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Abstract
& Key message Natural disturbance can disrupt the antici-
pated delivery of forest-related ecosystem goods and ser-
vices. Model predictions of natural disturbances have sub-
stantial uncertainties arising from the choices of input da-
ta and spatial scale used in themodel building process, and
the uncertainty of future climate conditions which are a
major driver of disturbances. Quantifying the multiple
contributions to uncertainty will aid decision making and
guide future research needs.
& Context Forest management planning has been able, in the
past, to rely on substantial empirical evidence regarding tree
growth, succession, frequency and impacts of natural distur-
bances to estimate the future delivery of goods and services.
Uncertainty has not been thought large enough to warrant
consideration. Our rapidly changing climate is casting that
empirical knowledge in doubt.
& Aims This paper describes how models of future spruce
budworm outbreaks are plagued by uncertainty contributed
by (among others): selection of data used in the model build-
ing process; model error; and uncertainty of the future climate
and forest that will drive the future insect outbreak. The con-
tribution of each to the total uncertainty will be quantified.
&Methods Outbreak models are built by the multivariate tech-
nique of reduced rank regression using different datasets. Each

model and an estimate of its error are then used to predict
future outbreaks under different future conditions of climate
and forest composition. Variation in predictions is calculated,
and the variance is apportioned among the model components
that contributed to the epistemic uncertainty in predictions.
& Results Projections of future outbreaks are highly uncertain
under the range of input data and future conditions examined.
Uncertainty is not uniformly distributed spatially; the average
75% confidence interval for outbreak duration is 10 years.
Estimates of forest inventory for model building and choice
of climate scenario for projections of future climate had the
greatest contributions to predictions of outbreak duration and
severity.
& Conclusion Predictions of future spruce budworm outbreaks
are highly uncertain. More precise outbreak data with which to
build a new outbreak model will have the biggest impact on
reducing uncertainty. However, an uncertain future climate will
continue to produce uncertainty in outbreak projections. Forest
management strategies must, therefore, include alternatives that
present a reasonable likelihood of achieving acceptable out-
comes over a wide range of future conditions.

Keywords Decisionmaking . Ecosystem good and services .

Pestmanagement . Forest planning . Spruce budworm . Insect
outbreak projections

1 Introduction

Boreal forests provide valued ecosystem goods and services
(G&S) at multiple scales, from the community to the global
level. These ecosystem G&S include fibre production (for
lumber and paper), biodiversity, clean air and water, hunting
and fishing, recreation and others (Gauthier et al. 2015).
Boreal forests can also act as important carbon sinks
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(Dymond et al. 2010). Ecosystem G&S are delivered by the
heterogeneity of the forest landscape—the matrix of forest
“types”—which is a result of climate, physical environment,
natural disturbances and human disturbances (Grondin et al.
2014). Forest management planning (and policy) for the de-
livery of the desired ecosystem G&S involves a prediction of
the future matrix of forest types (species mixtures and ages),
given the current matrix, a set of management practices, and
the assumed species responses to the management practices
and to the future abiotic conditions such as soil, temperature
and precipitation. These predictions are uncertain, and the
delivery of desired ecosystem G&S may be jeopardized.
Minimizing the uncertainty will aid decision making in policy
and forest management planning. Understanding and quanti-
fying the sources of the uncertainty will guide future research
to reduce the uncertainty.

Natural disturbances are important drivers of the boreal for-
est.Thesprucebudworm(Choristoneura fumiferanaClemens)
(SBW) is arguably the second most impactful natural distur-
bance agent (after wildfire) in Canada’s boreal forest. Spruce
budworm is a native defoliator in North America that feeds
principally on Abies balsamea (L.) (Mill.), Picea glauca
(Moench) Voss, P. rubens Sarg. and P. mariana (Mill.)
Brittoni, Sterns & Poggenb. Populations undergo more or less
regular 30–40 cycles of abundance. During periods of high
population levels (outbreaks), a few hundred larvae may be
found on a single branch of a host tree. Between the outbreak
periods, populationsmaybe so lowas tomake it difficult to find
a single larva amongseveral hundredbranches (Royama1992).
Outbreaksoccursomewhat synchronouslyoverextensiveareas
(Royama 1984; Candau et al. 1998; Gray et al. 2000), but out-
break duration varies regionally from as few as one to as many
as 20 years. Mortality and growth loss are typically very high
over the course of an outbreak. Approximately 45% of the host
trees in eastern Canada were killed during an outbreak of the
1910s and1920s (Swaine et al. 1924).Between1977and1987,
the annual timber loss to SBW was 40–100 × 106 m3, greater
than the 25 × 106 m3 annual loss to fire during the same period
(Natural Resources Canada 2014).

