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A B S T R A C T

Attributes that describe forest structure, such as height, canopy cover, volume, and biomass, are required to
inform forest inventories and monitoring programs. Light Detection and Ranging (lidar) has been successfully
demonstrated as a means to derive a suite of forest structure attributes at the plot level; however, these ac-
quisitions are often constrained to limited spatial extents and to a given point in time. Sample based approaches
for model development can accommodate the spatial limitations of lidar acquisitions when characterizing large
areas. The combination of lidar plot data and time-series satellite imagery is well suited to provide spatially
extensive, and temporally dense, information on forest structure and related dynamics over very large areas. In
this research, we combine lidar plot-derived information with Landsat pixel-based composites to produce annual
forest structure estimates from 1984 to 2016 over 650million ha of Canada's forest ecosystems using a nearest
neighbor imputation approach with a Random Forests-based distance metric. Imputed variables included lidar
metrics of height (e.g., mean height, standard deviation of height) and cover, as well as area-based modelled
inventory estimates of Lorey's height, basal area, stem volume, and biomass. Models were validated using re-
served validation plots, with model R2 ranging from 0.62 to 0.64 for lidar metrics of height and cover, and R2 of
0.67, 0.68, 0.71, and 0.70 for Lorey's height, basal area, volume and biomass, respectively. Unique to this study
was the assessment of model extension through time, with model performance for imputing lidar metrics
evaluated at the forest stand-level using independent lidar data representing a latitudinal gradient of forest
conditions and that was not used in model development. The period evaluated was 2006–2012, with R2 values
ranging from 0.36 to 0.66 for height metrics, and 0.47–0.77 for cover metrics. Ultimately, we show how deriving
forest structural estimates on an annual basis enables the analysis of both the dynamics and regional trends of
undisturbed forest, as well as regenerating stands following stand-replacing disturbances (i.e., fire, harvesting).

1. Introduction

Monitoring plays a foundational role in supporting sustainable
forest management, and informing the development of policies aimed
at preserving and maintaining ecosystem services and biodiversity in
forests while concurrently accommodating human needs (Daily, 1997).
Moreover, spatially-explicit estimates of forest attributes inform re-
porting activities by providing data for forest (White et al., 2014) and
carbon (Boisvenue et al., 2016) monitoring programs. National forest
inventory programs are typically designed to produce long-term data in
support of forest monitoring (Kangas and Maltamo, 2006; MacDicken,

2015). Many of these programs, however, are sample-based and aspa-
tial, and cannot provide spatially-explicit inputs for modelling unless
they are combined with other forms of inventory data or remotely
sensed data (e.g., Beaudoin et al., 2014; Tomppo et al., 2009). Thus,
there is a need for spatially-explicit forest monitoring information col-
lected at a resolution suitable for capturing anthropogenic impacts, and
supporting a range of scientific and policy elements. Furthermore, the
capacity to generate this information retrospectively can provide useful
baseline information for understanding forest dynamics (White et al.,
2017) and for modelling potential vulnerabilities to climate change
(Price et al., 2013). In addition, a time-series of forest structure
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attributes including height, canopy cover, volume, and biomass, can
also inform on relative trends in forest growth and condition, as well as
post-disturbance forest recovery (Bartels et al., 2016; Frolking et al.,
2009; Masek et al., 2011). Further, such a time-series recording forest
structure can fill critical information gaps for unmanaged forests, where
there exists a paucity of spatially exhaustive forest inventory informa-
tion (Gillis et al., 2005).

Satellite programs with medium spatial resolution (10–100m)
sensors (Belward and Skøien, 2014), such as those of the Landsat mis-
sion, provide data for capturing and characterizing both status and
change over terrestrial ecosystems at human scales (Wulder et al.,
2008b). Image acquisitions from Landsat sensors including Thematic
Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), and Opera-
tional Land Imager (OLI) have the spatial grain (30m spatial resolu-
tion), spectral bands (visible to short-wave infrared), and revisit time
(single sensor, 16 days) required to study vegetation trends with an
annual/seasonal frequency (Kovalskyy and Roy, 2013). Since the
launch of Landsat-7 in 1999, Landsat has effectively had an 8-day re-
visit based upon having two satellites in orbit at any given time. The
opening of the multi-decadal Landsat archive (Woodcock et al., 2008),
combined with the systematic production of science-supported, ana-
lysis-ready data products (e.g., surface reflectance, Vermote et al.,
2016) has accelerated a number of methodological developments that
have advanced satellite-based monitoring activities (Hansen and
Loveland, 2012; Wulder et al., 2012a). The process of using analysis
ready data, high performance computing, and robust automated algo-
rithms to characterize large areas over time is reviewed in Wulder et al.
(2018).

Previously, image compositing methods were more commonly ap-
plied to coarse spatial resolution data sources (Cihlar, 2000; Holben,
1986), which were freely available and had a frequent revisit rate. Free
and open access to analysis-ready data led to the application of image
compositing approaches to Landsat data (Roy et al., 2010). Image
compositing allows clear observations for a given pixel to be selectively
used from otherwise cloudy images, resulting in the generation of
seasonal or annual, gap-free, composites (Griffiths et al., 2013;
Hermosilla et al., 2015a; White et al., 2014). These best-available pixel
(BAP) composites (White et al., 2014) result in a data space where the
spectral bands can be considered representative of a given point in time
(e.g., year, season). Furthermore, using surface reflectance derived from
a radiometrically calibrated image data source (Markham and Helder,
2012) results in pixel-level values for a given land cover or forest
structural condition that can be considered as temporally invariant

(Fekety et al., 2014), enabling the application of models through time
and space (Song et al., 2001). Thus, Landsat data have enabled the
generation of wall-to-wall estimates of forest structure based on the
temporal analysis of the spectral trends and/or the change information
provided by Landsat time series data (Bolton et al., 2018; Matasci et al.,
2018; Pflugmacher et al., 2014, 2012), and to extend these estimates
through time (Deo et al., 2017).

Nearest neighbor (NN) imputation is a demonstrated methodolo-
gical framework to relate environmental-based predictors and in-
ventory-related attributes (Eskelson et al., 2009; Ohmann and Gregory,
2002), as well as Landsat data and lidar-derived attributes (Zald et al.,
2014). With a 1-NN structure, imputation has the advantage of as-
signing a set of measured attributes that actually occur in a forest stand
(at a given donor plot location), ensuring prediction of realistic canopy
conditions (Hudak et al., 2008). Imputation has been the primary
methodological building block of prior studies that investigated single-
year forest structure mapping (Tomppo et al., 2009; Zald et al., 2016).
A number of studies have shown promising results in extending im-
putation models to predict forest structure through time, demonstrating
the opportunities offered by the generated outputs to inform the study
of forest growth and post-disturbance recovery (Deo et al., 2017; Fekety
et al., 2014).

In previous work, we applied an imputation approach using lidar
plots and Landsat data and generated spatially explicit, wall-to-wall
estimates of ten key forest structural attributes (see Table 1) across
Canada's boreal forest for a single year (2010) (Matasci et al., 2018). In
this current study, we extend the large-area forest attribute imputation
model presented in Matasci et al. (2018) through both time
(1984–2016) and space (integrating data from the hemi-boreal zone,
see Fig. 1), thereby generating annual estimates of the same set of lidar-
based metrics and forest structural attributes for the entire treed extent
of Canada's forested ecosystems over 33 years. Our objectives were
three-fold: (i) to demonstrate the temporal and spatial extension of the
imputation model using a time-series of annual surface reflectance
image composites and samples of airborne lidar; (ii) to demonstrate the
robustness of the outputs by validating the resulting forest structural
estimates using a decade of independent lidar data acquisitions across a
latitudinal range of forest conditions; and (iii) to highlight the potential
for scientific insights related to growth and recovery over large areas,
which are enabled through the use of the time-series of forest structure
developed herein.

