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Abstract
Warming in the boreal forest region has already led to changes in the fire regime. This may result in
increasing fire frequency or severity in peatlands, which could cause these ecosystems to shift from a
net sink of carbon (C) to a net source of C to the atmosphere. Similar to C cycling, peatlands serve as a
net sink for mercury (Hg), which binds strongly to organic matter and accumulates in peat over time.
This stored Hg is also susceptible to re-release to the atmosphere during peat fires. Here we
investigate the physical properties that influence depth of burn in experimental peat columns and the
resulting emissions of CO, CO2, CH4, and gaseous and particulate Hg. As expected, bulk density and
soil moisture content were important controls on depth of burn, CO2 emissions, and CO emissions.
However, our results show that CH4 and Hg emissions are insensitive to combustion temperature or
fuel moisture content. Emissions during the burning of peat, across a wide range of moisture
conditions, were associated with low particulate Hg and high gaseous Hg release. Due to strong
correlations between total Hg and CO emissions and because high Hg emissions occurred despite
incomplete combustion of total C, our results suggest that Hg release during peat burning is governed
by the thermodynamics of Hg reduction more so than by the release of Hg associated with peat
combustion. Our measured emissions ratios, particularly for CH4:CO2, are higher than values
typically used in the upscaling of boreal forest or peatland fire emissions. These emission ratios have
important implications not only for our understanding of smouldering chemistry, but also for
potential influences of peat fires on the Earth’s climate system.

1. Introduction

Boreal peatlands play an important role in ecosystem-
climate feedbacks due to their role as long-term sinks
of atmospheric carbon (C). Globally, peatlands today
store over 600 Pg of C, with more than 80% of this C
stored innorthernhigh latitudepeatlands (Yu et al2010
2011). Despite serving as net sources of atmospheric
methane (CH4), peatlands have had a net cooling effect
on the climate system because of peat C storage over
time. The future of peatlands as a net C sink is uncer-
tain, given that warming influences carbon dioxide
(CO2) and CH4 production and fluxes indifferent ways

(Blodau 2002). The accumulation of organic matter
as peat also makes peatlands effective biogeochemi-
cal sinks of other elements, including Hg (Outridge
et al 2011). Over time, large quantities of Hg have
accumulated in northern peatlands, though in general
the peatland Hg stock is not well quantified. However,
boreal peatland Hg stocks can be as much as ten times
greater than stocks in boreal upland forests, due mostly
to the thickness of the organic soil layer in peatlands
(Turetsky et al 2006).

While fire is considered to be one of the
most important factors driving succession and C
cycling in boreal upland stands (Harden et al 2000,
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Bond-Lamberty et al 2007), its role is not as well under-
stood inpeatlands.While several studieshave examined
the role of fire in driving peatland vegetation succes-
sion and patterns of microtopography (Benscoter and
Vitt 2008), northern undisturbed peatlands in general
are viewed to be resistant to burning due to their high
moisture levels (Turetsky et al 2015). During drought
or in areas of hydrologic disturbance, fire activity in
peatlands can release significant amounts of stored C
(Turetsky et al 2011a, 2011b) as well as Hg (Turet-
sky et al 2006). Burn severity in peatlands ultimately
will be regulated by the position of the water table and
how it influences the moisture content of peat layers
with depth (Waddington et al 2012). At regional scales,
multiple changes to the fire regime (greater proba-
bility of ignition, lengthening of the fire season, and
increases in overall fire occurrence; Flannigan et al
2009, 2005), all have the potential to increase burning
across the landscape. Even small increases (<20%) in
both annual burned area and fire intensity is expected
to shift boreal bogs from net C sinks to net sources
(Wieder et al 2009).

Peatland fires are dominated by smouldering com-
bustion because the smouldering reaction is less
constrained by fuel moisture than flaming combustion
and can occur in wetter fuels, such as peat (Zoltai et al
1998, Turetsky et al 2004, Rein et al 2008). Smoulder-
ing combustion is a non-flaming, self-sustaining form
of combustion that derives its principal heat from het-
erogeneous fuel consumption (Aldushin et al 2006).
Fuels with low moisture content require less energy to
propagate, resulting in faster spread of the smoulder-
ing front and greater fuel consumption (Benscoter et al
2011, Huang and Rein 2014). Smouldering produces a
different emission profile than flaming combustion. In
general for boreal fuels, smouldering is responsible for a
larger fraction of fuel consumption and emissions than
flaming combustion, and produces more CO, CH4,
and particulate emissions (Yokelson et al 1997, Rein
et al 2008, Hamada et al 2013). Despite its importance
to organic C release, little is known about the emission
dynamics of smouldering combustion.