Given the very large impact of a future SBW outbreak on
the forest matrix, there is considerable interest in predicting
future outbreaks and their impacts. It is generally accepted that
climate and forest composition are key factors in outbreak
dynamics (see Candau and Fleming (2005) and Gray (2013)
for a brief review), but the precise manner in which they exert
an influence on the initiation, severity (annual defoliation lev-
el) and duration of an outbreak is not well understood. More
than 43 primary parasitoids and 21 entomopathogens are as-
sociated with SBW populations on A. balsamea alone
(Eveleigh et al. 2007). Temperature and/or precipitation affect
many life history traits (e.g. aggregation, developmental rates,
phenology, fecundity and survival and dispersal) of the SBW,
its natural enemies and its hosts. Forest composition

(including host abundance) is affected by climate and has a
demonstrated effect on SBWand its natural enemies (Fig. 1).

The complexity of the SBW outbreak system has caused
authors to resort to correlation-based (as opposed to process-
based) models to model one or more SBW outbreak charac-
teristics. All of the techniques rely on a similar combination of
input data for the modelling exercise: spatially referenced re-
cords of annual defoliation for an extended time period (an
outbreak cycle) from which the outbreak characteristic/
characteristics is/are derived (the response variable(s)) and
estimates of forest composition and climatic characteristics
thought to be relevant to the SBW life cycle (the explanatory
variables) at the same spatial scale. Throughout this paper,
“spatial scale” denotes the size of the quadrat over which the
input data are aggregated and in which the projected outcomes
are estimated (also known as “spatial resolution”). Candau
and Fleming (2005, 2011) used a regression tree and the
Random Forests classification technique to model the out-
break duration (the frequency of recorded annual defoliation
in an outbreak cycle (1967–1998)) in Ontario at a 1-km
(Candau and Fleming 2005) or a 10-km (Candau and
Fleming 2011) scale. Boulanger et al. (2015) also modelled
the outbreak duration. They added a spruce budworm popu-
lation “growth potential” variable derived from a process-
based model (Régnière et al. 2012) to the climate and forest
composition matrix, and then built a consensus model from a
mix of correlative techniques at a 10-km scale for eastern
Canada (east of the Manitoba-Ontario border). Gray (2008,
2013) used constrained ordination (reduced rank regression)
because of its ability to simultaneously model the two re-
sponse variables—outbreak duration and outbreak severity
(defoliation level during the outbreak)—that he argues is nec-
essary to estimate impacts of the outbreak. He used a 30,000-
ha (approx. 17.3 km) spatial scale for eastern Canada.

Despite the importance and implications of the predictions
of future outbreaks on the choice of a management plan that is
expected to deliver the desired ecosystem G&S, the uncertain-
ty (that is, any departure from the unachievable ideal of com-
plete determinism (Walker et al. 2003)) of the predictions has
never been adequately examined. Candau and Fleming (2011)
reported the mean square error of their outbreak model, and
they predicted future outbreak durations by applying their
model to the predicted future climates of three climate models
(CGCM2 (Environment Canada), HadCM3 (Met Centre) and
CSIROMk2) and two climate scenarios (SRESA2 and B2) of
the International Panel on Climate Change (IPCC). But they
did not quantify the prediction variability (the uncertainty) in
outbreak duration that would be generated by the combination
of their model error and the choices of climate model and
climate scenario. Gray (2013) reported the R2 of his outbreak
model (duration and defoliation level), but applied his model
to the predicted future climates of only one climate model
(CGCM3 (Environment Canada)) and only one climate
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scenario (A2). He did not report the prediction variability
(uncertainty) in outbreak duration or severity that would be
generated from his model uncertainty and did not consider the
contributions to uncertainty of alternative climate models and
climate scenarios. Boulanger et al. (2015) used three climate
scenarios (RCPs 2.6, 4.6 and 8.5) of just one climate model
(CanESM2 (Environment Canada)). They analysed the uncer-
tainty in outbreak prediction only and contributed by the
choice of data for building their outbreak model, the correla-
tive technique used to build their model, and climate scenario.
They did not include alternative climate models. In summary,
one or more key contributors to uncertainty have beenmissing
in previous investigations.