Table 1
Forest structural variables estimated in this study. Lidar returns elevation values are normalized to the ground surface.

Nature of variables Forest structural variable Variable name Units Description

Extracted directly from
point cloud

Mean canopy height elev_mean m Mean height of lidar first returns
Standard deviation of canopy height elev_sd m Standard deviation of first returns height
Coefficient of variation of canopy height elev_cv – Coefficient of variation of first returns height
95th percentile of canopy height elev_p95 m 95th percentile of first returns height
Canopy cover cover_2m % Percentage of first returns above 2m
Canopy cover above mean height cover_mean % Percentage of first returns above the mean height

Modelled inventory
attributes

Lorey's mean height loreys_height m Average height of trees weighted by their basal area
Basal area basal_area m2/ ha Cross-sectional area of tree stems at breast height. The sum of the cross-

sectional area (i.e., basal area) of each tree in square metres in a plot,
divided by the area of the plot.

Gross stem volume stem_volume m3/ ha Individual tree gross volumes are calculated using species-specific allometric
equations. Gross total volume per hectare is calculated by summing the
gross total volume of all trees and dividing by the area of the plot.

Total aboveground biomass ag_biomass t/ha Individual tree total aboveground biomass is calculated using species-
specific equations. Aboveground biomass per hectare is calculated by
summing the values of all trees within a plot and dividing by the area of the
plot. Aboveground biomass may be separated into various biomass
components (e.g., stem, bark, branches, foliage).
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2. Study area

Canada's forest-dominated ecosystems comprise ~650million ha
(65% of the country's total area) (Wulder et al., 2008a). Within these
ecosystems, treed areas and other wooded lands occupy 347.1 mil-
lion ha (Natural Resources Canada, 2016) with the remaining area
dominated by lakes and wetlands. While insects represent the primary
natural disturbance agent in Canada's forests (by area) (Natural
Resources Canada, 2017), wildfires are the primary stand-replacing
disturbance, impacting an estimated 40.6 million ha between 1985 and
2010, compared to the 16.7million ha that were harvested over that
same 25-year period (White et al., 2017). Canada's forested ecosystems
are partitioned into broad ecozones on the basis of both biotic and
abiotic factors, and represent a range of forest abundance and pro-
ductivity (Fig. 1; Ecological Stratification Working Group, 1996). As the
Boreal Shield and Taiga Shield ecozones have large longitudinal extents
and consequently a broad range of ecoclimatic conditions from west to
east, these ecozones are typically partitioned into a western and eastern
component (Frazier et al., 2015; Stocks et al., 2002). While most of
forested ecozones are part of the boreal zone, the Montane Cordillera
and Pacific Maritime belong to the hemi-boreal zone, which represents
the transition between temperate zone and boreal zones.

3. Methods

The methodological framework presented herein enables the tem-
poral extension of a large-area imputation model developed using lidar-
derived forest structure measurements and Landsat image composites
(Fig. 2). Initially, we computed a set of ten forest structural attributes
(Table 1) for lidar plots located across Canada's forested ecosystems
(Wulder et al., 2012b). These attributes were our response variables,
which we related to a series of co-located and concurrent predictor
variables. The main source of these predictor variables was a time-
series of Landsat image composites (Hermosilla et al., 2016). Additional
predictor variables were the spatial coordinates (latitude and longitude)

and terrain features derived from elevation data. A k-NN imputation
model was then trained with these data, and applied to all Canada's
forested ecozones with predictors values computed for each year in the
1984–2016 sequence, resulting in 33 annual estimates of each of the ten
lidar-based metrics and forest structural attributes (or 330 national
maps at 30m resolution). To build confidence in the generated attri-
butes, we validated the lidar metrics using (i) a reserved national set of
lidar plots, and (ii) an independent set of multi-temporal regional lidar
acquisitions.

3.1. Data

3.1.1. Lidar data
Estimates of forest structure were derived from seven airborne lidar

collection campaigns (Table 1). The primary dataset consisted of a
national campaign conducted in summer 2010 (34 transects and a total
length of 25,000 km; Wulder et al., 2012b). Based upon survey intent,
these transects primarily represent boreal forest conditions. As a result,
to better represent national forest conditions we augmented these data
with six additional lidar datasets representing hemi-boreal conditions
(Brandt, 2009). These lidar data were compiled from compatible cam-
paigns conducted in British Columbia (BC), Canada, from 2004 to 2010.

Forest structural attributes characterizing the vertical distribution of
vegetation above ground surface (Næsset, 1997) were computed by
applying an area-based approach (ABA) within 25×25m cells
(Næsset, 2002) using the FUSION software package (McGaughey,
2013). The 25× 25m cells were treated as lidar plots during sub-
sequent analysis. In total, the boreal-wide transect comprised>32
million lidar plots and BC lidar acquisitions involved>700,000 lidar
plots (Table 2). Only those lidar plots identified as treed from the an-
nual land cover map (Hermosilla et al., 2018) were included in the
analysis. Six of the ten forest structure metrics (see definitions and units
in Table 1) were calculated directly from the lidar point cloud (first
returns), including: mean height (elev_mean), standard deviation of
height (elev_sd), coefficient of variation of height (elev_cv), 95th
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Fig. 1. Canada's forested ecozones and locations of the airborne lidar acquisitions used for model development.

G. Matasci et al. Remote Sensing of Environment 216 (2018) 697–714

699



percentile of height (elev_p95), canopy cover above 2m (cover_2m),
and canopy cover above cell mean height (cover_mean). Note that
heights are normalized to the ground surface. The other four forest
structural attributes were modelled inventory attributes derived from
the lidar metrics using parametric linear regression and a sample of
ground reference plots (Bater et al., 2011; Wulder et al., 2012b), and
included: Lorey's mean height (loreys_height), basal area (basal_area),
gross stem volume (stem_volume), and total aboveground biomass
(ag_biomass). For this task, data from a set of 338 plots (area of 400m2)
distributed nationally with coincident lidar data and field measure-
ments was compiled (boreal, Bater et al., 2011; Wulder et al., 2012b;
hemi-boreal, Bolton et al., 2018, plus as assembled for this research,
Table 2). From the plot data, biomass components and gross stem vo-
lume were derived from height and diameter at breast height following
published equations (Lambert et al., 2005; Marshall and Lemay, 2006;
Ung et al., 2008). Following an ABA, the forest attributes were mod-
elled based on the co-located ground reference and lidar metrics, al-
lowing for the application of the models to the nationally distributed
lidar data.

As an early adopter of lidar technology and related information for
natural resource management, the provincial government of Alberta,
Canada, has acquired a near wall-to-wall coverage of lidar data over
managed forested lands covering 34million ha. The current lidar cov-
erage for Alberta represents a patchwork of data acquisition projects,
spanning 2003 to 2015, with>70% of the area acquired between 2006
and 2008. Point densities range between 1 and 4 pulses per m2 with
first return density very consistent and ranging between 0.5 and
0.7 pulses per m2. Four selected point cloud metrics were derived from
these data following similar processing routines (Coops et al., 2016) as
those used for the 2010 lidar transects described above (Wulder et al.,

2012b): mean height of lidar first returns, 95th percentile of first re-
turns height, percentage of first returns above 2m, and percentage of
first returns above the mean height. Lidar data for the 2006–2012
period were used to derive the yearly reference values for the in-
dependent temporal validation.

