REMOTE SENSING LETTERS .
2019, VOL. 10, NO. 3, 302-311 IalyL(zl’ &fl’anCIS
https://doi.org/10.1080/2150704X.2018.1536300 aylor & Francis Group

8 OPEN ACCESS | ™ ot orupaes|

Multi-sensor, multi-scale, Bayesian data synthesis for
mapping within-year wildfire progression

Morgan A. Crowley(?, Jeffrey A. Cardille(®?, Joanne C. White (P
and Michael A. Wulder P

aDepartment of Natural Resource Sciences, McGill University, Ste.-Anne-de-Bellevue, Québec, Canada;
bCanadian Forest Service (Pacific Forestry Centre), Natural Resources Canada, Victoria, British Columbia,
Canada

ABSTRACT ARTICLE HISTORY
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tions enables applications aimed at near-term disturbance detec-
tion. In this case study, we present methods for synthesizing
burned-area information from multiple sources to map the active
phase of the Elephant Hill fire from the 2017 fire season in British
Columbia. We used the Bayesian Updating of Land Cover (BULC)
algorithm to merge burned-area classifications from a range of
remote-sensing sources such as Landsat-8, Sentinel-2, and MODIS.
We created provisional classifications by comparing the post-fire
Normalized Burn Ratio against pre-fire image composite within the
fire boundary provided by the Province of British Columbia. BULC
fused the classifications in Google Earth Engine, producing a
cohesive time-series stack with updated burned areas for 19 dis-
tinct days. The fire burned unevenly throughout its lifespan: a
rapid burn phase of 53,097 ha in two weeks by late July, a steady
burn phase to 60,000 ha until late August, an accelerated burn
phase of 95,766 ha until mid-September, and containment at
203,560 ha in October. The highly automated methods presented
herein can synthesize multi-source fire classifications for active
phase monitoring both retrospectively and in near-real-time.

1. Introduction

Forest disturbance mapping has been made possible for Canada through the
Composite-to-Change (C2C) protocol, which uses annual proxy best-available-pixel
(BAP) composites across the 30 m Landsat record (Hermosilla et al. 2016, 2017; White
et al. 2017). BAP composites enable cloud and gap-free observations while ensuring that
similar illumination and growing conditions (August 1 + 30 days) are represented across
years (White et al. 2014). Using these data, the average area burned annually by wildfire
in Canada (1985-2010) is estimated to be 1.6 Mha (o = 1.1 Mha, where o denotes the
standards deviation). Operationally, annual data is acquired by provincial and territorial
fire management agencies to track the location, size, and cause of wildfires, among
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other attributes. These jurisdictional data are compiled with other sources to produce
the Canadian National Fire Database (CNFDB; Amiro et al. 2001; Stocks et al. 2003;
Parisien et al. 2006; Burton et al. 2008). The CNFDB, which typically does not exclude
unburned islands and water bodies from its fire perimeters, estimates an average annual
area burned of 2.3 Mha (o = 1.9 Mha; White et al. 2017). While both C2C and CNFDB
provide estimates of burned area, there are opportunities to augment and further refine
burned-area estimates using data from multiple earth observing satellites.

Individual sensors have been used to detect characteristics of forest fires, creating
retrospective maps of burned area at a variety of spatial resolutions. For example, the
MODIS Collection 6 MCD64A1 global burned area product provides geographic locations
and timing of fires at 500 m spatial resolution derived using a burn-sensitive vegetation
index (Giglio et al. 2015; Humber et al. 2018). MODIS-derived products provide high
temporal but low spatial resolution for monitoring fires, and spatial interpolation techni-
ques have been used to downscale its coarse resolution for fire analyses across North
American forests (de Groot et al. 2007; de Groot, Pritchard, and Lynham 2009; Parisien et al.
2011; Parks, Parisien, and Miller 2012; Parks 2014). For Canadian boreal forests, the
Normalized Burn Ratios (NBR) and the differenced pre-disturbance and post-disturbance
NBRs (dNBR) are reliable estimators of burned areas (Key and Benson 2006; Hall et al. 2008;
Soverel, Perrakis, and Coops 2010; Soverel et al. 2011; Hermosilla et al. 2016, 2017; White
et al. 2017; Frazier et al. 2018). The NBR and dNBR have been used with fine-scale Landsat
time series to detect stand-replacing fires in Canadian forested ecosystems at annual time
steps (e.g., Schroeder et al. 2011; Hermosilla et al. 2016, 2017; San-Miguel, Andison, and
Coops 2017; White et al. 2017; Frazier et al. 2018; San-Miguel, Andison, and Coops 2018). In
a few cases, observations from multiple sensors have been combined to enable retro-
spective mapping. For example, the dNBR can be calculated from pre-fire Landsat-8 and
post-fire Sentinel-2 observations (Quintano, Fernandez-Manso, and Fernandez-Manso
2018). These retrospective maps of extinguished fires are useful for managers (Roy et al.
2005; Lentile et al. 2006; San-Miguel, Andison, and Coops 2017), but the rapid spread and
associated smoky conditions render near-term classification of a fire's rapidly changing
extent difficult.