There are numerous typologies of model uncertainty
(Walker et al. 2003; Refsgaard et al. 2007). Model uncertainty
may be stochastic, arising from the inherent variability of the
system and the impossibility of completely capturing the var-
iability, or epistemic, arising from an incomplete knowledge
of the system or an inability to adequately model the system.
Stochastic uncertainty is nonreducible; epistemic uncertainty
can be reduced by better knowledge and/or better data. There
are numerous ways to further subdivide prediction uncertainty
into its many epistemic sources. In this paper, I will refer to
prediction uncertainty from (Fig. 2):

1. Model data sources. These include the following:

a. historical SBW defoliation (the response variable),
which may be limited, inaccurate or imprecise;

b. forest composition and climate (the explanatory vari-
ables), which may be limited, inaccurate or imprecise;
and

c. the spatial scale at which the data were collected/
aggregated.

2. Model structure. This includes the following:

a. model type, which is the choice frommany alternative
algorithmic strategies applicable in the context of a

correlation question (e.g. robust linear model, general
additive model, multivariate adaptive regression
splines, random forests and redundancy analysis); and

b. parameter estimates.
3. Future conditions that drive the future SBW outbreaks.

These include the following:

a. future climate scenario (Representative Concentration
Pathway (RPC of the IPCC) run by the climate model;

b. climate model running the climate scenario;
c. forest inventory; and
d. consistency in spatial scale between the model data

spatial sources and the future conditions (forest com-
position and climate).

Residual error, which is the discrepancy between predicted
and observed outcomes under the individual combinations of
model data sources and parameter values (1 and 2, earlier),
will be considered as stochastic uncertainty inherent in the
natural system.

In this paper, I describe a Monte Carlo analysis that gener-
ates multiple versions of predicted future SBWoutbreak char-
acteristics (duration and defoliation) at each location by vary-
ing the model data sources (forest composition), spatial scale,
parameter estimates and future conditions (climate and forest
inventory). A variety of model types is not included because
reduced rank regression (see below) is the only model type
available that will simultaneously model multiple response
variables. The contribution of each of the other sources of
epistemic uncertainty is quantified and discussed.

2 Materials and methods

The methodology follows these steps: compile datasets of
outbreak characteristics, forest composition and climate at
common spatial scales; build multiple models of outbreak
characteristics as functions of forest composition and climate
at each spatial scale by repeatedly sampling the data sources;
generate future climates for the 2031–2060 time period at each
spatial scale using a variety of climate models and climate
scenarios; and simulate (predict) future outbreaks for the
2031–2060 time period based on each combination of model
and future condition at each spatial scale. This will produce
multiple, equally likely predictions at each location of a future
outbreak that together constitute the uncertainty at the
location.

2.1 Model building data sources (historic conditions)

Spatial scale The building of a correlation-based model needs
response (SBW outbreak characteristics) and explanatory

Fig. 1 The interrelationships among populations of the spruce budworm
and its natural enemies, climate and matrix of forest compositions
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(forest composition and climate) data compiled at a common
spatial scale. Data were compiled, andmodels were built at the
two spatial scales, 10 × 10 km and 15 × 15 km, that roughly
match the two scales used in previous examinations of out-
break characteristics in this area (Gray 2008; Gray 2013;
Boulanger et al. 2015). A uniform grid pattern of cells at each
scale was placed over eastern Canada (east of the Manitoba-
Ontario border). Spruce budworm outbreak characteristics,
forest composition and climatic conditions were summarized
within each cell of each spatial scale. A total of 11,825
(15 × 15 km) and 25,701 (10 × 10 km) grid cells occurred
on land within the eastern Canada study area.

Spruce budworm outbreak characteristics The National
Forest Information System (Natural Resources Canada 2014)
compiled the results of the extensive annual surveys of SBW
defoliation done by individual provinces. Surveys were (and are
still) done according to provincial protocols, and those protocols
vary slightly between years and among jurisdictions. The varia-
tionswere reduced to the commoncodesof nil (0), light–medium
(1) and severe (2) defoliation. The codeswere transformed into a
ratio scale to reflect the difference between the midpoints of the
range of defoliation within each code: 0 (nil), 1 (light–medium
(20%)) and 3.25 (severe (65%)). The defoliation polygons from
each year (1939–2008)were intersectedwith the 10 × 10 km and
the 15 × 15 km grids using ArcGIS (ESRI 2006). An area-
weighted average defoliation code was calculated for each year
in each grid cell at each scale from the portions of the defoliation
polygonsin thecell.Outbreaksbegin inastaggeredfashionacross

the landscape. Therefore, the most recent and complete outbreak
event was extracted from the 1931–2008 series in each grid cell.
Outbreak duration (the length of the extracted data string) and
defoliation code (average of the ratio scale defoliation codes in
the data string) describe the outbreak in each grid cell.