3.1.2. Landsat data
The predictor variables consisted of a time-series of annual Landsat

BAP composites for the period 1984–2016 (after Hermosilla et al.,
2015a) and a related forest disturbance history layer (Hermosilla et al.,
2015b) generated following the Composite-to-Change (C2C) approach
(Hermosilla et al., 2016). A BAP compositing technique (White et al.,
2014) utilizing Landsat 5 TM, Landsat 7 ETM+ and Landsat 8 OLI
images (Hermosilla et al., 2017) from the United States Geological
Survey (USGS) archive was implemented. The criteria to select the best
pixel for a location and year included proximity to a target date (August
1st, i.e., Julian day 213), distance to clouds and cloud shadows, at-
mospheric quality, and acquisition sensor (to reduce the impact of
Landsat 7 ETM+ acquisitions after the scan line corrector failure). BAP
composites were further processed with a spectral trend analysis on
pixels' time-series to remove noisy pixels (due to unscreened clouds or
shadows) and to fill data gaps (i.e., pixels with no valid observations)
(Hermosilla et al., 2015a). We fitted temporal trends to each of the pixel
series (Hermosilla et al., 2016, 2015a) to reduce the residual noise in
temporal trajectories that can negatively impact the temporal model-
ling of continuous variables (Pflugmacher et al., 2012). These fitted
trends were computed through piecewise linear interpolation between
the temporal breakpoints detected (i.e., abrupt changes in Normalized
Burn Ratio (NBR) magnitude). This process resulted in a set of seamless,
30m spatial resolution, annual, surface-reflectance composites that are

2016

1984

2015

2014

Imputation
model

Forest change
information

Time-series
trend fitting�

Landsat�
BAP

composites

LiDAR�
acquisitions

Field plots

Topography &
position

Mapped attributes
annual time-series

Landsat BAP
composites annual

time-series

Fig. 2. Workflow for the modelling and mapping of the forest attributes over Canada's forested ecosystems for 1984–2016.

Table 2
Characteristics of lidar acquisitions used to define the imputation models across Canada's forested ecosystems.

Location Year Pulse density [pts/m2] Reference

Boreal zone 2010 2.8 Wulder et al. (2012b)
Tofino, BC 2005 2.2 Bater et al. (2009)
Alex Fraser Research Forest, BC 2008 2.3 Coops et al. (2010)
Malcolm Knapp Research Forest, BC 2010 3.1 Lu et al. (2015)
Campbell River, BC 2004 3.3 Coops et al. (2007)
Campbell River, BC 2008 4.6 Tompalski et al. (2015)
Quesnel, BC 2008 3.5 Varhola et al. (2010)
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radiometrically and phenologically consistent. Additionally the C2C
approach allowed the detection and characterization of forest changes,
as well as the attribution of these changes into a disturbance type (i.e.,
fire, harvesting) (Hermosilla et al., 2015b).

Treed areas for each year were identified using the annual land-
cover maps of Canada produced using the classification framework
presented in Hermosilla et al. (2018), which comprise 12 land-cover
classes, including non-vegetated (water, snow/ice, rock/rubble, ex-
posed/barren land), vegetated non-treed (bryoids, herbs, wetland,
shrubs), and vegetated treed (wetland-treed, coniferous, broadleaf,
mixedwood) (see Wulder et al., 2008a). These annual land-cover maps
were generated using a Random Forests (RF) classification (Breiman,
2001) based on the Landsat BAP composites, spectral indices, and ele-
vation derivatives. In order to produce time-consistent maps with
ecologically coherent land-cover class transitions, a Hidden Markov
Model was applied to incorporate disturbance information and year-to-
year vegetation succession expectations (Abercrombie and Friedl, 2016;
Gómez et al., 2016; Wulder et al., 2018).

3.1.3. Digital elevation model
The Advanced Spaceborne Thermal Emission and Reflection

Radiometer (ASTER) digital elevation model (GDEM V2) was used to
generate terrain related predictors that are known to influence forest
structure: elevation, slope, topographic wetness index (Beven and
Kirkby, 1979), and topographic solar radiation index (Roberts and
Cooper, 1989). GDEM V2 was derived using a new production algo-
rithm and 260,000 additional stereo-pairs from the ASTER instrument
onboard the Terra satellite, and improves upon the initial GDEM ver-
sion (computed in 2009) in terms of spatial resolution (effective spatial
resolution of 70m, oversampled to 30m) and coverage, artifact re-
duction, and horizontal and vertical accuracies (Tachikawa et al.,
2011).

3.2. Sample selection

Samples for model training and validation were selected minimizing
spatial autocorrelation, following the approach presented in Matasci
et al. (2018) and Zald et al. (2016). Lidar plots were sub-sampled using
a hexagonal lattice selecting plots separated by a 250m spacing. Plots
were examined based on a 3× 3 neighborhood to ensure all nine cells
(i) were treed (based on the land cover maps described above), (ii)
experienced the same disturbance history (Hermosilla et al., 2015b),
and (iii) had moderate canopy height variability (coefficient of varia-
tion for elev_p95 < 50% across the nine cells). To avoid the inclusion
of non-vegetation outliers, we removed plots with elev_p95 values >
60 or 120m for the 2010 lidar transect and BC lidar acquisitions, re-
spectively. Finally, we removed plots at the edge of the transect's ac-
quisition swath to avoid high scan angle effects. This preliminary
screening resulted in 84,482 lidar plots, from which we randomly se-
lected 75% (63,348) as training samples, and the remaining 25%
(21,134) were used as validation samples. Table 3 reports the total
number of samples in each ecozone for both training and validation
sets.

3.3. Predictor variables

We extracted spatially co-located and temporally concurrent mea-
surements to the lidar plots from the Landsat BAP composites, forest
change products, and digital elevation model (see full description in
Matasci et al., 2018), including: Tasseled cap brightness (TCB), green-
ness (TCG), wetness (TCW) and angle (TCA) (Crist, 1985), NBR (Key
and Benson, 2006), years since greatest change, elevation, slope, to-
pographic wetness index, topographic solar radiation index, longitude,
and latitude.

3.4. Imputation approach

To relate predictor and response variables, we followed the same
imputation approach applied in Matasci et al. (2018) for single-year
mapping (2010) in the boreal zone. By using a NN imputation approach
(number of neighbors k=1), the model seeks the single most re-
presentative plot whose values are to be imputed at a given location.
The search criterion is based on a non-Euclidean similarity measure
computed across all the response variables after having built a series of
RF models, one for each of the response variables. This similarity
measure is computed as the proportion of trees where the sample to be
mapped shares the leaf of the grown forest with a given training sample
(Crookston and Finley, 2008; Liaw and Wiener, 2002). The training
sample identifier is assigned to the mapping location and its response
variable values are retrieved and attributed all at once. The preserva-
tion of both the covariance among the response variables and the range
of values found in the training data has led to both science and op-
erational uptake of imputation in forestry (Gleason and Im, 2012; Latifi
et al., 2010).