Wildfire is likely to be a significant source of
Hg to the atmosphere under future climate change
scenarios (Turetsky et al 2006, Krabbenhoft and Sun-
derland 2013). Recognizing that terrestrial soils are the
largest stock of Hg globally, the forecasted increase in
Hg emissions from wildfires casts significant uncer-
tainty on future Hg mass balance estimates and
atmospheric concentrations, despite stringent efforts
to regulate anthropogenic Hg emissions (Amos et al
2013). While studies have shown that flaming combus-
tion is efficient at releasing Hg (Obrist 2007, Friedli
et al 2001), release of Hg during smouldering and
ground fire conditions appear to be much more vari-
able and are dependent on fuel conditions as well as
heat release rates during burning. Although there has
been some consideration of the impacts of combus-
tion on Hg concentrations and methylation in boreal

vegetation and upland soils (Mailman and Bodaly
2005,2006,Mitchell et al2012) there is limited informa-
tion about the effects of wildfire on peatland Hg stocks,
and no direct quantification of the losses of soil-bound
Hg as gaseous Hg(0) due to thermal decomposition
and emission due to wildfire.

The main objective of this study was to gain insight
into the controls on peat combustion and the result-
ing C and Hg emissions. To achieve this objective,
we conducted laboratory peat combustion experiments
under a range of controlled moisture contents to exam-
ine the physical characteristics of peat that influence
depth of burn, CO, CO2, CH4, as well as gaseous
and particulate Hg emissions.

2. Materials and methods

2.1. Site selection and sample collection
Samples were collected at two bogs and two fens located
in the Slave Lake—Athabasca region of northern
Alberta, Canada. Sites were selected as being repre-
sentative of western Canadian bogs and treed fens (Vitt
et al 1995). Canopy vegetation of the bogs was domi-
natedbyPicea marianaandhadanequal distributionof
hummocks and hollows. Both fen sites were treed fens
with a canopy of P. mariana and Larix laricina and
were comprised of 65% hummocks and 35% hollows.
Within each site, we selected three hollows and two
hummocks. Because hollows represent a larger pro-
portion of the more deeply burned area in peatlands
than hummocks (Shetler et al 2008), we oversampled
hollows to account for this pattern of variation seen in
burned peatlands. Sampling locations within each site
were selected to maximize the heterogeneity of vegeta-
tion and microtopographic relief present at that site. In
each sampling location, one 40× 60× 30 cm block of
peat was collected. All peat blocks represented aerobic
peat layers above the water table. We kept each block
at field moisture content and immediately transported
each block to Edmonton where they were frozen prior
to the experiments described below.

2.2. Laboratory burn experiments
Each peat block was assigned to one of three drying
treatments upon thawing: field moisture (no drying),
air dried at approximately 23 ◦C for 1 week, or dried at
40 ◦C in a drying room for 1 week plus 1 week at room
temperature. Peat was dried in elevated open top plastic
containers with 15 holes 4 cm in diameter to allow free
water drainage from below. Air movement above the
samples was provided by an oscillating fan operating at
1 m s−1. The relative humidity of the drying room at
40 ◦C was approximately 12%, and 30%–35% for the
ambient roomat23 ◦C.Themoisturecontents achieved
during the drying treatments are meant to simulate the
range in moisture conditions at the time of wildfire in
boreal peatlands, which do not necessarily occur dur-
ing periods of drought and water table decline, though
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large peatland fires in general are more likely during
drought periods (Turetsky et al 2004). The lower range
of moisture content in surface feather moss is con-
sistent both with prior laboratory studies (Benscoter
et al 2011), as well as prescribed burns in peatlands
with a feather moss and Sphagnum mix (Hvenegaard
et al 2016).

Following the application of the drying treatment,
a 25× 24× 20 cm sample was cut from the centre of
each peat block to minimize any edge effects. These
samples were placed in a fire-proof box of the same
dimensions; fire boxes were constructed of 1.3 cm thick
ceramic fibreboard (Cotronics Corp, Brooklyn, NY).
Prior to the onset of our burn experiments, a vertical
cross section was cut by hand from each sample and
a small volume of soil was taken every 5 cm along
the depth of each sample. These volumetric samples
were used to measure pre-burn bulk density and water
content with depth (see below for methods). These
same samples also were used for analysis of solid-phase
C and Hg concentrations.