Assuming that future SBW populations will still exhibit
their cyclic behaviour (outbreak periods alternating with pe-
riods of endemic populations), there is an upper limit to out-
break duration. Similarly, the defoliation code cannot exceed
3.25. Therefore, duration and defoliation codes were trans-
formed to variables whose linear responses (as per the linear
reduced rank regression) to climate and forest composition
would produce a mildly sigmoidal increase (Fig. 3) in the
back-transformed duration and defoliation code:
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where y is the original duration or defoliation code, Φ is a
constant (30.0 and 3.25 for the transformation of duration
and defoliation code, respectively), and Ϋ is the transformed
duration or defoliation code that is modelled together by the
reduced rank regression.

Forest composition The Canadian Forest Inventory (CanFI) is
a compilation of 48 individual inventories from independent

Fig. 2 A division of prediction
uncertainty into three broad
categories: the input data used in
model building and calibration
(green box); model structure (grey
box) and the future conditions that
will drive the model (blue box).
Final prediction uncertainty (red
box) is an accumulation of the
uncertainties from the three
categories. For simplicity, not all
combinations are shown with
arrows
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jurisdictions (GrayandPower1997), 17ofwhichare in the study
area, that contain detailed descriptions including area (ha) and
species volumes (m3 ha−1) of individual forest stands. Multiple
(often many hundreds) individual records, each constituting a
single forest stand, are georeferenced to a single cell (hereafter
CanFImapsheet);CanFImapsheet size varieswithin andamong
jurisdictions. A composite forest type was estimated for each
CanFI mapsheet by aggregating species into four species types
(Table 1) and calculating the average volume (m3) per hectare of
each species type. The CanFI mapsheets were intersected with
10 × 10 km and the 15 × 15 kmgrids (above) usingArcGIS, and
an area-weighted average m3 ha−1 of each species type was cal-
culated for each cell of each grid scale.

Analternativeversionofforestcompositionineach10×10km
and 15 × 15 km grid cells was derived from the National Forest
Inventory (NFI) (Canadian Council of Forest Ministers 2010).
The collaborative, multijurisdictional NFI project produced a set
of 2 × 2 km photo plots on a 20 × 20 km spacing from which
Beaudoinetal. (2014)estimatedforestcoverata250-mresolution
byk-nearestneighboursinterpolation.Thesamefourspeciestypes
as used for the CanFI database (earlier) were used to calculate
average volumes (m3 ha−1) per species type in the NFI database.
The 250-m resolution estimates of species type volumes were
spatially intersectedwith the 10 × 10 km and the 15 × 15 kmgrid
cells of this study using ArcGIS, and an average m3 ha−1 of each
species type (Table 1) was calculated for each cell of each grid
scale. The two versions of forest composition were compared by
canonical correlation (vegan package (Oksanen et al. 2015) of R
(RDevelopment Core Team 2008)).

There is no forest inventory that can be a perfect temporal
match for the spruce budworm outbreaks across the large study
area of eastern Canada. The location-specific beginning of the

most recent outbreak varied by 38 years (1960–1998). The dates
of the 17 inventories in the study area vary between 1971 and
1994. The photo plots from which the NFI inventory is derived
were created between 2000 and 2006. However, summation of
forest composition at the 10 × 10 kmand 15 × 15 km scales used
here will result in estimates of forest cover that are close to tem-
porally constant within the cells because forest harvesting in
Canada must be done on small blocks (usually ˂5 ha) which
makes a substantial change in cell forest composition unlikely
(Boulanger et al. 2015).