The RF-based imputation model was trained on the six lidar metrics
(see Section 3.1.1 and Table 1): elev_mean, elev_sd, elev_cv, elev_p95,
cover_2m and cover_mean. Corresponding derived forest attributes
(loreys_height, basal_area, stem_volume, ag_biomass) associated to the
training plots were then imputed to each mapped sample (Matasci
et al., 2018; Zald et al., 2016). Algorithm implementation was con-
ducted using the R packages yaImpute (Crookston and Finley, 2008) and
randomForest (Liaw and Wiener, 2002). For continuity with Matasci
et al. (2018) and to keep computational time within practical limits, RF
parameters were set as follows: mtry=3, ntree=100.

3.5. Model assessment

Two assessment approaches were followed to evaluate the accuracy
of our models. First, we applied a national-level assessment of the
models using the reserved validation set of lidar plots (n=21,134
samples; Table 3) across Canada's forested ecosystem according to the
reference year, with reference year varying by lidar acquisition date
used to inform the model (i.e., 2004, 2005, 2008 or 2010). Second, a
novel contribution of this research is a multi-temporal assessment of
model performance to demonstrate the quality of the model estimates
using the independent lidar data acquired in Alberta. This model as-
sessment at the forest stand level was undertaken using lidar data
collected between 2006 and 2012. Forest stands were defined by seg-
menting Landsat surface reflectance values using eCognition, applying
the segmentation parameters proposed by Wulder and Seemann (2003)
(scale= 10, colour= 0.7, shape=0.3, smoothness= 0.5, and com-
pactness= 0.5), which resulted in a total of 6,602,786 objects
throughout the seven years. From these objects, the average observed
and predicted forest structure attributes were then compared according

Table 3
Training and validation plots by ecozone.

Ecozone Training samples Validation samples

Atlantic Maritime 2894 950
Boreal Cordillera 11,552 3853
Boreal Plains 2233 754
Boreal Shield East 13,418 4453
Boreal Shield West 12,069 4035
Hudson Plains 3797 1264
Montane Cordillera 650 218
Pacific Maritime 2193 734
Taiga Plains 7125 2372
Taiga Shield East 5499 1868
Taiga Shield West 1918 633
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to year of lidar acquisition. For both assessment approaches, the fol-
lowing goodness of fit measures for each response variable were com-
puted: coefficient of determination (R2), root mean squared error
(RMSE), RMSE as a percentage of the observed mean (RMSE%), and
bias (i.e., average of predicted minus observed values).

3.6. Characterization of forest structure dynamics in Canada's forested-
ecosystems

From the national maps produced, we summarized and analyzed
dynamics of selected forest attributes (see below) for three scenarios
(1984–2016): undisturbed forests, forests impacted by wildfires, and
forests impacted by harvesting. Trends and dynamics in stand structure
and canopy cover for these three scenarios were characterized by ran-
domly selecting representative pixels based on the forest change type
(i.e., undisturbed, fire, and, harvest; Hermosilla et al., 2015b), and
examining their full temporal series of predicted forest structure attri-
butes.

Undisturbed pixel samples were selected from areas that did not
experience change events between 1984 and 2016, and that were
consistently labelled as treed across the analysis period. Significance on
trends in undisturbed forested areas was determined by applying non-
parametric Mann-Kendall tests (Kendall, 1955; Mann, 1945) on the
time-series of annual median values of the distribution of canopy height
(elev_p95) and canopy cover (cover_2m). For disturbance events, we
analyze these same two lidar-derived metrics as well as two forest at-
tributes: Lorey's height (loreys_height) and total aboveground biomass
(ag_biomass). Two strategies were followed to meaningfully depict
post-disturbance regrowth. First, to ensure we exclusively capture
stand-replacing events (avoiding residual treed patches) we examined
the temporal sequence of land-cover labels (Hermosilla et al., 2018) and
selected sample pixels that were labelled as treed before the change,
and were classified as non-treed for at least three years post-disturbance
event. Second, due to the rate of the regrowth in boreal and hemi-
boreal forests (Bartels et al., 2016), only a limited number of pixels
were classified as treed (condition for our model to assign the set of
predicted attributes) following a disturbance event. This resulted in a
very small sample that displayed a high variability in the attribute
values. To avoid any issues related to small sample size, we modelled
growth in the first 10 years following a disturbance using an approach
similar to Kurz et al. (2009). This was achieved by fitting a polynomial
function (degree 2) for each one of the 25th, 50th and 75th percentile
values using an attribute-specific starting point and the respective series
of values from 11 to 20 years after disturbance. These starting points
were set as follows: 2 m for elev_p95, 5% for cover_2m, 3.5 m for lor-
eys_height or 2 t/ha for ag_biomass. Table 4 reports the number of
randomly sampled pixels in each ecozone per change type (i.e., un-
disturbed, fire, and harvest) used to produce the figures.

4. Results

4.1. Model assessment using reserved validation lidar plots

The national assessment results of the imputation models against
the validation samples across Canada's forested ecosystem are shown in
Table 5. Coefficient of determination R2 is> 0.61 for all attributes
except for those describing height variability (elev_sd, elev_cv). For
variables related to stand height, i.e., mean height of lidar first returns
(elev_mean), 95th percentile of first returns height (elev_p95) and mean
height of trees weighted by their basal area (loreys_height), we observe
RMSE values of 2.66m, 3.77m and 2.88m, respectively. In terms of
canopy cover metrics, the percentage of first returns above 2m
(cover_2m) and the percentage of first returns above the mean height
(cover_mean) have an RMSE of 18.4% and 10.5%. Among the derived
forest attributes, we observe an RMSE of 7.38m2/ha for basal area
(basal_area), 95.54m3/ha for gross stem volume (stem_volume) and
41.43 t/ha for total aboveground biomass (ag_biomass). The measure
allowing standardized cross-comparisons, the RMSE%, shows values
ranging from 24.5 to 82.3%, with lower values for stand height-related
variables and higher ones for complex forest attributes such as stem
volume and aboveground biomass. In terms of bias, we observe values
close to zero across all the response variables, indicating that no major
over- or under-estimation in the forest structure prediction.

4.2. Multi-temporal model assessment at the stand level using independent
lidar acquisitions

Results of the assessment using the independent lidar data acquisi-
tions for 2006–2012 in Alberta, Canada, are shown in Table 6. Annually
the RMSE and RMSE% are generally stable, while the coefficient of
determination (R2) values show larger variability through time. Bias
was both positive and negative for individual years, and was con-
sistently larger than bias reported using the reserved validation samples
(Table 5). Overall (i.e., when combining all years 2006–2012), the
performance of the model, as captured by R2 and RMSE, was lower for
variables related to stand height (elev_mean, elev_p95) and similar for
metrics describing canopy cover (cover_2m and cover_mean), relative
to assessment results achieved when using the reserved validation plots.
Similarly, RMSE% values are comparable for the mean height of lidar
first returns (elev_mean) and the 95th percentile of first returns height
(elev_p95), and smaller for percentage of first returns above 2m
(cover_2m) and percentage of first returns above the mean height
(cover_mean).

4.3. Annual forest structure maps

We produced annual maps from 1984 to 2016 covering Canada's
forested ecosystems for the ten imputed forest structure attributes
(Table 1) with a spatial resolution of 30m. The temporal examination
of these outputs permits a detailed wall-to-wall analysis of the evolution
of forest structure dynamics. As an example, Fig. 3 shows the difference
between 2016 and 1984 of the forest structure attributes canopy cover
(cover_2m, Fig. 3a), canopy height (elev_p95, Fig. 3b), total above-
ground biomass (ag_biomass, Fig. 3c), and Lorey's height (loreys_height,
Fig. 3d). Further nuances on forest structure dynamics can be derived
from the temporal analysis of undisturbed (Fig. 4) and disturbed
(Figs. 5–8) trends.