A fibreboard spacer ensured all samples were flush
with the top of the burn box to eliminate any influ-
ence of edges on the air flow into the box during
burning. Once the samples were placed in the burn
box, 2 K-type thermocouple probes were inserted 10
cm (horizontally) into the sample at 5, 10, 15, and 20
cm depths. An additional 4 E-type surface thermocou-
ples were placed five cm from each side of the box
(four per sample). Temperature data were recorded on
a Campbell Scientific CR5000 data logger (Campbell
Scientific, Logan, USA) at 1 second intervals. Mass loss
was recorded every second for the duration of each
experiment.

Each burn was initiated by placing a high output
heater over each sample to simulate the heat pulse from
a crown fire,∼3 MJ m−2. Heat was applied for a total of
10 min to reach the desired heat output. Thompson et
al (2015) estimated between 2.7−7.8 MJ m−2 of radiant
heat is transferred to the peat surface during the passage
of a crown fire. We used a quartz electric heater with
5 kW m−2 output; since the apparatus is not able to
achieve the >1000 ◦C maximum surface temperatures
observed during crown fires in boreal forests (Taylor
et al 2004), we used a longer duration of heating of
10 min to achieve cumulative heat inputs of 3 MJ m−2

that are otherwise transferred during ∼75 seconds of
active fire activity at the surface followed by up to 90
seconds of residual flaming (Taylor et al 2004).

Combustion was judged to have ceased when mass
loss had plateaued and fuel thermocouple readings fell
below 50 ◦C. The duration of smouldering combustion
observed in our burn tests is comparable to the exper-
imental trials of Benscoter et al (2011) that involved
significant smouldering. Comparison of results from
experimental burn tests to field conditions is difficult
due to a general lack of robust field observations of peat
smouldering. Smouldering in black spruce peatlands
occurred on the order of 2−6 h during a prescribed

burndocumented by Hvenegaard et al (2016) in a black
spruce peatland in Alberta, Canada.

Throughout the burn experiments, an exhaust fan
in the flue was used to draw a constant volume of emis-
sions up at a rate of 0.135 m3 s−1. Gases were drawn
through a copper pipe fixed inside the flue two metres
above the peat surface. Emission gases then passed
through 0.675 cm diameter vinyl tubing connected to
a Siemens Ultramat 23 and Ultramat 6 (Siemens AG,
Berlin, Germany), calibrated with a nitrogen standard,
running in series. CO and CO2 concentrations were
measured with the Ultramat 23 while CH4 concentra-
tionwas measured with the Ultramat 6. Concentrations
from both instruments were recorded via a Campbell
Scientific CR1000 every second along with 1 minute
totals of emissions. All C gas concentrations were
recorded in ppmv.

In a similar fashion, emissions were drawn through
vinyl tubing connected to a Teflon particulate fil-
ter pack to capture particulate Hg (PHg), then to a
glass trap filled with gold-coated quartz beads (Tekran
Instruments Corp., Toronto, Canada) to capture total
gaseous Hg. The Hg sampling apparatus was connected
to a vacuum drawing emissions in at ∼3.5 L min−1.
Gold traps were sealed with Teflon plugs and analyzed
by thermal desorption, atomic fluorescence spectrom-
etry, using USEPA method IO-5 (US Environmental
Protection Agency 1999) on a Tekran 2600 system.

Upon completion of each burn experiment (end
of smouldering combustion), surface ash was collected
with a hand-held vacuum. Ash samples were used for
post-burn Hg and C content analyses.

Masses of CO2, CO, CH4, and Hg emissions were
calculated from the recorded concentrations using:

𝑚gas = 𝑉
(
106

)
⋅ 𝑣fan ⋅ 𝑝gas − baseline (1)

where V is the observed concentration of the C or Hg
species, vfan is the observed velocity of gases in the flue,
pgas is the density of the gas, and baseline is the observed
ambient concentration of the gas present. The cumula-
tive mass of each C gas as well as gaseous and particulate
Hg emissions emitted over the course of each experi-
ment were calculated from these masses along with key
emission ratios.

