressing the need for communication of
actual methods applied in a given land cover mapping project.

3.2.3. Calibration and validation data
The majority of land cover classification approaches are supervised and require calibra-
tion (training) data composed of reference samples of known land cover classes. Ideally,
classification accuracy is then quantified via comparison of the output land cover
classification with an independent set of validation data. As calibration and validation
data can be expensive and/or difficult to acquire, alternative approaches such as cross-
validation (Friedl et al. 2010) or bootstrapping have also been applied (Champagne et al.
2014). Calibration and validation data may be acquired via field sampling (Nusser and
Klaas 2003), visual assessment of higher spatial resolution remotely sensed data
(Morisette et al. 2003; Wulder et al. 2006; Pengra et al. 2015; Midekisa et al. 2017), pre-
existing, yet scale appropriate, non-remote sensing sources (Inglada et al. 2017), or from
other land cover classification products that are subjected to filtering (Hansen et al.
2008; Gray and Song 2013; Wessels et al. 2016; Zhang and Roy 2017; Hermosilla et al.
2018). New ways of obtaining calibration and validation data are currently under
investigation, including adaptive learning based training data collection and classifica-
tion (Egorov et al. 2015) and use of volunteered geographic information (VGI; Foody
et al. 2015) such as open street maps (Yang, D. et al. 2017), crowdsourcing (Geo-Wiki,
Fritz et al. 2012; 2017), or volunteered photographs (Tracewski, Bastin, and Fonte 2017).
Approaches, protocols and sampling designs for the collection of calibration and valida-
tion data have matured over time (e.g. Janssen et al. 1994; Foody 2002, Stehman 2009;
Stehman 2013) with increased emphasis on calibration data needs relative to specific
data inputs (i.e. time series, Pelletier et al. 2017) and classification approaches (e.g.
Millard and Richardson 2015; Mellor et al. 2015; Scott et al. 2017).

3.2.4. Standardised image analysis approaches
3.2.4.1. Data and processing. Satellite data processing and land cover classification
can be undertaken on single desktop computers, on local networks of computers, on
high performance computing systems that enable parallel processing, and on cloud
computing systems that use a network of remote servers accessible via the internet.
Systematically generated large-area land cover products such as the global MODIS land
cover product are generated conventionally on dedicated non-public high performance
government funded computing systems (Justice et al. 2002). In recognition of the need
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for accredited science users to ‘bring their application to the data’, many government
agencies are building high performance computing systems that host large satellite data
collections, such as the NASA Earth Exchange (NEX) (Nemani et al. 2011) and the
Australian Geoscience Data Cube (AGDC) (Lewis et al. 2017), to enable large volume
processing. Initiatives such as the Committee on Earth Observation Satellites (CEOS),
have suggested portable open-access data cube architectures (e.g., CEOS 2017) with the
aim of facilitating the use of EO data and sharing knowledge across the EO global
community.