4.4. Characterization of forest structure dynamics in Canada's forested
ecosystems from 1984 to 2016

4.4.1. Undisturbed forest
Fig. 4 shows the annual distribution of canopy height (elev_p95) and

canopy cover (cover_2m) attributes from 1984 to 2016 for undisturbed
forests, by forested ecozone. The canopy height shows statistically

Table 4
Number of samples per ecozone by type of change used to develop the forest
structure dynamic figures.

Ecozone Undisturbed Wildfire Harvest

Atlantic Maritime 32,267 – 62,863
Boreal Cordillera 232,505 28,507 –
Boreal Plains 175,718 51,781 112,281
Boreal Shield East 316,599 78,093 139,156
Boreal Shield West 163,275 85,364 68,618
Hudson Plains 32,124 12,071 –
Montane Cordillera 80,652 22,202 27,572
Pacific Maritime 60,004 – 60,932
Taiga Cordillera 33,168 3974 –
Taiga Plains 159,532 56,982 12,407
Taiga Shield East 56,990 3752 –
Taiga Shield West 152,328 49,381 –
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significant positive trends for all ecozones (p-value=0.000 for Mann-
Kendall test on the time-series of median values). Similar significant
positive trends were found for canopy cover in all but two ecozones:
Montane Cordillera (Mann-Kendall test Z=−6.70), Pacific Maritime
(Mann-Kendall test Z=−4.59). Increases in height were greatest in the
Boreal Plains, Boreal Shield West, Hudson Plains, and Taiga Plains
ecozones, with median height increments between 2 and 3m over the
33-year period considered.

The magnitude of the imputed values is markedly larger in the
ecozones located in the hemi-boreal region (i.e., Montane Cordillera
and Pacific Maritime), with median canopy height values of approxi-
mately 20m. On the contrary, the lowest canopy height values are
found in Taiga Shield West and Taiga Cordillera, with annual median
values lower than 10m. As would be expected, canopy cover was re-
latively stable in undisturbed forest over the time period. Atlantic
Maritime and Pacific Maritime had the highest canopy cover which
remained highly consistent over the time period. The more alpine and
mountainous Taiga Cordillera had the lowest cover. While most eco-
zones had consistent cover associated with undisturbed forests, a
number showed annual variations. For instance, the Atlantic Maritime,
Taiga Plains and Boreal Plains showed a reduction in variance in ca-
nopy cover in these undisturbed stands over the time period.

4.4.2. Post-disturbance dynamics
The annual values of forest structure attributes after wildfire across

the ten fire-dominated ecozones (White et al., 2017) are shown in Fig. 5
for metrics extracted directly from the point clouds (cover_2m and
elev_p95), and in Fig. 6 for modelled inventory attributes (loreys_height
and ag_biomass). Canopy cover increases rapidly following fire dis-
turbances indicating a quick regrowth of the canopy-filling gaps in the
horizontal plane. In the most productive ecozones (e.g., Boreal Shield
East), canopy cover increased by 40–50% in two decades, reaching pre-
fire levels within the analysis period. Canopy height and Lorey's height
increased at lower rates in the initial years following fire. Some of the
ecozones exhibited a large variability in the imputed values in the final

years of the time-series (pattern especially visible for the ag_biomass
attribute). This is caused by a smaller sample size as there are a limited
number of fire pixel trajectories that are longer than 25 years (i.e., only
change events that occurred at the beginning of the observation
period).

The annual values of forest structure metrics following harvest
across the ecozones where harvest activities are dominant (White et al.,
2017) are shown in Fig. 7 for lidar metrics (cover_2m and eleve_p95)
and in Fig. 8 for derived forest attributes (loreys_height and ag_bio-
mass). Comparing areas that were harvested to burned areas, on
average, pre-disturbance canopy height (elev_p95) is 4 m larger, Lorey's
height (loreys_height) is 2 m larger, and total aboveground biomass
(ag_biomass) is 30 t/ha larger, since harvest activities generally occur
on more productive sites compared to wildfires, which take place in a
more diverse set of forest conditions. Similar to wildfires, canopy cover
(cover_2m) returns more rapidly to pre-disturbance value than canopy
height (elev_p95) and Lorey's height (loreys_height). In terms of vege-
tation regrowth, in most ecozones we observe a gradual linear response
of canopy height and canopy cover when compared to the evolution
after fire events. Fig. 9 shows an example of the spatial patterns of
forest structure dynamics for the total aboveground biomass (ag_bio-
mass) attribute in a landscape dominated by harvest activities in wes-
tern Alberta.

5. Discussion

In this paper we present a workflow that enables spatially and
temporally complete predictions of six lidar vegetation metrics and four
forest inventory attributes at a 30m spatial resolution, resulting in a
multi-decadal, wall-to-wall mapping of 33 years of Canada's forest
structure. This research fuses two complementary data sources: a time-
series of Landsat surface-reflectance image composites covering Canada
for 1984–2016, and airborne lidar plots that extensively sampled
Canada's forested ecosystems. Combining these two remotely sensed
data sources allows the accurate vertical detail provided by lidar and

Table 5
Summary statistics for the observed and predicted lidar metrics and forest attributes with associated accuracy metrics on the 21,134 validation plots. For the
description of the variables refer to Table 1.

Resp. variable Units Observed Predicted Accuracy metrics

Mean Min Max Std. dev. Mean Min Max Std. dev. R2 RMSE RMSE% Bias

elev_mean m 6.9 2.11 49.12 4.22 6.86 2.13 46.5 4.17 0.639 2.66 38.6 −0.03
elev_sd m 2.49 0.06 54.17 1.49 2.47 0.11 18.29 1.44 0.45 1.19 47.8 −0.02
elev_cv – 0.37 0.03 4.37 0.1 0.37 0.02 0.98 0.1 0.125 0.11 29.7 0
elev_p95 m 11.1 2.22 64.7 5.9 11.03 2.25 58.64 5.84 0.631 3.77 34.0 −0.06
cover_2m % 44.19 0.27 100 29.07 44.02 0.34 100 29.2 0.642 18.37 41.6 −0.17
cover_mean % 21.58 0.1 71.47 15.9 21.52 0.1 70.62 15.97 0.616 10.46 48.5 −0.06
loreys_height m 11.74 3.72 51.29 4.78 11.7 3.76 47.56 4.73 0.666 2.88 24.5 −0.05
basal_area m2/ha 15.15 0.87 116.09 12.54 15.04 0.96 117.66 12.43 0.681 7.38 48.7 −0.12
stem_volume m3/ha 116.05 1.67 2352.61 172.38 114.54 2.05 2352.61 169.36 0.712 95.54 82.3 −1.51
ag_biomass t/ha 62.95 1.92 904.02 72.84 62.29 2.17 904.02 71.8 0.699 41.43 65.8 −0.66

Table 6
Multi-temporal accuracy assessment at the stand level using the independent lidar acquisitions. For the description of variables refer to Table 1.