Climatic conditions The historic climate was derived from
the 1961–1990 Canadian Climate Normals database (avail-
able from the Meteorological Service of Canada,
Environment Canada). The daily minimum (Tn) and maxi-
mum (Tx) temperatures (°C) were simulated from the normals
for 20 individual years in each cell of each spatial grid using
the stochastic weather generator of BioSIM (Régnière and
Bolstad 1994; Régnière and St-Amant 2004). BioSIM simu-
lates the Tn, and the Tx at each cell centroid by matching
georeferenced sources of weather data (the climate normals)
to the cell centroids, adjusting the weather data for differences
in latitude, longitude and elevation between the source of
weather data and the centroid. BioSIM restores stochastic dai-
ly variation to the normals while maintaining the autocorrela-
tion between daily variables that occurs naturally (Régnière
and Bolstad 1994).

From the 20 time series of daily weather generated in each
cell, the following five climate variables were chosen a priori
to reflect conditions associated with SBW life cycle events
that are thought important to the progression of an outbreak
of a poikilothermic organism (Gray 2013):
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Fig. 3 The transformation of an
outbreak characteristic (duration
or defoliation (y)). The
transformed variable (Ϋ)
responds linearly to increases in
climate and forest composition (as
per the reduced rank regression
method) and the back-
transformed duration and
defoliation variables exhibit
mildly sigmoidal increases
toward an asymptote
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2.2 Model structure

Model type Many correlative model types have been exam-
ined for their utility in predicting one characteristic of future

outbreaks (Boulanger et al. 2015) (e.g. generalized additive
model, robust linear model and regression tree (including
Random Forests)). But following the logic that two character-
istics provide a fuller description of an outbreak than does one,
I use redundancy analysis as the model type. Redundancy
analysis is a form of constrained ordination in which the prin-
cipal axes are constrained to be linear combinations of the
explanatory variables (Lepš and Šmilauer 2014). Thus, multi-
ple response variables are modelled together in a reduced rank
regression model (ter Braak 1994), Y = MX + E, where Y is
constructed from the matrix of response variables (trans-
formed outbreak duration and defoliation code, in the specific
case here), X is the matrix of explanatory variables (five cli-
mate variables (Eqs. (2)–(6))) and forest composition (m3 ha−1

of the four species types of Table 1),M is the matrix of regres-
sion coefficients and E is the error matrix. Model fitting was
done with the vegan package (Oksanen et al. 2015) of R (R
Development Core Team 2008).

Regression estimates Ten independent samples of 25% of the
10 × 10 km and the 15 × 15 km grid cells were randomly
selected without replacement. Regression coefficients of the
Y =MX + E model were estimated for each independent sam-
ple of each grid scale.

Residual errors A residual error (Ϋobserved–Ϋpredicted) was cal-
culated for each sampled cell used in each of the 10 iterations
of parameter estimation of each spatial scale. A visual exam-
ination of residuals did not detect a noticeable spatial trend
within an iteration. Therefore, all residuals from an iteration of
parameter estimation were grouped, and an empirical frequen-
cy distribution was constructed for later sampling during the
prediction process for future outbreaks (below).

2.3 Future conditions

Climate models and future (projected) climate scenario
The climate projections of three general circulation models
(Table 2) under three future climate scenarios of the IPCC
(RCP2.6, RCP4.5 and RCP8.5) were used as the source for
the estimates of the five climate variables used in this study
(Eqs. (2)–(6)). The “peak and decline” RCP2.6 scenario

Table 1 Four forest species types
compiled from the Canadian
Forest Inventory (CanFI) and the
Canadian National Forest
Inventory (NFI) databases

Species type Species Spruce budworm host (Y/N)

Balsam fir + red spruce + white spruce Abies balsamea (L.) Mill.

P. rubens Sarg. &

P. glauca (Moench) Voss

Y

Black spruce Picea mariana (Mill.) B. S. P. Y

Other softwood N

Hardwood N
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represents a future trajectory where radiative forcing peaks at
∼3 W m−2 before 2100 and declines to 2.6 W m−2 by 2100.
The “stabilization without overshoot” RCP4.5 scenario repre-
sents a future trajectory where radiative forcing stabilizes at
4.5 W m−2 after 2100 without overshooting the 6 W m−2

targeted limit. In the “high concentration” RCP8.5 scenario,
radiative forcing reaches 8.5 Wm−2by 2100. McKenney et al.
(2013) summarized these outputs into climate normals at a 10-
km resolution. The climate normals formed the input for the
simulation of daily weather from which the five climate vari-
ables were estimated (see Eqs. (2)–(6)).