2.3. Chemical analysis of peat samples
Peat samples were assessed for total C and Hg stocks
before and after the burn experiments so that we could
use change in soil stocks as an alternative assessment
of emissions. As mentioned above, prior to burning,
a cross section was cut from each peat sample and
volumetric sub-samples were taken at five cm depth
increments and analysed for pre-burn bulk density
and water content. These same samples were used
for analysis of heat of combustion, total Hg and C
content. Volumetric sub-samples were weighed imme-
diately following collection and dried at 45 ◦C to avoid
any Hg loss until a constant mass was reached. These
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data were used to calculate bulk density (dry fuel mass
per sample volume, g cm−3), volumetric water con-
tent (water volume per sample volume), and percent
gravimetric water content (water mass per unit of dry
peat). Average bulk density and volumetric water con-
tent values were calculated only for those layers that
had been consumed during the experiments; data from
unburned peat at depth were excluded. For both pre-
burn peat and post-burn ash, we homogenized samples
followed by analysis on an Elementar Vario Max ele-
mental analyzer (Elementar Analysensysteme, Hanau,
Germany) to measure %C. Carbon stocks were calcu-
latedbymultiplying%C,peat or ashdensity, anddepth.
Total Hg analyses on the pre-burn peat and post-burn
ash samples were conducted by direct mercury anal-
ysis on a Milestone DMA-80 (USEPA Method 7473
(USEPA 2007)). Total Hg on Teflon filters (PHg) was
first extracted by acid digestion, then digestates were
brought to volume using 0.5% BrCl and left to oxidize
overnight. Aliquots of this solution were then further
diluted into deionized water (18.0 M.cm) to achieve the
target concentration range of 0.5−100 ppt. Detection
was by cold vapour atomic fluorescence spectroscopy
(Tekran 2600; USEPA Method 1631 (USEPA 2001)).
All THg analyses on solid materials were conducted by
the Biotron Analytical Services Laboratory at the Uni-
versity of Western Ontario, which is an accredited, ISO
17025 compliant facility.

2.4. Statistical analysis
Factors controlling depth of burn were analysed using
a series of general linear models (GLMs) to exam-
ine the effects of bulk density and water content, and
to determine whether these relationships were depen-
dent on moss species (Sphagnum versus feather moss),
microtopography (hummock versus hollow), or peat-
land type (bog versus fen). A ‘base model’ GLM was
constructed using bulk density, moisture content, and
the bulk density×moisture content interaction as fixed
effects. The base model was compared to three, more
complex models created through iterative additions of
landscape variables (e.g. peatland type, vegetation type,
and microtopography).

The most parsimonious model was selected by
comparing the corrected Akaike Information Crite-
rion (AICc) across all base and candidate models. AICc
was used to account for over-fitting by the addition of
extra parameters and the small sample size (Hurvich
and Tsai 1989). Once the most parsimonious model
was selected, we explored relationships between each
significant predictor and depth of burn using linear
regressions.

We identified one observation as an outlier. This
point had an unusually high average bulk density. The
bulk density of the middle peat layer of this sample was
much greater than the layer below, which is not typical
for boreal peat deposits, and likely reflected a histori-
cal fire layer or layer of buried wood. The influence of
this observation over analysis was evaluated statistically

and was found to have an undue influence over rela-
tionships, as judged by a Cook’s distance greater than
1. This single outlying observation was removed from
all models, though we note that the inclusion of this
observation in our models did not alter the qualitative
conclusions of any of our findings.

Similar to thedepthof burnmodeldescribed above,
controls on total gaseous C, cumulative CO2, CO, and
CH4 emissions, total Hg (total gaseous Hg + PHg),
gaseous Hg, and PHg emissions were analysed using a
GLM and AICc framework. In these analyses, a model
consisting of only depth of burn was used as a base
model. We used Pearson correlation tests to investi-
gate the relationships between CO2, CO, CH4, total
gaseous Hg, and PHg emissions. One tailed t-tests were
used to determine if average emission ratios (CO:CO2
and CH4:CO2) for each experiment were greater than
those previously reported in the literature. The effect
of water content on emission ratios was analysed using
GLMs. We also used a one tailed t-test to investigate
whether cumulative total gaseous Hg collected dur-
ing burn experiment was greater than cumulative PHg
collected.
All data are reported as means ± one standard error.

3. Results

3.1. Controls on fuel consumption and C emissions
Across all of our samples, bulk density in the upper
0–30 cm of each peat column ranged from 0.01–
0.1 g cm−3, which is similar to field datasets of surface
peat (Thompson and Waddington 2014). Our three
experimental treatments varied involumetric soilmois-
ture content (field moisture: 0.083± 0.02, air dry: 0.020
± 0.004, oven dry: 0.007 ± 0.001 m3/m3). The exper-
imental treatments also varied in the mean duration
of combustion (83 ± 20, 216 ± 66, and 227 ± 60
min for the field moisture, air dry, and oven dry treat-
ments, respectively). Depth of burn averaged 3± 1 cm,
9± 3 cm, and 11 ± 3 cm while total fuel consumption
averaged 312.33± 171.1, 503.3 ± 195.2, and 574.7 ±
141.1 g respectively for the field moisture, air dry and
oven dry treatments. These depth of burn and fuel
consumption values are consistent with previous labo-
ratory experiments (Benscoter et al 2011). Our results
tend to be on the smaller end of variation observed in
field settings (Turetsky and Wieder 2001, Turetsky et al
2002). This is not surprising given that total fuel con-
sumption was limited to the depth of our experimental
samples (20 cm total depth of fuel available for burn-
ing), whereas in natural peatlands the depth of peat
above the water table can often exceed 20 cm.