Year elev_mean [m] elev_p95 [m] cover_2m [%] cover_mean [%]

R2 RMSE RMSE% bias R2 RMSE RMSE% bias R2 RMSE RMSE% bias R2 RMSE RMSE% bias

2006 0.38 4.1 38.3 0.44 0.36 5.7 35.1 0.87 0.47 18.6 26.4 1.62 0.47 11.3 30.2 −0.44
2007 0.50 4.1 41.2 0.47 0.47 5.7 36.5 0.67 0.59 18.4 27.3 3.17 0.57 11.4 32.4 1.14
2008 0.53 4.1 40.9 −0.17 0.50 5.5 34.8 −0.55 0.62 18.0 25.5 1.29 0.62 11.1 30.4 0.25
2009 0.50 4.3 43.7 −0.59 0.48 5.7 37.3 −0.99 0.57 18.7 26.8 −1.53 0.58 11.7 31.9 −1.87
2010 0.66 3.5 41.3 0.74 0.65 4.9 34.6 0.17 0.60 18.0 27.2 −0.15 0.63 10.8 32.2 0.39
2011 0.61 3.9 46.6 0.22 0.55 5.4 41.0 0.03 0.69 16.7 26.8 2.35 0.70 10.4 32.3 1.32
2012 0.64 4.4 44.5 −0.01 0.61 5.7 36.8 −0.24 0.77 13.2 18.2 −0.18 0.76 9.0 23.7 −0.81
2006–2012 0.54 4.1 41.4 0.16 0.51 5.50 35.7 −0.01 0.60 17.9 26.0 1.23 0.61 11.1 30.9 0.18
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the extensive spatial and deep temporal coverage of Landsat imagery to
be fully exploited. Through the use of lidar, a spatially distributed
source of forest structural attributes for model calibration and valida-
tion is possible (Wulder et al., 2012c). Forest structure attributes de-
rived from lidar acquisitions offer high-quality calibration data to de-
velop statistical models based on Landsat time-series (e.g., Bolton et al.,
2018, 2015; Zald et al., 2016). Parametric methods such as multiple
linear regression or non-parametric options such as RF support the es-
timation of forest structural attributes to characterize both current
conditions (Ahmed et al., 2015; Frazier et al., 2014; Pflugmacher et al.,
2012) and historic conditions (Deo et al., 2017; Fekety et al., 2014;
Pflugmacher et al., 2014). Multi-temporal predictions of forest attri-
butes based on time-series of Landsat data are typically undertaken
using fitted trends on spectral values (e.g., polynomial curves, piece-
wise linear fits) to reduce noise in estimates made over time (Deo et al.,
2017). Additionally the inclusion of the disturbance history derived
from Landsat spectral trajectory has proven effective to boost model
performance, particularly given that changes in stand structure are
related to time since disturbance (Frazier et al., 2014; Pflugmacher
et al., 2012). Moreover, the joint imputation of lidar predictors (e.g.,
95th percentile of height) and modelled attributes (e.g., stem volume,
aboveground biomass) permits recalculating these attributes as new
statistical/allometric models are developed.

5.1. Model performance

We assessed the performance of our model using two approaches.
First, we conducted a national assessment using the reserved validation
lidar plots according to the reference year in which lidar acquisition
was used to inform the model. Second, we applied a temporal assess-
ment using a set of independent lidar acquisitions collected between
2006 and 2012 in the province of Alberta. The results of the national
assessment (presented in Table 5) are comparable to those obtained for

our single-year (2010) national implementation in Canada's boreal
forest (Matasci et al., 2018). R2 values exceed 0.61 for all attributes,
except for those characterizing height variability (both elev_sd and
elev_cv), which are irregularly distributed in space, and are thus chal-
lenging to model. Caution should be exercised when interpreting the
results exclusively based on R2, as the larger range of attributes values
in the hemi-boreal (i.e., more productive ecozones) tends to increase
the R2 response values relative to those reported in Matasci et al.
(2018). RMSE% values for gross stem volume and biomass are high and
indicate these attributes are challenging to estimate. Both volume and
biomass are estimated using allometry, which has inherent associated
errors. Estimates for the attributes that are directly measured from lidar
had relatively low RMSE% values. Despite the known limitations to
using optical data to characterize vertical structure (Duncanson et al.,
2010), our model resulted in a RMSE of 2.66m for mean height. These
results indicate an equivalent or superior performance when compared
to other studies modelling forest structure combining lidar data and
Landsat imagery with a more limited geographic scope. For example,
studies conducted in Canadian forested ecosystems modelled mean
stand height and reported RMSE values of 3.3 m in central Saskatch-
ewan (Wulder and Seemann, 2003), and 3.24m in central British Co-
lumbia (Varhola and Coops, 2013). Studies in other areas around the
world indicated RMSE of 3.01m in central-west Italy (Maselli et al.,
2011), and 1.9–2.3m in central Spain (Pascual et al., 2010).

In addition to the national validation using the reserved lidar plots,
we assessed the temporal transferability of our model using an in-
dependent lidar dataset in the province of Alberta, acquired
2006–2012. The results of this assessment (presented in Table 6) in-
dicate that the performance of our model is consistent when applied
through time, with RMSE and RMSE% values that are relatively stable
across the years. As a comparison, Deo et al. (2017) generated diverse
models for aboveground biomass in north-eastern Minnesota, USA.
These models were developed considering one or several reference

Fig. 3. Difference (2016–1984) maps of forest structure attributes (a) canopy cover (cover_2m), (b) canopy height (elev_p95), (c) total aboveground biomass
(ag_biomass), and (d) Lorey's height (loreys_height). Note that values above/below the upper/lower limits are truncated.
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Fig. 4. Canopy height (elev_p95) and canopy cover (cover_2m) dynamics in undisturbed forests in Canada's forested ecozones during 1984–2016. Note the different
y-axis scale for elev_p95 for Montane Cordillera and Pacific Maritime.
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Fig. 5. Distribution of forest structure attributes canopy height (elev_p95) and canopy cover (cover_2m) before and after fire change events by ecozone. Note the
different y-axis scale for elev_p95 for Montane Cordillera.
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Fig. 6. Distribution of forest structure attributes Lorey's height (loreys_height) and total aboveground biomass (ag_biomass) before and after fire change events by
ecozone. Note the different y-axis scale for Montane Cordillera.
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years and the authors obtained RMSE% ranging from 50.76 to 69.53%.
Some of these models where then validated against independent Na-
tional Forest Inventory (NFI) plot data from 2010 (RMSE% ranging
from 68.73 to 72.56%) and 2000 (RMSE%=75.89%).

These results overall are encouraging and demonstrate that the
combination of the two data sources offers significant benefit to un-
derstanding how forest stands develop over time. From an operational
point of view, the use of Landsat data to generate maps of forest
structural metrics is a cost-effective solution to extend lidar estimations
through time and space. However, this approach involves trade-offs
between the capacity to produce a spatially-explicit, wall-to-wall data
layer, and the accuracy of that data layer at any given location. As such,
these data provide strategic-level information, but are not considered to
have sufficient accuracy to support an operational-level forest in-
ventory. These forest structure products are a valuable source of spa-
tially-explicit information of forest status and dynamics, which can help

to complement and enrich existing forest inventory and national
monitoring programs, particularly where there is currently a dearth of
forest information (White et al., 2014).