Climate variables Thedailyminimum(Tn) andmaximum(Tx)
temperatures (°C)were simulated for 20 individual years in each
cell of each spatial grid (10 × 10 km and 15 × 15 km) with the
climate normals from each combination of climate model and
RCP scenario using the stochastic weather generator of
BioSIM (see above). The five climate variables (Eqs. (2)–(6))
were calculated from the 20-year BioSIM output.

Forest inventory Previous work (Candau and Fleming 2011;
Boulanger et al. 2013; Gray 2013) has assumed that at the tem-
poral and spatial scales used here, there will be no significant
changes in forest composition from the historical conditions be-
cause forest harvesting in Canadamust be done on small blocks
(˂5 ha) whichmakes a substantial change in the cell forest com-
position unlikely (Boulanger et al. 2015). There does not exist a
forestsuccessionmodel that issensitive toclimateandcanproject
future forest compositions for the largeCanadian studyareaused
here.Therefore, the sensitivityofprojectedsprucebudwormpro-
jections to the assumption of an unchanged forest composition
was tested by using the same forest composition for historic and
future conditions, and by using different forest compositions in
the historic and future conditions (i.e. CanFI changing toNFI; or
NFI changing to CanFI).

2.4 Simulation procedure

The different combinations of a forest composition (2), scale
(2) and independent parameter estimates (10) produced 40
independent models, each with 10 estimates of error distribu-
tion. The parameter estimates of each model were used with a
combination of future conditions (climate and forest) to pre-
dict future SBW transformed outbreak characteristics in a
sample of cells. One thousand six hundred cells were random-
ly selected from the 15 × 15 km scale grid, and the cell cen-
troids were cross-referenced with the centroids of the cells of
the 10 × 10 km scale grid in order to select 1600 locations
from the 10 × 10 km scale grid that were as close as possible.
An error estimate was added to each prediction by randomly
selecting from the error distribution of the model. Ten inde-
pendent selections from the error distribution were made, pro-
ducing 10 independent estimates (predicted + error) of the two

transformed outbreak characteristic in each of the 1600 cells.
Thus, there was a total of 14,400 estimates of transformed
outbreak characteristics in each of 1600 cells:

& 40 independent models (from the combinations of a forest
inventory (CanFI or NFI) and a spatial scale (10 × 10 km
or 15 × 15 km) and 10 parameter estimations);

& × 10 error distributions for each model
& × 36 future conditions (3 RCP scenarios × 3 climate

models × 2 forest inventories × 2 spatial scales).

The projected outbreak characteristics were back-
transformed before uncertainty estimation.

2.5 Uncertainty estimation

Type III sums of squares (SS) and mean squares (MS) of the
epistemic and stochastic sources of variability in projected
outcomes (back-transformed duration and defoliation) were
calculated by SAS v9.2 (SAS Institute n.d.) from general lin-
ear models (Table 3). All sources were treated as random
effects. Each of the 10 iterations of model parameters was
specific to a combination of inventory and scale used in the
model, and was therefore treated as a nested effect. The model
error variance is best estimated by the MSerror reported by
SAS; similarly, the expected mean square (EMS) of effect i
is best estimated by theMSi reported by SAS (Hicks 1982, pp.
55–57). After formulating the equations for EMS by the usual
rules for random and nested effects (Steel and Torrie 1980, pp.
357–358), the estimated variance of each effect (s2i ) is obtain-
ed by substitution and simple re-arrangement. The percent
contribution of source i to the total epistemic uncertainty is

s2i = ∑
source

s2source � 100. Uncertainty in the location-specific

predictions of outbreak duration and defoliation level is
expressed in (1) absolute terms, as the distance between the
0.125th–0.875th quantiles of the duration and defoliation dis-
tributions of each cell (i.e. 75% of the outcomes of each cell);
and (2) relative terms, as the ratio of absolute uncertainty
divided by median prediction.

3 Results

Median-projected outbreak duration (back-transformed) was
4.8 years. Median-projected outbreak defoliation code (back-
transformed) was 0.5. Projected outbreaks are relatively short
(4.8 years) and of low defoliation principally because the
study area extends to northern areas where future climates
and forest composition are still not predicted to be highly
supportive of spruce budworm outbreaks. Both projections
were highly variable across the landscape as is naturally ex-
pected. Projected outbreaks were longest, and defoliation was
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the most severe in an east-west band through a southern por-
tion of the study area. To the north and to the south of this
band, the projected outbreak became shorter (Fig. 4) and de-
foliation became less severe (Fig. 5).