With the advent of well calibrated image data, analysis ready data, and higher-level
derived products, the need to undertake pre-processing steps has been significantly
reduced. For large area land cover classification, the satellite data should be defined in a
common map projection and tiling scheme, requiring that the data are reprojected and
resampled, which raises issues concerning appropriate projections and resampling
methods (Eidenshink and Faudeen 1994; Roy et al. 2010b; Roy et al. 2016a; Li, Z. et al.
2017). Correction for atmospheric effects is required when classification or change
detection involve large areas or multi-temporal data (Song et al. 2001). Previously,
relative normalization of reflectance or radiance from different image was often under-
taken, and based typically on statistical calibration among images at pseudo-invariant
features identified in spatially overlapping acquisitions (Schott, Salvaggio, and Volchock
1988; Schroeder et al. 2006). The use of surface reflectance derived from calibrated
sensor data has largely reduced the need for relative normalization approaches.
Atmospheric correction of the at-sensor reflectance or radiance to surface equivalents
has evolved from an ad hoc and largely empirical pre-processing step (Chavez 1988), to
an automated standard process using radiative transfer algorithms and atmospheric
characterization data (Vermote et al. 2016). Despite this, some researchers do not
advocate the classification of atmospherically corrected data and prefer not to use the
shorter wavelength visible bands (e.g. Hansen et al. 2011), which are particularly sensi-
tive to atmospheric effects (Ju et al. 2012). Bi-directional reflectance variations imposed
by variations in the viewing and solar geometry occur over most terrestrial surfaces and
for classification purposes are considered as a source of noise unless sensors with
specific directional sensing capabilities are used (de Colstoun and Walthall 2006).
Typically, bi-directional reflectance variations are removed from wide field of view
data, such as MODIS, before classification (Friedl et al. 2002). In narrow field of view
data, such as Landsat or Sentinel-2 (Gascon et al. 2017), these effects have been
minimized using statistical correction methods (Toivonen et al. 2006; Hansen et al.
2008) and more recently using more physically-based methods (Roy et al. 2016b,
2017). Optically thick clouds, cirrus, haze, and smoke can be difficult to detect reliably
and may be detected as part of the land cover classification process (Hansen et al. 2008;
Lindquist et al. 2008) or removed prior to classification using cloud masking algorithms
that are labelled directly in the input data (Frey et al. 2008; Foga et al. 2017; Zhu and
Woodcock 2014a; Zhu, Wang, and Woodcock 2015). Temporal composites that attempt
to select the ‘best’ available pixel sensed over a given time period have been developed
(Holben 1986; Roy 1997; Roy et al. 2010b; Griffiths et al. 2013; White et al. 2014) to
reduce the influence of atmospheric contamination, clouds and in some cases pheno-
logical variations (Frantz et al. 2017).
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3.2.4.2. Time series metrics. Dimensionality reduction techniques have been applied
in an attempt to maximize the information content and minimize noise prior to classi-
fication, including linear techniques such as principal component analysis (Collins and
Woodcock 1996) and more recently non-linear techniques (Journaux, Foucherot, and
Gouton 2006; Yan and Roy 2015). However, these approaches cannot usually handle
missing data and are computationally expensive (Yan and Roy 2015). More commonly,
spectral band indices and spectral bands are classified. The current state of the practice
for large area multi-temporal land cover classification is to derive spectral band and
band ratio metrics from the image time series. The choice of time series metrics, usually
the maximum and quartile values of spectral indices and spectral bands are often used,
as these metrics are robust to missing data and phenological variations (DeFries, Hansen,
and Townshend 1995; Friedl et al. 2010). Data fusion approaches, such as those based
upon blending of MODIS and Landsat data (Gao et al. 2006; Hilker et al. 2009) may be
implemented to produce synthetic gap-free composites for classification purposes (Senf
et al. 2015). As demonstrated by Azzari and Lobel (2017), time series based temporal
metrics (e.g., change magnitude; persistence of change, among others) that inform on
pixel level trends in spectral values can be informative to land cover classification.
Similarly, Hermosilla et al. (2015b) used time series metrics as inputs to classify a
range of forest change classes (fire, harvest, among others).

3.2.5. Integration of ancillary data
Ancillary data such as slope and aspect derived from an elevation model can improve
image classification outcomes (Strahler, Logan, and Bryant 1978; Rogan et al. 2003) with
recent examples summarized in Zhu et al. (2016). Midekisa et al. (2017) demonstrated the
use of night time lights as an ancillary data input, to help classify urbanization and extent
of built-up lands. GIS-derived information, such as distance to nearest road (or populated
place), also provide valuable discriminatory information for land cover mapping (Rogan
and Chen 2004). Additional ancillary data options are evident in the land cover literature
(e.g., as reviewed in Franklin and Wulder 2002; Khatami, Mountrakis, and Stehman 2016)
and are often straightforward to incorporate given the current processing and classifica-
tion environment. We note that early classification algorithms often could not handle
ancillary data due to assumptions regarding the distribution or nature (i.e. categorical
versus continuous) of the data inputs.