Recent developments suggest that information from multiple satellites can be combined
at greater temporal resolution not only for retrospective mapping but also for estimating
fire growth while the fire is still active. Until very recently, the density of available data was
such that fine-scale near-real-time monitoring of fires was impractical due to high costs and
sparse frequencies of observations. Fusing observations from multiple sources advance the
possibility of monitoring in near-real-time (Li and Roy 2017; Wulder et al. 2018), such as
during the active phase of fires. The Bayesian Updating of Land Cover (BULC) algorithm
synthesizes classifications of individual images through time by weighing evidence from
multiple classifications to produce a time series of land undergoing rapid change (Cardille
and Fortin 2016). BULC records the land-use land-cover (LULC) history for each class of
stability and change across large areas, allowing users to view the trajectory and probability
of any pixel in the image calculated using Bayes’ Theorem. In this letter, we demonstrate
how combining observations from multiple sensors can facilitate the mapping of active
fires. This fusion takes advantage of the growing frequency and quality of sensors with
different spectral and spatial characteristics, capturing near-real-time growth patterns of
long-lived fires to inform managers and planners interested in fire risk, spread, and impact.
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2. Materials and Methods
2.1. Study Area

The 2017 fire season was the largest on record for British Columbia (BC) and mapping these
fires is important for monitoring forest-disturbance impacts, with considerations related to
timber supply, carbon consequences, and animal habitat. One of the largest fires was the
Elephant Hill fire, also known as the Ashcroft fire (K20637). This fire started on 11 July 2017
north of Ashcroft, British Columbia and was contained by October 2. The Elephant Hill fire's
eventual perimeter grew to 511 km, based upon data shared by the British Columbia Wildfire
Service. The final burned area within this perimeter was reported to be 192,016 ha, damaging
infrastructure in addition to forested lands (BC Wildfire Service 2017a, 2017b). For context, the
final burned area of this individual fire was two-thirds of the cumulative burned area for the
entire 2015 fire season (280,738 ha burned by 1,858 fires), and double that of the total area
burned in the 2016 fire season (102,019 ha burned by 1,050 fires; BC Wildfire Service 2017c).

2.2. Provisional classifications using Landsat-8 OLI, Sentinel-2 and MODIS

Images intersecting the Elephant Hill fire perimeter from summer and autumn 2017
were identified for classification in Google Earth Engine, a cloud-based platform for
accessing and processing satellite imagery and geospatial datasets (Gorelick et al. 2017).
Differences over the dNBR threshold outlined in Hall et al. (2008) were classified as
‘Burned/Burning’; those below the threshold were classified as ‘Unburned’ at that time
step (e.g., Frazier et al. 2018). The treatment of each of the relevant sensors — Landsat-8,
Sentinel-2, and MODIS - differed slightly and are described below.

Landsat-8: We computed the pre-fire NBR using a 2016 BAP gap-free reflectance
composite that was generated following the C2C approach (e.g., White et al. 2014,
2017; Hermosilla et al. 2016, 2017). To compare with the pre-fire status, we identified
10 Landsat-8 surface reflectance images from six different dates, with each image having
less than 10% cloud cover. We masked clouds and haze before classification using the
pixel-level Quality Assurance (QA) band (Zhu 2017; Egorov et al. 2018; USGS 2018). We
differenced the NBR of each image with the pre-fire NBR to produce six dated provi-
sional classifications for use in BULC.

Sentinel-2: We identified 33 Sentinel-2 (A and B) images with less than 10% cloud cover
on 11 distinct dates, for classification and use in BULC. In Earth Engine, we generated a
pre-fire best-available-pixel image using similar pixel selection criteria as used in C2C. We
then calculated the pre-fire NBR values for each pixel for comparison to each image’s post-
fire NBR values. Because observations from Sentinel-2 are provided in UTM tiles smaller
than the study area, we mosaicked the Sentinel-2 images for each distinct day before
classification then masked clouds and haze using the QA band of Sentinel-2 observations.
The result was 11 date-specific classifications that were used as inputs in BULC.