Projected outbreak characteristics were very uncertain
under the range of model building inputs and projection
conditions used here. An average of 9.8 years is required
to encompass 75% of the projected outcomes of outbreak
duration (absolute uncertainty). An average of 1.1 on the
defoliation scale is required to encompass 75% of the
projected outcomes of outbreak defoliation (absolute un-
certainty). The spatial pattern of absolute uncertainty
followed roughly that of the projected median of the cor-
responding outbreak characteristic: absolute uncertainty

was higher where the projected median was higher. The
spatial pattern of relative uncertainty was roughly the in-
verse of the projected median of the corresponding out-
break characteristic: relative uncertainty was higher where
the projected median was lower (Figs. 4 and 5). The area
of lower relative uncertainty (duration and defoliation)
corresponds roughly to the current eastern outbreak range
of the spruce budworm.

Projections of future outbreak durations were most un-
certain due to the choice of the forest inventory database
(69%) for historical conditions (i.e. for model building).
The choice of spatial resolution for model building was
the second largest contributor (11%) to the uncertainty in
future outbreak durations. The choice of climate model,

Table 2 Three global circulation models used to produce climate projections under the three RCP scenarios

Acronym Model name Source URL

CanESM2 Second Generation Earth
System Model

Canadian Centre for Climate
Modelling and Analysis

http://www.cccma.ec.gc.ca/data/data.shtml

HadGEM2-ES Hadley Global Environment
Model 2

Met Office, Hadley Centre https://verc.enes.org/models/earthsystemmodels/metoffice-hadley--
centre/hadgem2es

MIROC_ESM Model for Interdisciplinary
Research on Climate,
Earth System Model

JAMSECTEC/UT/NIESa http://www.geosci-modeldev.net/4/845/2011/gmd-4-845-2011.html

a Japan Agency for Marine-Earth Science and Technology/Atmosphere and Ocean Research Institute (The University of Tokyo)/National Institute for
Environmental Studies

Table 3 Sources of uncertainty in projections of future SBWoutbreak characteristics (transformed duration and defoliation) and the estimated mean
squares (EMS) formula, the mean square (MS), estimated variance (s2) and variance component (VC) of each epistemic source for each outbreak
characteristic

Source n Designation EMS Duration Defoliation

MSi s2i VC (%) MS s2i VC (%)

Inventorya 2 A s2error þ 57600� s2C A�Bð Þ þ 1:152E7� s2A 18,661,891 1.62 69.25 140,438 0.0122 72.56

Model scale 2 B s2error þ 57600� s2C A�Bð Þ þ 1:152E7� s2B 2,986,714 0.26 11.02 7952 0.0007 4.05

Model
parametersb

10 C s2error þ 57600� s2C A�Bð Þ 18,403 0.03 1.36 119 0.0002 1.22

Inventory changec 2 D s2error þ 1:152E7� s2D 1,640,066 0.14 6.09 16,363 0.0014 8.46

Scale changec 2 E s2error þ 1:152E7� s2E 600 0.00 0.00 6 0.0000 0.00

Climate scenario 3 F s2error þ 7:68E6� s2F 1,014,672 0.13 5.65 17,423 0.0023 13.51

Climate model 3 G s2error þ 7:68E6� s2G 1,188,156 0.15 6.62 244 0.0000 0.19

Predictions error 10

Cells 1600

Model error 29.61 0.39

a Forest inventory used in model building data
bModel parameter effect was nested within inventory and model scale
c Forest composition was changed (CanFI↔NFI), or scale was changed (10 × 10 km↔15 × 15 km) between model building and projected outbreaks
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RCP scenario and future forest inventory database con-
tributed roughly equally to uncertainty in future outbreak
durations (6.6, 5.6 and 6.1%, respectively) (Table 3).

As for future outbreak durations, projections of future
outbreak defoliation levels were most uncertain due to
the choice of forest inventory for model building (73%).

The choice of RCP scenario (13.5%) and future forest
inventory database (8.5%) were the second and third
largest contributors to uncertainty of future outbreak de-
foliation levels (Table 3).