Given an increase in cumulative evidence from decades of satellite measures and
products, it is expected that there will be a greater use of a priori information to inform
land cover classifications and aid with pixel screening activities. The judicious application
of such a priori information can be useful for reducing class confusion in environments
that are known to be problematic (e.g., mountainous areas) and for improving classifica-
tion accuracy.

3.2.6. Advanced classification algorithms
Twenty five years ago, unsupervised algorithms such as k-Means, ISODATA, and super-
vised parametric classifiers (e.g., Parallelepiped, Minimum Distance, Maximum
Likelihood, Linear Discriminant) were commonly used for land cover classification
(Cihlar 2000; Franklin and Wulder 2002; Grekousis, Mountrakis, and Kavouras 2015).
Unsupervised classifiers required minimal user intervention except for specification of
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how many classes were desired and then manual assignment of class labels to auto-
matically generated output pixel clusters. Early supervised classifiers such as parallele-
piped and minimum distance were easy to implement but not particularly reliable; the
former could only classify pixels whose values fell in specific ranges, and the latter
assumed spectral variability was the same across all spectral bands. Other early super-
vised classification algorithms were parametric and made assumptions regarding the
statistical distribution of the input data, typically assuming a normal distribution (Swain
and Davis 1978). Notably, the maximum likelihood classifier assumes a normal distribu-
tion, requires sufficient ground truth data to enable the estimation of the mean vector
and variance/co-variance matrix of the population, and also has a need for sufficient
training data to invert the covariance matrices which makes maximum likelihood
unattractive for large data sets. Satellite data is not expected to have values that are
normally disturbed nor are classes expected to have entirely distinct features spaces or
the same variance structure (within or between spectral bands). As a result, classifiers
that are robust to these known data characteristics are preferred.

Over the past 25 years non-parametric supervised classifiers have grown in utility to
accommodate complex feature space relationships among classes, including artificial
neural networks (ANN), support vector machines (SVM), and decision tree classifiers, and
have been shown to be more efficient and accurate than parametric classifiers (Pal and
Mather 2005; Breiman et al. 1984; Mannan, Roy, and Ray 1998). Non-parametric classi-
fiers make no assumptions regarding the distribution of the input data, but can be
sensitive to over-fitting of the classifier to the training data. More recently ensemble
non-parametric classifiers that use a different random subset (bootstrap) of the training
data and are applied many times were developed and have been widely adopted for
satellite classification (Doan and Foody 2007; Hansen et al. 2008; Freidl et al. 2010).
Random Forests is emerging as a commonly applied algorithm for land cover classifica-
tion (Gisalson et al. 2006; Rodriguez-Galiano et al. 2012; Belgiu and Drăguţ 2016),
particularly for large area applications (e.g., Pelletier et al. 2016; Zhang and Roy 2017).
Random Forests are a form of decision tree classifier, operating in an ensemble, that use
randomly selected predictor variables for each tree, as well as randomly selected training
data subsets (Breiman 2001). Other supervised classifiers are also emerging, notably the
use of deep learning algorithms that are being applied for land cover classification (e.g.,
Azzari and Lobell 2017). All non-parametric classifiers require appropriate configuration
prior to their application and the optimal configuration of these classifiers has itself
become the subject of investigation (e.g., Pelletier et al. 2016; Pacifici et al. 2008).