5.2. Characterization of forest structure dynamics in Canada's forested
ecosystems from 1984 to 2016

Improvements in Landsat data availability and processing routines
and capabilities have fostered ongoing research and methodological
refinements for land-cover classification using image time-series
(Gómez et al., 2016; Hermosilla et al., 2018; Wulder et al., 2018), as
well as encouraging studies into forest dynamics at a range of spatial
scales from regional (Cohen et al., 2016; Griffiths et al., 2013; Kennedy
et al., 2012; Potapov et al., 2015; White et al., 2017) to continental
(Hansen et al., 2013; Lehmann et al., 2013) scales. Vegetation succes-
sional processes follow known stages towards re-establishment of treed
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Fig. 7. Distribution of forest structure attributes canopy height (elev_p95) and canopy cover (cover_2m) before and after harvest change events by ecozone. Note the
different y-axis scale for elev_p95 for Montane Cordillera and Pacific Maritime.
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vegetation (Oliver and Larson, 1990), with the spectral wavelengths or
indices used providing different indications of recovery (Pickell et al.,
2016). Although spectral trends offer insights regarding vegetation re-
covery (Pickell et al., 2016; White et al., 2017), some spectral measures
of recovery do not always correspond to the actual re-establishment of
vertically distributed attributes as the vegetation progresses through
successional stages from herb and shrub vegetation prior to emergence
and dominance of trees and related attributes (e.g., canopy height,
biomass) describing forest structure (Griffiths et al., 2013; Kennedy
et al., 2012). In this research we have demonstrated that the addition of
the comprehensive aboveground vertical characterization provided by
lidar to the spatiotemporal rich spectral response provided by Landsat
data enables accurate capture and quantification of both the evolution
of forest structure and related re-establishment following disturbance
events.

The positive, significant trends in both canopy height and canopy

cover observed for undisturbed forested areas in Fig. 4 are a result of
different stages of stand development, representing both mature and
young forests that may have experienced disturbances prior to 1985.
Additionally, climatic conditions and site productivity, among other
factors, influence the rate at which forests return, with the ecozones
showing the strongest trends being located either in the warmer
southern or lower-elevation forested ecosystem (i.e., Boreal Plains,
Boreal Shield West, Hudson Plains and Taiga Plains). The slight de-
creasing trends in canopy cover for the Montane Cordillera and Pacific
Maritime ecozones (i.e., negative Mann-Kendall test values) can likely
be explained by the high canopy cover (cover_2m > 75% throughout
the 1984–2016 period) in these two productive ecozones, potentially
denoting an opening up of the canopy in more mature forests with
denser canopies.

Canopy cover and canopy height display a markedly different re-
sponse to disturbance events (see Figs. 5 and 7). The results indicating
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Fig. 8. Distribution of forest structure attributes Lorey's height (loreys_height) and total aboveground biomass (ag_biomass) before and after harvest change events by
ecozone. Note the different y-axis scale for Montane Cordillera and Pacific Maritime.
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that canopy cover reaches pre-disturbance values earlier (within two
decades, on average) than height are likely explained by the rapid de-
velopment of foliage of residual trees (Bolton et al., 2015). Vertical tree
growth and biomass gains are a much slower process (Bartels et al.,
2016; Bolton et al., 2017; Harper et al., 2005; Sirois and Payette, 1989),
as reflected by the Lorey's height and total aboveground biomass values
following disturbance events (see Figs. 6 and 8). The use of temporally
varying predictors, in particular time since disturbance, allows the
imputation model to identify donor training plots matching the suc-
cession stage of the area being mapped.

A different response in the re-establishment of forest vegetation
following fire and harvesting events is also observed. In Canada's forests
these two stand-replacing disturbances are characterized by distinct
recovery patterns (White et al., 2017). Bartels et al. (2016) conducted a
meta analysis of published plot data and found that areas impacted by
wildfire achieved a benchmark of 10% canopy cover in 5 years, while
harvested areas required 10 years to achieve the same benchmark. Both
burned and harvested areas were able to achieve height benchmarks of
5m within 5 years, which may be explained by the fact that re-
generating areas are colonized by rapidly growing shade intolerant
aspen and pine species after fire. In the longer-term (20 to 30 years),
White et al. (2017) found that spectral recovery is more consistent in
areas impacted by harvest, as a greater proportion of harvested areas
returned to their pre-disturbance spectral values by the end of the
analysis period in 2010. While natural regeneration is common in both
disturbance types, by law, harvested areas in Canada must be

regenerated and are more likely to be subject to systematic replanting
and silvicultural activities. Moreover, by definition, harvesting activ-
ities occur exclusively over treed sites with greater site productivity,
whereas fire occurs over a range of site productivities and land cover
types.

Trends for canopy height (elev_p95 and loreys_height) after a fire
event (Figs. 5 and 6) can in some cases show a decrease in the early
years of the period in which we consider imputed values (10 to 15 years
since disturbance) or constant values throughout the whole time-series.
The reason for these countertrends is that the 95th height percentile
and Lorey's height are sensitive to surviving trees or residual structure
(Angers et al., 2011; Bond-Lamberty and Gower, 2008) in the im-
mediate years following disturbance. As time passes, standing dead
wood begins to fall, giving way to regrowing trees ultimately resulting
in an upward trend (Angers et al., 2011; Chen and Popadiouk, 2002;
Harper et al., 2005). Such interpretation is consistent with findings of
previous studies of the post-fire recovery in the boreal forest of Canada
(Bolton et al., 2017, 2015; Kane et al., 2013).

Currently, there are no spatially explicit national estimates of
changes in forest structure in Canada's forests. Canada's NFI is the au-
thoritative source for this information (Gillis et al., 2005); however the
NFI baseline was established in 2006 and the first re-measurement data,
from which change would be estimated, is not yet complete. Canada's
NFI is nominally based on a systematic 1% sample, so estimates of
changes in forest structure will be aspatial, stratified by ecozone. The
capacity to generate spatially-explicit information products that

Fig. 9. Temporal evolution of total aboveground biomass (ag_biomass) in 1984, 1989, 1994, 2000, 2006 and 2016, of a sub-region in western Alberta (54° 32′ N/117°
29′ W) with ongoing harvesting activity.
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characterize changes in forest structure has been demonstrated herein,
and offers useful data to augment the information needs of Canada's NFI
program (White et al., 2014). As noted earlier, related to limited on-
going jurisdictional monitoring efforts, data needs are particularly
acute for Canada's unmanaged northern forest area (Gillis et al., 2005).

5.3. Challenges and limitations for large-area mapping of forest attributes
through time

The framework presented in this paper builds on our previous study
in which we focused on a single-year model (for 2010) limited to the
extent of the Canadian boreal forest (Matasci et al., 2018). To enable
that approach to be extended both in time (over a multiple decades)
and space (i.e., over the complete extent of the Canadian forested
ecosystem, including the hemi-boreal zone), the approach required
adaptation, including using a smoothed temporal series of spectral va-
lues, and increasing the number and distribution of training samples
(lidar plots) to better represent Canada's forested ecosystems.