The most parsimonious model predicting variation
in depth of burn included volumetric moisture con-
tent, bulk density, and the interaction between these
twovariables (AICc = 106.9,F3,14 = 17.2,R2 = 0.79,p<
0.0001). Models containing additional variables (vege-
tation type or microtopography effects), or interactions
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Figure 1. (a) The effect of bulk density and volumetric water content (VWC) on depth of burn during peat combustion. (b) The effect
of bulk density, peatland type and moss species on depth of burn. For visual purposes one data point with high bulk density and water
content at a depth of burn of 1 cm is not shown; however, this point was included in all analyses. Enlarged icons indicate overlapping
data points.

among these variables and either moisture content or
bulk density, did not improve model fit. Our results
showed that denser peat tended to support greater
depths of burning. The exception to this trend was sam-
ples with high moisture content, which did not burn
deeply despite having high bulk density (figure 1).

In general, C gas emissions peaked within the
first 10 min following ignition and diminished until
combustion ceased (supplemental figure 1 available
at stacks.iop.org/ERL/13/035005/mmedia). Across all
experiments and moisture treatments, combustion
occurred at relatively low temperatures (< 600 ◦C),

which suggests that smouldering was a dominant com-
bustion process. Emission ratios of CO:CO2 tended to
peak at lower temperatures in the burn experiments
conducted under field moisture conditions, at moder-
ate temperatures in the air dried fuel treatments, and at
higher temperatures in the oven dried fuel treatments
(figure 2). Ratios of CH4:CO2 often peaked at very low
combustion temperatures but appeared to be insen-
sitive to either combustion temperature or peat fuel
properties such as moisture content.

As expected, total gaseous C release (sum of CO2,
CO,andCH4)duringcombustion increasedwithdepth
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Figure 2. Relationships between emission ratios of CH4 :CO2 and CO:CO2 and combustion temperatures, including a burn experiment
representative of the (a) field moisture treatment, (b) air dried treatment, and (c) oven dried treatment.

of burn (F1,17 = 17.3, R2 = 0.51, p = 0.0007). Across all
of our burn experiments, emission rates averaged 330±
80 mg CO2 m−2 min−1, 120 ± 2 0 mg CO m−2 min−1,
and 7.1± 2.0 gCH4 m−2 min−1 while cumulative emis-
sions averaged 68.63 ± 15.3 g CO2, 17.59 ± 4.5 g CO,
and 1.55± 0.36 g CH4 m−2. The air and oven dry treat-
ments had greater levels of fuel consumption as well as
cumulative CO, CO2, and CH4 emissions that tended
to be higher than the field moisture treatment (table
2). However, total gaseous C, cumulative CO2, and
cumulative CO emissions were best predicted by the
interaction between volumetric moisture content and
bulk density (figure 3). The only predictor of cumula-
tive CH4 emissions was volumetric moisture content,
but this relationship was not significant and had little
predictive power.

Ratios of cumulative CO:CO2 and CH4:CO2 emis-
sions averaged 16%±3% and 4%±1% across all burn
experiments, respectively (figure 3). Even when cor-
rected for total fuel consumption, the air and oven dry
treatments had higher CO:CO2 and CH4:CO2 ratios
than in the field moisture treatment (table 2). This
shows that the smouldering combustion of peat can
lead to high trace gas emissions across a range of soil
moisture contents.

Table 1. Results of correlation analyses between of C gases and total
Hg emissions (gaseous + particulate Hg). Values are Pearson
correlation coefficients, with p values in parentheses.