3.2.7. Post-classification error reduction
Post-classification approaches to improve classification accuracy by application of med-
ian filters to replace isolated noisy (salt-and-pepper) classified pixels are commonly
implemented. The examination of posteriori class probabilities also provide insights to
improve the image classification results (Beaubien et al. 1999). Moreover, when time
series land cover maps are generated, post-classification error reduction approaches that
incorporate knowledge of land cover dynamics and ecological processes are helpful
(Gómez, White, and Wulder 2016). For example, rules restricting land cover transitions
have been commonly applied (e.g., Liu and Zhou 2004). Other methods rely on the
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spectral evidence of land cover types provided by temporal trends and changes (e.g.,
Gutiérrez-Vélez and DeFries 2013) and initial classification probabilities (e.g., Cai et al.
2014; Gong et al. 2017). Abercrombie and Friedl (2016) proposed a post-processing
framework to mitigate spurious land cover changes in classification time series based on
the use of a Hidden Markov Model (HMM). Using this framework, initially assigned
posteriori class probabilities are temporally analyzed and modified based on a transition
matrix that specifies the likelihood of a land cover class transitioning into another.
Hermosilla et al. (2018) integrated time-series derived changes and HMM to control
class transition likelihoods by combining disturbance presence information with knowl-
edge on ecological succession.

3.2.8. Accuracy assessment
Accuracy assessment is a critical element of Land Cover 2.0. Accuracy assessments that
are statically defensible and transparent are essential to ensure the integrity of the
products developed and enable end user confidence and uptake. Depending on the
accuracy outcome (i.e. the quality of mapping of a given category of interest), it is
possible to revisit the calibration data or classification approach to produce revised land
cover products. Given the increasing ease with which remotely sensed land cover
classifications can now be generated, accuracy assessments will be critical for the user
community to differentiate between the available products.

Accuracy assessments are only meaningful when they are designed in a transparent
and statistically defensible manner (Stehman 2009) and when they make use of indepen-
dent validation data that were not used in model development. Since the early 1990s,
extensive recommendations and good practice guidance have been put forward in the
literature regarding approaches for accuracy assessment of land cover and land cover
change (e.g, Foody 2002; Wulder et al. 2006; Olofsson et al. 2014). Agreement upon
standards and definitions across the remote sensing land cover community for creation
of an open database for calibration and validation would aid in providing independent
unbiased validation capacity. Researchers could access, and contribute to, this database to
verify their data products (Olofsson et al. 2012; Stehman et al. 2012). This has appeal as
interest in citizen science initiatives grow and the capacity to obtain very large datasets
from users could aid in accuracy assessment endeavours (e.g., Comber et al. 2016). A
common repository of reference data would be very advantageous for land cover science.
First, such a repository will potentially increase accuracy due to the huge amounts of
training data provided from users around the globe. Second, it promotes the science
behind land cover mapping and continues to build a well-informed user community on
the benefits and cautions involved in using land cover information. This notion of a global
accuracy assessment database for land cover is not new (e.g., Loveland et al. 2000;
Morisette et al. 2003; Pengra et al. 2015), with much of the background for the design
and implementation of such a data base already established in the literature (Olofsson
et al. 2012, Stehman et al. 2012; Khatami, Mountrakis, and Stehman 2017). If mapping to
an existing and established set of land cover categories this allows for synergies with, and
access to, existing reference datasets. Custom maps will require purpose collected and
documented reference data. Robust product validation follows through a number of
general stages of sophistication, from a small number of spatially limited samples (not
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recommended), through to the recommended systematic assessment of new products
using independent, well-distributed, reference data following a probability sample (using
a design-based approach) relating uncertainties in a statistically robust fashion (Strahler
et al. 2006).

3.2.9. Digital delivery and open access for resulting land cover products
Despite the variability in investment and capability, the overarching notion of Land
Cover 2.0 is to allow users to bring their algorithms to the data. Commercial cloud
services such as Google Earth Engine, Amazon Web Services, Microsoft Azure, and
Descartes Labs are proliferating, offer differing computing environments, infrastructure,
and business models (as outlined in Yang et al. 2017a) while offering significant analysis
and data storage potential. Co-location of data and computational capacity with com-
mon analysis tools in cloud systems have significant potential for enhancing collabora-
tion and community consensus, as well as the transparency of land cover product
development. Outstanding issues related to these services include the development of
interfaces and middleware to allow users to address data compatibility, processing, and
interoperability (Jayaraman et al. 2017), as well as concerns regarding data egress from
the cloud, intellectual property, and costs for cloud service use.