The main factor enabling the consistent application of a statistical
model through both space and time is the use of calibrated physical
values (Song et al., 2001). Despite utilizing imagery acquired by three
sensors (TM, ETM+ and OLI), the rigorous cross-sensor calibration of
the Landsat program (Markham and Helder, 2012) combined with the
effectiveness of the radiometric correction procedure applied (Masek
et al., 2006), enabled a consistent radiometric response within and
between images (Hermosilla et al., 2017, 2015a) over the 1984–2016
period. This normalized surface reflectance dataset constituted a sound
foundation for model extension through time and space. However, one
of the core challenges we had to overcome was the residual temporal
variability existing in the pixel-level spectral time-series, particularly
for the estimation of continuous attributes of forest structure (Deo et al.,
2017; Pflugmacher et al., 2012). Thus, to enable temporal coherence we
used noise-free, trend-fitted, surface reflectance values generated via
piecewise linear interpolations resulting from the C2C procedure
(Hermosilla et al., 2015a). The use of the trend-fitted reflectance values
ensured that the reflectance values used in the training phase and, more
importantly, the prediction phase, had limited noise. This mitigated
year-to-year fluctuations of the attributes at a local scale in the final
maps.

A limitation of the imputation approach is commonly referred to as
extrapolation bias. Unlike parametric approaches, imputation cannot
extrapolate beyond the minimum and maximum values defined by the
calibration data used for model development (Magnussen et al., 2010).
As such, it is important that the calibration data represent the full range
of forest structure present in the target area of interest. In our case, the
full range of forest structural variability in Canada is vast and likely not
fully represented by the boreal lidar transect acquired in 2010 and used
in Matasci et al. (2018). Consequently, we increased the sample size of
lidar plots to ensure representation of the forest conditions found in the
hemi-boreal forests of the Montane Cordillera and Pacific Maritime
ecozones.

As noted by Zald et al. (2014), although imputation using a single
nearest neighbor will conserve the co-variance structure of the response
variables, it will also propagate sample-based errors, including mea-
surement error and deficiencies in the sample design. In the context of
volume and biomass, allometric error is also an issue (Duncanson et al.,
2015). Potential approaches to accurately quantify and propagate these
errors are emerging (Sexton et al., 2015; Wayson et al., 2015). An
avenue to investigate could be that of leveraging the capability of en-
semble approaches to characterize uncertainty (Kennedy et al., 2018),
although this may not be readily implemented for such large-area as-
sessments.

Another challenge involves accounting for the impact of low mag-
nitude, variable temporal persistence, non-stand replacing disturbances
(such as from drought or defoliating insects). These disturbances typi-
cally represent changes in forest condition (Hall et al., 2016), rather

than removal of the forest as is traditionally the case with stand-re-
placing fire and harvest (Hermosilla et al., 2015b). Multiple factors can
contribute to a general state of forest decline in any given area (Cohen
et al., 2016), further complicating disturbance attribution (Hermosilla
et al., 2015b; Zhu, 2017) and determination of subsequent impacts
(Kurz et al., 2013). In Canada, the area impacted by non-stand repla-
cing disturbances, particularly insects, on an annual basis often exceeds
that of wildfire and harvest (Wulder et al., 2007). As reported by
Stinson et al. (2011), insects often cause only partial mortality in the
stand, and therefore the impacts of insects on biomass carbon stocks are
far smaller than the impacts of fire or harvest. In extreme circum-
stances, however, such as with the mountain pine beetle infestation in
British Columbia in the 2000's, an epidemic infestation can have large
biomass consequences (Kurz et al., 2008). Insect damage often provides
increased fuels for subsequent wildfires (Kurz et al., 2013; Stinson et al.,
2011). Determining appropriate methods and approaches to in-
corporate the impacts of these non-stand replacing disturbances on our
estimates is a topic for future research.

5.4. Opportunities and future directions

There are opportunities that can improve the performance and ro-
bustness of the spatio-temporal workflow for wall-to-wall mapping of
forest attributes at a 30m spatial resolution presented herein. Future
work could involve the refinement of the prediction models used to
derive the forest structural attributes (such as gross stem volume and
total aboveground biomass) from the lidar data. Non-parametric models
are increasingly used to derive forest structure metrics from lidar ob-
servations, as they do not have restrictive assumptions on the data
analyzed (Penner et al., 2013). Access to additional lidar datasets may
help to augment the representation of forest structure in more varied
ecological and disturbance-related conditions, which in turn may im-
prove the estimation of structural attributes across Canada's forested
ecosystems using the methods presented herein. With these improve-
ments in mind, besides internal efforts, activities to partner with pro-
vincial and territorial resource management agencies to augment
ground plot holdings and access additional lidar datasets are on-going.

The use of additional spectral data acquired beyond the current
compositing window (August 1 ± 30 days) and representing within-
year variation in vegetation phenology may aid in reducing issues as-
sociated with asymptotic responses for attributes such as biomass (Zhu
and Liu, 2015). Future work may involve the production of a time series
of within-year BAP Landsat composites and associated spectral metrics
that capture within-year variations. This opportunity, however, might
be hindered by historical data availability (White and Wulder, 2014), as
well as a greater likelihood of cloud cover, which can confound com-
positing approaches (White et al., 2014).

Time since disturbance has previously been demonstrated to be a
valuable predictor of forest structure (Matasci et al., 2018; Zald et al.,
2016) as it informs on the recovery and successional stage reached by
the developing stands (Pflugmacher et al., 2012). Currently, this in-
dicator is limited by the availability of 30-m Landsat data. Augmenting
the time-series to incorporate Landsat Multispectral Scanner System
(MSS) imagery could extend the monitoring period to as early as 1972
(Vogeler et al., 2018). Alternatively, other mapped forest change data,
such as the Canadian National Fire Database, could be incorporated to
provide information on disturbances prior 1985.

6. Conclusions

Demands for forest information are increasing for a broad range of
applications. Information must be spatially explicit and characterize
forest dynamics at a scale that captures anthropogenic impacts. Herein,
the incorporation of Landsat and lidar data provides key forest struc-
tural variables that satisfy this information need, with spatial layers
that have been generated in a consistent and transparent manner
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through time and over large spatial extents. To do so, a NN statistical
imputation model based on RF was built based upon these two com-
plementary sources of remotely sensed data. A set of wall-to-wall pre-
dictor variables from Landsat pixel composites was combined with
positional and topographic information as well as with a pixel-based
disturbance history to model the forest attributes derived from lidar
acquisitions. Leveraging the available multi-decadal time-series of
Landsat data, the model allowed us to exhaustively and annually map
forest structural attributes at a 30m resolution from 1984 to 2016 over
the entire ~650million ha forested ecosystem of Canada. The valida-
tion of the model on independent plots resulted in outcomes that are
comparable to previously published studies, including prior work on a
single-year estimate for the entire boreal forest of Canada (Matasci
et al., 2018). The unique contributions of the research presented herein
can be summarized as follows. First, this effort represents a further
building block towards attaining operational capacity for large-area
forest monitoring programs. Starting from a prototype study focusing
on a small area (Zald et al., 2016), we extended the spatial and tem-
poral scale of the modelling framework to ultimately demonstrate its
efficacy and robustness at the desired scale of implementation: the
entire forested area of Canada over a time period spanning three dec-
ades. Second, we implemented an independent stand-level validation of
the estimates over multiple years using lidar data that was not used in
the model development. This unique temporally representative vali-
dation exercise builds confidence in the portability of our models
through time. Third, we showed how the resultant time-series of spatial
layers enable the study of forest growth and recovery after disturbance
across Canada. We offer insights on stand dynamics by capturing the
regional patterns of Canada's various forested ecosystems, by examining
the behavior of distinct structural forest attributes, and by comparing
the response after fire and harvesting events. Given similar information
needs and forest conditions, the approach demonstrated here is por-
table and subject to widespread implementation due to the increasing
availability of the datasets used and cloud based computing infra-
structure.
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