CH4 CO CO2 THg

CH4 −
CO 0.655 (0.002) −
CO2 0.628 (0.004) 0.695 (0.001) −
THg 0.706 (0.02) 0.895 (0.0002) 0.850 (0.0009) −

3.2. Controls on gaseous and particulate Hg emis-
sions during peat burning
Across the burn experiments, more Hg was released
as total gaseous Hg (97% of total Hg loss) than PHg
(3% of Hg loss) (t10= 4.4, p = 0.0006). Moisture treat-
ment had no effect on gaseous Hg or PHg release,
though the oven dry treatment with low moisture con-
tent tended to have the highest emissions of gaseous +
particulate Hg (table 2). While total gaseous Hg emis-
sion increased with greater bulk density (F1,17 = 19.5,
R2 = 0.68, p = 0.002), there were no significant predic-
tors of PHg release. Total gaseous + particulate Hg
release was most strongly correlated with cumulative
CO emissions (table 1; r = 0.895).

In addition to quantifying the chemistry of emis-
sions during burning, changes in soil stocks before
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Figure 3. Controls on gaseous C emissions during peat combustion. (a) Total mass of C, (b) CO2, and (c) CO emitted were best
predicted by the interaction between bulk density and volumetric soil moisture. (d) CH4 emissions were best predicted by soil moisture
alone though this relationship had no predictive power.

Table 2. Cumulative emissions of CO, CH4, CO2, and gaseous + particulate Hg averaged by experimental treatment.

Field moisture treatment Air dry treatment Oven dry treatment

CO g 4.03 ± 1.30 23.89 ± 6.56 25.27 ± 10.40
g/g fuel combusted 0.01 ± 0.01 0.05 ± 0.01 0.04 ± 0.01

CH4 g 0.63 ± 0.14 5.95 ± 2.83 5.10 ± 2.32
g/g fuel combusted 0.01 ± 0.01 0.01 ± 0.00 0.01 ± 0.00

CO2 g 45.21 ± 30.07 128.18 ± 62.51 173.31 ± 120.74
g/g fuel 0.15 ± 0.07 0.26 ± 0.29 0.30 ± 0.32

Hg 𝜇g 2.72 ± 0.34 6.68 ± 0.64 8.74 ± 3.72
𝜇g/g fuel combusted 0.03 ± 0.00 0.01 ± 0.00 0.03 ± 0.01

and after burning can used to estimate loss from soils
via emissions (Harden et al 2004). Like the emissions
chemistry, the change in soil Hg and C stocks pre-
versus post-burning were correlated with one another
(figure 4, r = 0.30). Carbon and Hg losses estimated by
change in soil stocks exceeded the measured gaseous or
particulate emissions (C: r = 0.52; Hg: r = 0.85).

4. Discussion

4.1. Loss and speciation of C during peat burning
In general, our results are consistent with previous
studies in showing that low bulk density limits combus-
tion of peat (Van Wagner 1972, Frandsen 1997, 1987,
1991, Benscoter et al 2011, Prat-Guitart et al 2016).
The propagation of combustion into deeper peat lay-
ers requires sufficient heat transfer to ignite lower soil

layers, and combustion of low density fuels like
Sphagnum often cannot generate enough energy to
ignite wetter, higher density peat below (Frandsen
1987, Miyanishi and Johnson 2002, Thompson and
Waddington 2014). In our experiments, increases in
bulk density promoted combustion until the peat was
too wet to ignite, usually corresponding to a volumet-
ric moisture content of approximately 0.04 m3 m−3.
Relationships between bulk density and soil moisture
content can be complex in organic soils, as changes in
bulk density affect the water storage capacity of peat
(Benscoter et al 2011). However, organic soils with suf-
ficient density are able to produce enough energy to
make up for heat lost to water, enabling combustion to
propagate both horizontally and vertically through the
peat (Prat-Guitart et al 2016, Huang and Rein 2015).

Our emissionfindings suggest that the same general
controls on depth of burn can be used to predict total
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Figure 4. Relationship between change in soil Hg and C stocks (pre-fire stock—post-fire stock) during peat burning.

gaseous C, CO2 and CO emissions. The peat proper-
ties, including bulk density and soil moisture content,
that lead to high depth of burn cause greater emissions
of total C release as both CO2 and CO, but do not
necessarily relate to CH4 emissions. Overall our results
show that factors contributing to dryingof peat—either
during the growing season with water table drawdown
or seasonal thaw or as a result of human disturbance
or drought—will stimulate total peat consumption as
well as CO2 and CO emissions.