The capacity to digitally deliver land cover products allows for many user options that
did not previously exist. Web Mapping Services (WMS), for instance, allow users to view,
access, and/or download data over the internet. Additional functionality can also be
added to allow users to create custom products, based upon refined sets of land cover
classes for instance, to meet particular information needs. The services can either be
simple based upon stored layers or hierarchal rules, or more complex, requiring cloud
computing-enabled analyses for custom queries via a web processing service (Chen
et al. 2012).

3.3. Examples of land cover 2.0

There are several recent examples of land cover projects exemplifying Land Cover 2.0
principles. Midekisa et al. (2017) utilized the Google Earth Engine cloud computing
platform to map land cover change over continental Africa. Fifteen years of Landsat
data were assessed to better understand changes in land cover, land use, and imper-
vious surfaces. Training data were obtained by visual inspection of Google Earth imagery
and a random forest supervised classification model was applied. The nation of France
was mapped in a systematic fashion by Inglada et al. (2017) using Landsat imagery. The
authors aimed for the procedures developed to be portable to other regions and
amenable to development, to allow for changes in nomenclature or update frequency.
An automated approach using all available image data was implemented using a parallel
workflow for rapid map production and reprocessing as required. A reference training
data set based upon existing datasets, not visual interpretations, was utilized. Using a
spatially partitioned implementation of a random forests classifier, a map for 2014 was
generated along with accuracy statements and confidence maps. Similarly, Zhang and
Roy (2017) generated a 30 m land cover map of North America using 3 years of
publically available higher processed Landsat data (GWELD 2017) with training data
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derived by automated filtering the standard MODIS 500 m land cover product and a
spatially partitioned random forests classification approach. Using a multi-decadal series
of annual Landsat image composites representing the forested area of Canada,
Hermosilla et al. (2018) created a time series informed data cube of land cover. A
random forests classification input with Landsat reflectances, vegetation indices, and
supplemental data layers (elevation and related derivatives), insights on land cover
dynamics for Canada were produced. A transition matrix in conjunction with indepen-
dently derived spectral change information was also used to avoid illogical changes. A
Hidden Markov Model allowed for the class likelihoods for all pixel-series to be con-
sidered allowing for incorporation of temporal information in reducing the presence of
spurious transitions.

4. Outlook for land cover 2.0

4.1. Integrated land cover and land cover change monitoring

In the context of Land Cover 2.0, land cover mapping and change detection are no
longer seen as independent, disconnected activities. Previously, land cover products
were generated to represent a certain date or period in time and land cover change
detection was undertaken as an entirely separate activity, or as a post-classification
exercise (Figure 1). For many users, change in land cover is of paramount interest. The
conversion of forests to non-forest land use or of native grasslands to agricultural land
use are of wide interest for considerations encompassing carbon consequences, biodi-
versity, provision of ecosystem services, and habitat suitability.

In the context of Land Cover 2.0, change information now becomes a key input to
land cover classification. That change information may take several forms. For example,
mapped disturbances can be integrated into the land cover product, either to aid in
labelling the current cover type, or to provide a priori information for likely land cover
types at a given location. Change metrics, derived from image time series, can likewise
be used as inputs to classification algorithms. New approaches capture change informa-
tion as a component of data preparation (e.g., cloud infill, haze detection; Hermosilla
et al. 2015a; 2016), and thus knowledge of if and how a pixel series has changed through
time is captured before land cover classification begins. In a time series context, this
spectral change information can be used to aid in identifying when and where land
cover class transitions occur (i.e., to inform carbon monitoring and reporting, Boisvenue
et al. 2016). Moreover, errors commonly associated with post-classification change
procedures, whereby the difference between land cover maps is used to determine
change, is also mitigated (Fuller, Smith, and Devereux 2003).