MODIS: We identified monthly summaries of burned areas from the MODIS Collection 6
MCD64A1 burned area product, for classification and use in BULC (Giglio et al. 2015; Humber
et al. 2018). This raster data product detects day-of-burning globally at 500 m resolution
with an average uncertainty of 4.3 days and a processing delay between 1.5 to 3 months for
the Elephant Hill fire. Because the burned-area product contains the detected burn date in
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each of the three monthly images, we reclassified these MODIS burned-area products into
Burned/Burning and Unburned layers in 15-day summaries. The result was six date-specific
summary classifications that were used as inputs to BULC.

Across the three sources, there were 23 provisional classifications of burned area from 19
distinct imaging dates during the study period. Using observations from multiple remote
sensing sources greatly reduced the revised interval considered across the portfolio of
sensors., we were able to increase the frequency of observations to reduce the temporal
revisit intervals provided by the sensors (e.g., Li and Roy 2017). The six Landsat-8 surface
reflectance classifications, eleven Sentinel-2 classifications, and six MODIS bi-weekly classi-
fications were ordered by date and used as provisional classification inputs in the BULC
algorithm for the Elephant Hill fire study area, outlined in Table 1. The combined sensors
imaged each pixel an average of 19.5 times between July 5 and October 30, with the entire
study area having been imaged at least once in 13 of the 15 weeks that the fire burned.

2.3. BULC

To synthesize the information from these three different sensors, we used the BULC algorithm
(Cardille and Fortin 2016). BULC applies Bayes’ Theorem to interpret a series of time-ordered
provisional classifications, synthesizing a time series that shows change and stability in the
study area at the per-pixel level. To gauge the reliability of a given provisional classification to
the construction of the time series, BULC compares each new classification — from any data
source — against the previous classification in the time stack. Using the Producer’s Accuracy as
the conditional probabilities in Bayes’ Theorem, BULC traces the probability of both classes
through time. As detailed in Cardille and Fortin (2016), BULC can synthesize moderate-quality
classifications over short time intervals to track rapidly changing landscapes. BULC tolerates
occasional errors (i.e., resulting from smoke, clouds), and is thereby an ideal fusion algorithm
for active-phase fire classification. BULC is able to quantify the burned and burning area of a
fire at intermediate time steps between the beginning and end of individual fire events
utilizing the dense stack of relatively clear provisional classifications from Landsat-8,
Sentinel-2, and MODIS in Google Earth Engine.

3. Results

The Elephant Hill fire burned unevenly throughout its active phase: rapid escalation in
late July, slow and steady growth until late August, an accelerated phase until mid-
September, and containment by October (Figure 1).

BULC synthesizes provisional input classifications from the active phase of the fire, which
allows per-pixel burn detection within the British Columbia fire-event perimeter at the

Table 1. Satellite source and acquisition dates for Elephant Hill fire observations, whether MODIS,
Landsat-8, or Sentinel-2, that were used as inputs in BULC.

July August September October
5 14 20 30 4 6 11 19 22 26 3 15 16 18 28 3 5 10 30
Landsat-8 X X X X X X
Sentinel-2 X X X X X X X X X X

MODIS X X X X X X
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Figure 1. Growth in Elephant Hill burned area through time as synthesized in BULC from Landsat-8
(L), Sentinel-2 (S), and MODIS (M). The line indicates BULC estimated Burned/Burning area through
time, while bars show the high variability among provisional classifications from each sensor.

collection date of each event. Figure 2 shows the final fire perimeter delineated by the British
Columbia Wildfire Service superimposed on the BULC burned-area estimates for the Elephant
Hill fire at the following time steps: July 5 (a), July 30 (b), August 26 (c), and October 30
following 100% containment (d). Figure 2(b) is the product of five images over 3.5 weeks and
shows fire growth from 461 ha on July 20 to 50,122 ha on July 30. Figure 2(c) shows the BULC
classification that results in 14 images over 7.5 weeks, showing a fire growth from 113,103 ha
on August 22 to 164,738 ha on August 26. Figure 2(d) shows the final BULC classification of
Burned/Burning pixels within the BC polygon after the fire had been 100% contained. The
BULC Burned/Burning area covers 67% of the British Columbia fire agency polygon, amount-
ing to 203,560 burned ha, 6% higher than the estimated 192,016 burned ha (BC Wildfire
Service 2017a, 2017b).