Emission ratios are used frequently to estimate
total CO and CH4 emissions from wildfires (cf. Kasis-
chke and Bruhwiler 2002, Andreae and Merlet 2001,
French et al 2003) and to estimate the climatic impacts
of fire emissions (Randerson et al 2006). These val-
ues are often assumed, and tend to be based on a
limited number of measurements often stratified by
biome. The emission ratios measured in this study are
greater than those typically used to predict the ratio
of emissions stemming from northern wildfires, par-
ticularly for CH4:CO2, but are in the range of studies
that have measured or utilized emission ratios from
Indonesian fires (table 3). This suggests that previ-
ous studies utilizing boreal emission ratios may be
underestimating CH4 trace gas emissions, at least over
northern regions where the combustion of peat in
forests or peatlands dominates total fuel consump-
tion. While we expected CO and CH4 emissions to
be highest in our field moisture trial due to incom-
plete smouldering combustion, our drying treatments
tended to have higher emissions of all C species (g
emitted per g fuel consumption) as well as higher mean

CO:CO2 and CH4:CO2 ratios than the field moisture
treatment (see table 2).

Burn experiments like those utilized in this study
are useful for obtaining accurate emissions during
fuel combustion. However, they provide point infor-
mation and often are difficult to generalize to field
settings. Given that northern peatlands are likely to
become more vulnerable to burning with ongoing cli-
mate change or human land use, the ratios quantified
in our study are likely to become more reasonable for
characterizing future fire emissions in peatland-rich
areas. Our results also provide some insight on how
trace gas emissions are likely to vary as a function of
soil moisture. We show that even when corrected for
variation in total fuel combustion, CO and CO2 emis-
sions during peat burning tend to increase with peat
moisture content. Our results related to CH4 emissions
are particularly surprising, showing that more than 5%
of total C emissions can be emitted as CH4 and that this
fraction of C released during peat burning is insensitive
to soil moisture.

4.2. Loss and speciation of Hg during peat burning
Our results differ from some previous studies in that we
found that components of Hg emissions were driven
more by bulk density than soil moisture characteristics.
During experimental burning of surface forest fuels,
Obrist et al 2008 found that burning of wetter fuels
(albeit surface fuels) led to increasing PHg emissions.
In our burn trials of vertical peat samples, gaseous and
particulate Hg emissions were both insensitive to soil
moisture content or fuel moisture treatment. We also
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Table 3. Synthesis of emission ratios of CO:CO2 and CH4:CO2. Mean emissions ratios from our peat burn experiments were greater than the
average of previously published values, particularly for CH4:CO2 (t18 = 2.6, P = 0.009), but tend to agree with emission ratios from burning of
Indonesian fuels.

CO:CO2 (%) CH4:CO2 (%) Data collection method

This study 16.3 3.8 Laboratory experiments
Crutzen et al 1979 14.0 1.6 Synthesis
Nance et al 1993 7.8 0.4 Airborne sampling
Cahoon et al 1994 12.3 1.3 Satellite imagery analysis
Cofer et al 1998 21.4 1.3 Airborne sampling
van der Werf et al 2010 12.3 1.2 Satellite imagery analysis
Muraleedharan et al 2000a 15.1 5.4 Laboratory experiments
Chand 2005a 40.6 N/A Laboratory experiments
Hamada et al 2013a 38.2 2.6 Field/ground sampling
Parker et al 2016a − 0.6–1.4
Stockwell et al 2016a 18.6 0.6 Field/ground sampling

a Studies measuring emissions from Indonesian wildfires or emissions from Indonesian peat.

found that PHg comprised a small fraction of total
Hg release. This is consistent with measurements from
airborne smoke plume studies that found a greater frac-
tion of Hg emitted as gaseous Hg (Friedli et al 2003,
Finley et al 2009).

Several lines of evidence from our experiments sug-
gest that Hg release during peat burning is dominated
more by the thermodynamics of Hg reduction than by
the combustion of Hg bound to organic molecules in
the peat. Total Hg emissions were correlated strongly
with CO emissions (table 1), which represent a rela-
tively small fraction of total C emissions. There were
weaker correlations between C and Hg emissions or
change in soil Hg and C pools, and these relationships
show that proportionally more Hg is lost relative to C
(figure 4). This makes sense given that Hg is a volatile
element, but our results show that modest heating of
organic soils can induce large emissions even when C
is incompletely combusted.

Research understanding the ultimate fate of fire-
released Hg is important, since the speciation of these
emissions is critical to understandingwhether Hg losses
are likely to have global or regional impacts. While our
results show that most of the Hg released from peat
smouldering is gaseous, we are not able to delineate
measurements between Hg(0) and Hg(II). Hg(0) can
oxidize to Hg(II) during combustion; however, given
the low particulate-bound emissions and the impor-
tance of thermodynamics over combustive Hg releases,
we believe that Hg(0) emissions predominate during
peat burning. This general conclusion is supported by
Wang et al (2010), who despite measuring significant
increases in gaseous Hg(II) during forest fire emissions
in Quebec Canada, found that these emissions repre-
sented an extremely small component of total gaseous
Hg emissions.