4.2. Temporal aspects of accuracy assessment

An emerging issue with regards to accuracy assessment is the difficulty in obtaining
validation data when generating a time series of land cover (Gómez, White, and Wulder
2016). Visual techniques using the high spatial resolution imagery in Google Earth are
problematic prior to ~2000 when high spatial resolution satellite data became increas-
ingly common at the global scale. Even post-2000 when there is imagery available, the
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amount and distribution freely available on platforms such as Google Earth may not
support rigorous accuracy assessment protocols; however, agencies and governments
may be able to procure data to support accuracy assessments (e.g., Morisette et al.
2003). Some jurisdictions may have monitoring plots (such as from forest inventory
programs) but these too will be small in number and limited in distribution. An out-
standing and overarching question relates to how to characterize the accuracy of a
multi-year (i.e. annually over decades) land cover product. We can expect data to be
sparse in the early years with more likelihood of data getting closer to the present time.
If the same methods are applied to produce the time series of land cover, do all years
need to be assessed, or can accuracy be reported on for a representative year? Is a
robust single year assessment preferred over a multi-year assessment that cannot fulfill
sample design requirements? These time series related validation questions remain;
framing of the issues and initial developments have been shown, with scope remaining
for notable future improvements.

4.3. Error reduction, confidence building, opportunities

As previously described in the section concerning post-classification error reduction
(4.2.7), the combined analysis of posteriori class probabilities and ecological knowl-
edge of land cover transitions serve to improve both map accuracy and the
temporal consistency of land cover products (Abercrombie and Friedl 2016;
Hermosilla et al. 2018). Ensemble decision tree classifiers such as Random Forest
generate class-conditional probabilities from the number of votes, or class assign-
ment probabilities, for each class from each decision tree (McIver and Friedl 2001;
Zhang and Roy 2017). In the training phase, Random Forest uses the arithmetic
mean of the class assignment probabilities from each tree to determine the final
class assignment (Belgiu and Drăguţ 2016). In the classification phase however, each
tree in the ensemble will vote for class membership for an unlabelled pixel, and the
class with the most votes, is assigned to the pixel. Mapping these posteriori class
probabilities can provide spatially explicit information useful for refined classifica-
tion of land cover, offering further local information for specific classes with unique
and enhanced modeling opportunities possible beyond purely categorical classifica-
tion outcomes (Figure 2).

Additionally, these posteriori class probabilities enable relative confidence maps to
be derived, enriching the land cover product suite. In this sense, layers such as
distance to the second class based on the post-classification probabilities (Figure 3;
Mitchell et al. 2008) or per-pixel predicted accuracy maps (Khatami, Mountrakis, and
Stehman 2017) facilitate confidence building for the derived products, increasing the
transparency of the mapping process and enabling regions of interest to be high-
lighted. Moreover, class probabilities provide the opportunity for end users with
different information needs to combine or reassess classes allocated and/or probabil-
ities assigned for a given year or over time (Comber, Law, and Lishman 2004). The
uncertainty emerging from a mapping process can be used as information to alter
categories or to alert map users or producers where issues may be present. A land
cover map remains a single interpretation of reality (where many possible interpreta-
tions may exist), mediated by the information needs and application of the end user
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(Comber, Fisher, and Wadsworth 2005). Given current practices and algorithms, it is
possible to carry and convey the uncertainty between classes rather than leaving
pixels unclassified or classified without reference to confidence (e.g., Foody 1996;
Mitchell et al. 2008). For additional examples for incorporating per-pixel information
to improve map results or better understand uncertainties, see McIver and Friedl
(2001) and Friedl et al. (2010).