The BULC fire classifications detect unburned pixels within the BC fire perimeter.
Figure 3 compares zoomed regions of the final MODIS burned-area summary with the

Figure 2. BULC burned-area classification estimates in red within the BC Elephant Hill fire perimeter
on dates July 5 (a), July 30 (b), August 26 (c), October 30 (d).
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Figure 3. Post-fire, final MODIS Collection 6 MCD64A1 burned pixels zoomed to 500 m following 30
October 2017 centred on 121° 29" W, 50° 55" N (a) compared with the final BULC classification (b); post-fire,
final MODIS Collection 6 MCD64A1 burned pixels centred on 121°9" W, 51° 0" N (c) compared with the final
BULC classification (d). The multi-sensor approach of the final BULC classification refines the edges of both
burned and unburned objects present in the coarser MODIS Collection 6 MCD64A1 dataset.

final BULC classifications for the Elephant Hill fire. The MODIS burned area shown in
Figure 3(a) compared with the final BULC classification shown in Figure 3(b) emphasizes
the unburned pixels within the fire-event perimeter. Additionally, based upon inputs
from Landsat and Sentinel-2, BULC identifies Burned/Burning pixels at a finer spatial
resolution than the MODIS dataset. The MODIS burned area, shown in Figure 3(c),
detects unburned pixels with a coarser resolution than the fine spatial resolution of
the final BULC classification in Figure 3(d).

As BULC processed provisional input classifications, the new information contained
therein updated the synthesized classification of the burned area, as shown in Figure 4.
As the fire progressed through the area surrounding -120.933, 51.286, MODIS-based
provisional classification from September 3 changed the probability of fire from around
38 to 62%, high enough to tip the estimated LULC to Burned/Burning in Figure 4(a). The
next view of the area, Sentinel-based provisional classification from September 15
confirmed most of the September 3 classification and changed the probabilities of
many of the pixels to be 70% in Figure 4(b), which classified the LULC to Burned/
Burning in those corresponding pixels. The subsequent view of the area (imperfect
Landsat-based provisional classification from September 16) refined the BULC classifica-
tion further. The newly burned pixels in the northwest had a probability of being
Burned/Burning around 58% and therefore were captured as Burned/Burning in the
BULC classification, and the nearby pixels in the southwest that had not been classified
as Burned/Burning were between 24 and 44% probability in Figure 4(c).
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(a) September 3 September 15 September 16

Figure 4. As the fire progresses in this region (zoomed on 120° 59’ W, 51° 17" N) from September 3 to
September 16, the imperfect provisional classifications in row (a) provide evidence of Burned/Burning to
influence the per-pixel probabilities in row (b) (lighter gradient depicts larger probabilities), and the
updated probabilities classify the pixels as Burned/Burning in the BULC classification in row (c).

4. Discussion

In this study, we have demonstrated a highly automated approach for combining accessible
data products for active fire monitoring. The application of the BULC algorithm on dNBR and
other burned-area classifications provides a seamless and multi-sensor method for synthesis
of burned-area observations. This method combines observations from disparate data
sources to increase the frequency of useable images to work towards near-real-time detec-
tion of burned areas during the fire’s active phase. Additional methodological novelty is
demonstrated by the capacity to increase temporal revisit rates supporting the reconstruc-
tion of active fire lifespans to better understand fire growth and underlying drivers with high
temporal frequency and fine spatial resolution.

In this case study, we found that observations from each sensor contributed to the time
series tracking the growth of the Elephant Hill fire, thus supporting the fusion of multi-sensor
observations to expand near-real-time burned-area detection (Hilker et al. 2009a, 2009b;
Wulder et al. 2010; Li and Roy 2017; Wulder et al. 2018). Relying exclusively on Landsat-8
input classifications, our fire time series would be limited to burn detection primarily early in
the active fire phase. Similarly, using only input classifications from Sentinel-2, the fire time step
would be limited to burn detection after the first major growth in late July. Lastly, utilizing only
MODIS burned area data would have caused over-classification of burned areas with coarse
pixel resolution (Fraser et al. 2004; White et al. 2017). Even though BULC was able to create a
credible time series using these sources, it was not quite real-time mapping: the density of data
limited the BULC classification of the fire’s burned area to about a 1-week delay. Because BULC
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is not limited to any set of sensors, as additional imagery becomes available the time series can
become more narrowly timed, perhaps to a sub-weekly time series.

The findings of this research provide a method for synthesizing burned-area classifications
from multiple sources with varying scales and resolutions, including single-date remote
sensing, burned-area detection algorithms, and jurisdictionally produced fire perimeters. For
reconstructing the British Columbia 2017 fire season, there are observations available from
other platforms (e.g., Landsat-7, Sentinel-3) that BULC could also incorporate imagery to create
a sub-weekly time series. Due to the portability of the post-classification synthesis approach
presented, future studies can apply these methods to create temporally dense fire-classifica-
tion stacks for burned-area detection whether analysing fires in near-real-time or
retrospectively.
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