Given that we observed little particulate Hg emis-
sions and that significant amounts of Hg(II) emissions
are unlikely, we conclude that the Hg release impacts
from peat burning are more likely to be global rather
than local or regional. Hg(0) emissions will enter
into the global and long-range transport pools for
months. Therefore, these emissions will have much
broader implications than gaseous Hg(II) emissions

and particulate bound emissions, which will have more
local/regional scale re-deposition into the landscape
(on the order of a few hundred km radius) (Fitzgerald
and Mason 1998), though the speciation of the total
gaseous mercury is unknown. Overall, we argue that
peat fires are likely to serve as important disturbances
that could remobilize a significant store of largely
sequestered Hg in peatlands back to the atmosphere,
reactivating it back into the more biologically-relevant
surfacebiogeochemical cycle.Thisfire-mediated remo-
bilization is likely to become more significant as boreal
wildfire regimes intensify, affecting northern peatlands
that were perhaps previously too wet to burn.

For both C and Hg, our comparison of emission
chemistry to pre- versus post-burn soil and ash samples
showedmuchsmaller losses quantifieddirectly through
emissions than indirectly via changes in elemental soil
stocks. Losses estimated through changes in soil and
char pools averaged 60.3 g C and 26.6 𝜇g Hg per burn
experiment, while our directly measured emissions to
the atmosphere averaged 28.3 g C and 6.7𝜇g Hg. While
our measurement of Hg emissions was based on a sub-
sample of the whole burn, we calculated the mass of
C gas emissions as the cumulative record of gas con-
centrations measured every second. This may have led
to an underestimate of the mass of C emissions, espe-
cially during periods of high gas production. However,
it seems more likely that our indirect assessment of
soil pool changes led to overestimation of C and Hg
losses. It is possible that the 5 cm depth increments
used to calculate soil pools were too large to accurately
portray changes in bulk density across the peat profile,
resulting in an over-estimation of soil C and Hg losses.
The bulk density of boreal soils can exhibit tremendous
variation at a local scale, which means that subsampling
could have affected our emissions calculations based on
change in soil pools. Given that this indirect approach is
logistically easier and much more common than direct
measurement of fire emissions, future studies need to
pay close attention to proper and robust measurement
of variation in soil bulk density, along with other fuel
properties that could influence emissions estimates.

These methodological issues, combined with con-
straints on depth of burn posed by our experimental
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peat samples (20 cm depth), led to observed emissions
of both C and Hg in this study that are on the low end of
published values. Our focus, however, was on exploring
the stoichiometry of emissions and understanding the
sensitivity of emission ratios to combustion tempera-
ture and fuel properties such as moisture content. We
found strong correlations between Hg and CO release
during peat burning, and this correlation was robust
across a range of fuel moisture contents. Given that CO
often is used in atmospheric inversion studies as a tracer
for biomass burning, this observation may be helpful
in furthering our understanding of the contribution of
smouldering ground fires to Hg emissions.

5. Conclusion

Bulk density and soil moisture content have long been
used as predictors of depth of burning in boreal ecosys-
tems, and our results demonstrate that these also are
important for predicting total gaseous C, CO2, and
CO emissions from burning peat. We report greater
CH4:CO2 ratios than what has been used in previous
modelingstudies, suggesting that cumulativeCH4 from
burning boreal peat could be greater than expected.
Our results suggest that Hg release during peat burn-
ing is dominated by gaseous Hg emissions and that
Hg emissions are governed more by the thermody-
namics of Hg reduction than by the combustion of
Hg bound to organic molecules in the peat. Overall,
more research is needed to understand controls on
Hg release during smouldering combustion as well as
the ultimate fate of fire-released Hg (Fitzgerald and
Mason 1998). Some fire-emitted Hg is likely vulner-
able to long-range transport, though some may fall
out locally, where it could be rebound by soil organic
matter or deposited to methylating environments such
as wetlands (including peatlands) and lakes where it
could be transformed to methylmercury (Zillioux et al
1993, Grigal 2003). Thus, peat fires are likely to serve
as important disturbances that could diminish the
strength of biogeochemical sinks in peatlands, but also
could serve as a mechanism for distributing Hg across
the landscape, potentially moving Hg from ecosystems
with high preservational environments like peatlands
to systems more vulnerable to biomagnification.
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