4.4. Trends, opportunities, and directions in land cover

Given the contemporary context of Land Cover 2.0 in juxtaposition to the institutional
and scientific limitations outlined by Townshend (1992) where will the science and
application of land cover be 25 years from now? Remote sensing is a rapidly changing
and highly dynamic field. There is an increasing number of satellites capturing data at
scales relevant to human interactions with the landscape. The large missions that are the
purview of national space agencies are no longer the only sources of data, with

Figure 2. Example of class membership likelihoods for select classes found in Canada. High confidence is
shown in warmer (red) shades. The spatial distribution of dominant classes (e.g. water, shrubs, conifer-
ous, broadleaf) are shown. Confusion between spectrally similar classes can also be evident in lower
likelihoods.
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commercial data options proliferating. The niches currently filled by government and
commercial satellite operators are diverging, with commercial vendors availing upon
new, lower cost technologies and launch opportunities to place large numbers of small-
satellites into orbit. What these small satellites lack in radiometric consistency, spectral
bands, and orbital stability, is somewhat offset by their high spatial resolution and
frequent temporal revisit period. Determination of how to integrate data across the
range of space-based measures will provide additional monitoring and land cover
mapping opportunities. In the future, land cover applications that are not reliant on a
specific data stream will likely emerge (e.g., Yu, Wang, and Gong 2013; Chen et al. 2015),
increasing the flexibility and speed with which land cover information can be generated
(e.g., Zhang and Roy 2017).

A key facet of Land Cover 2.0 will be the use of data from different satellites to
provide more complete spatial mosaics and/or richer time series for land cover classifi-
cation purposes. Arguably, differences between different sensor data can be overcome if
large amounts of training data are used, although, as discussed above, appropriate
training data collection can be challenging. Alternatively, the different sensor data
may be processed to be more compatible for classification purposes. To achieve this,
the different sensor data may be combined to provide a sensor fusion product, or may
be kept separate but harmonized so that the processed data may be used more reliably
together. The former fusion approach strictly requires that the data from each sensor are
precisely co-registered, calibrated, spectrally normalized to common wavebands, atmo-
spherically corrected (using the same atmospheric characterization), and corrected for
surface anisotropy. Sensor data fusion has been undertaken using physically based
approaches, for example, by inverting Bidirectional Reflectance Distribution Function

Figure 3. Example land cover classification (a) with distance to second class heat map (b). The
example is located near Kotcho Lake in northwest British Columbia, Canada (Lat/Long: 59.06816°N/
121.14950°W). High confidence classes (e.g., water) have large distances to second class based on
the post-classification probabilities. Large distances to second class are also noted for homogeneous
extents of forest. Lower distances to second class, denoting less confidence in the allocated
category, are found for more rare and spatially limited classes (e.g., bryoids) or classes that have
spectral similarity (e.g., herb, shrub, and broadleaf).
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(BRDF) models using reflectance data from different sensors (Jin et al. 2002; Schaaf et al.
2002). Sensor data harmonization can be undertaken in a more empirical manner, for
example, by computation of spectral vegetation indices derived from different sensors,
and/or by applying statistical transformations between similar bands of different sensors
(Brown et al. 2006; Miura, Huete, and Yoshioka 2006; Roy et al. 2016c; Zhang et al. In
review). Ideally, these approaches will enable interchangeable and combined sensor
data use as part of an integrated workflow (or elements of a virtual constellation, Wulder
et al. 2015). However, this becomes challenging if the satellite data and resolution
characteristics and quality differ significantly. For example, research on the use of
MODIS and Landsat data for classification purposes is well established (Hansen et al.
2008). Integration of these data with newer commercial remote sensing systems, which
may be of lower spectral quality but higher spatial and temporal resolution, offers
unique opportunities but additional investigation is required (e.g., Houborg and
McCabe 2018).

A greater integration of modeling with remote sensing could also be expected. Over
terrestrial ecosystems, deterministic processes are at play. For example, disturbed forests
return in a relatively consistent sequence of cover types, and agricultural cropping patterns
are likewise not random. Models projecting a given land cover condition can be statistically
confirmed or denied, thereby reducing reliance on satellite observations to provide a
unique information outcome, and offering opportunities to increase product temporal
density or spatial detail. Furthermore, data assimilation has been shown to offer new
opportunities for integrating remotely sensed data and models beyond land cover, such
as in the generation of other forest inventory information (Nyström et al. 2015). Integration
of data from different sensors with disparate spectral and spatial resolutions may also be
enabled through a combined modeling and remote sensing approach. This integrated
approach could serve to reduce the need for radiometric uniformity across an envisioned
data stream (opening opportunities for CubeSat, for instance). Caution must be exercised
with regards to the radiometry and spectral consistency of CubeSat data (Houborg and
McCabe 2018). Large numbers of CubeSat images are required to represent areas of the
extents discussed herein (regional, continental, to global). Differences in view angles and
illumination conditions can be expected, which serves to reduce spectral comparability, as
well as the science and applications possible. Non-calibrated data sources may be useful for
capturing change but will be limited for themore broad suite of attributes desired of remote
sensing (land cover, biophysical estimates, or capture of subtle change or trends). Here, the
distinction between the use of images as pictures versus the use of images as calibrated
observations must be made; the two products service different information needs and have
different utility in a long-term land cover monitoring context.

The capacity to generate land cover information in near-real time is a logical progression
from the aforementioned prospects for integrating different data sources and modelling
approaches into land cover product development. Many stakeholders would benefit from
reduced latency and increased consistency in obtaining information on when, and where,
land cover change is occurring (e.g., deforestation, illegal logging, wildfire, disaster
response). While the need is evident with methods currently under development (Zhu
and Woodcock 2014b), the nature, timing, and detail of what is reported in near-real time
remains to be determined. Given the data storage and download capacity now possible,
data can increasingly be collected in an ‘always-on’ mode. This would provide the regular,
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consistent within-year measures that are required for near-real time algorithms. Moreover,
increasingly sophisticated automated ground systems reduce the latency in end-user data
access. The fusion of data from a number of complementary sensors is also poised to
become increasingly common to inform near real-time applications.

5. Conclusions

It is evident that much progress has been made in addressing both the data and
methodological limitations identified by Townshend (1992). It can also be stressed
that many of the institutional or programmatic barriers to the ‘provision of reliable
operational land cover information from satellite data’ identified by Townshend
(1992), have also been removed or have ceased to be the barriers they once were.
Today, many national or regional programs rely on land cover information gener-
ated from Earth observation data to support monitoring efforts and inform science
and policy (e.g., Bossard, Feranec, and Otahel 2000; Wickham et al. 2014).
Ultimately, the greatest need for reliable land cover information has not changed
since Townshend (1992): that of improving our understanding of drivers and
processes of global change.

The work of Townshend (1992) provides an important benchmark in the evolu-
tion of remote sensing science. Advances towards reliable operational land cover
products have been made on many fronts in the past 25 years. Land cover and land
cover change are now a fully integrated information output. Today, land cover
information can be operationally generated in an increasingly automated, systema-
tic, and rigorous fashion. As a concept, Land Cover 2.0, brings together disparate
advancements in data sources and policies, algorithms, and computational capacity.
Open data has fueled the rapid development in land cover science and application,
and set the stage for future innovations in land cover products and applications. An
increasingly diverse set of data are at the core of the Land Cover 2.0 concept, with
quality reference data remaining an important priority.

The manner in which reference data are acquired, standardized, and shared will
be a critical to the quality of products generated through Land Cover 2.0. The use
of reference data for independent validation of land cover products will be critical,
with transparent and robust methods to be implemented, and a broader suite of
confidence building layers of interest to modellers, data users, and policy makers.
Building on the insights and experiences of the remote sensing community, land
cover 2.0 provides an opportunity to meet the information needs of a number of
stakeholders and to approach the vision of early scientists and practitioners. The
rapidly developing technological (satellite, communications, computing) and appli-
cations landscape will continue to evolve and further empower science in support
of pressing interests of society.
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