Fig. 4 Median-projected outbreak duration (top); absolute uncertainty of
projected duration (middle) and relative uncertainty of projected duration
(bottom). Absolute uncertainty is the span between the 0.125 and 0.875
quantiles of the distribution (i.e. 75% of the predicted outcomes). Relative
uncertainty is the absolute uncertainty divided by the projected median

Fig. 5 Median-projected outbreak defoliation level (top); absolute
uncertainty of projected defoliation level (middle) and relative
uncertainty of projected defoliation level (bottom). Absolute uncertainty
is the span between the 0.125 and 0.875 quantiles of the distribution (i.e.
75% of the predicted outcomes). Relative uncertainty is the absolute
uncertainty divided by the projected median
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4 Discussion

Forests have, for millennia, been able to adapt to the slowly
changing climatic conditions (Davis et al. 2005). But the un-
precedented rapidity of the current changes in climate condi-
tions is challenging, or perhaps overwhelming, the adaptive
capacity of forests. Natural disturbances are important deter-
minants of forest composition; climate change is altering the
frequency and severity of fires (Flannigan et al. 2009;
Boulanger et al. 2013) and the occurrence and severity of
insect outbreaks (Dukes et al. 2009). As natural disturbance
regimes and postdisturbance successional pathways change
under the future climate, the anticipated ecosystem G&S
may not materialize. Ochuodho et al. (2012) estimate the eco-
nomic impact of climate change on Canada’s forests at $2–17
bil. year−1. One suggested strategy of dealing with the effects
of climate change is termed “adaptation”, which refers to the
“adjustment in natural or human systems in response to actual
or expected stimuli or their effects, which moderates harm or
exploits beneficial opportunities” (IPCC 2001). These might
include modifications to harvesting regimes and species selec-
tion at the time of regeneration.

The Canadian government (among others) has recognized
the importance of an adaptive management strategy for its
forests (CCFM 2008). But part of the adaptive strategy re-
quires predicting the effects of future climate change, and an
essential component of the prediction is an assessment of its
uncertainty. Adaptation in anticipation of a future effect that
does not materialize and failure to adapt to the future effect
that does materialize—both because of a poor prediction—
can have negative effects on their own. The immense range
of the predicted annual impact of climate change on Canada’s
forests (Ochuodho et al. 2012) reflects the immense uncertain-
ty of how a complex natural system will respond to a changed
climate (where the specifics of the climate changes are them-
selves uncertain). Eddy et al. (2014) illustrate (conceptually)
an adaptive management strategy wherein data analysis and
scenario modelling produce a prescriptive decision, which in
turn leads to an iterative process of actions → evaluations of
the actions → adjustments to the actions in light of the eval-
uation and new information. But this may not give sufficient
consideration to the very lengthy cycle of a forest stand.
Decisions we make today cannot easily be modified until the
next rotation (often 60+ years).

Candau and Fleming (2011), Gray (2013) and Boulanger
et al. (2015) have produced predictions of one or two charac-
teristics of future SBW outbreaks under one or more future
climates. Candau and Fleming (2011) used the Random Forest
(RF) R package (Liaw and Wiener 2002) to predict outbreak
duration in Ontario under two climate scenarios (IPCC “story
lines”) and three climate models. They qualitatively described
differences in outcome predictions but did not determine the
source (climate model or climate scenario) of the differences

in outcomes. They did not generate the additional projections
that would arise from the uncertainty in themodel data sources
or model parameter estimates that would produce additional
uncertainty in projected outcomes.

Boulanger et al. (2015) built a consensus model from two
model data sources (explanatory dataset) and six model types
(correlative techniques, including RF) and projected future
outbreak duration in three time periods under three climate
scenarios (RCPs) with one climate model. Their study area
was roughly equivalent to the one used here. The RF model
type was the biggest contributor to the consensus model; the
two model data sources (explanatory datasets) were approxi-
mately equal contributors. They compared only three sources
of uncertainty (model dataset, climate scenario and model
type). Model data source (of the explanatory variables) was
a greater contributor to projected uncertainty than the model
type and the climate scenario in all time periods. Model type
was responsible for more uncertainty than climate scenario in
all time periods. They did not include the uncertainty from
parameter estimation nor from model error in their
summary; and the map of projected uncertainties includes
only the uncertainty from the climate scenario.

Gray (2013) argued in favour of the reduced rank regres-
sion model type because of its ability to model multiple out-
break characteristics simultaneously: logically, an object is
better described by two characteristics than by one. He criti-
cized the RF technique because of its willingness to produce a
discontinuous relationship (Gray 2013, Fig. 8)—obviously
good for classifications, but at odds with biological systems
whose behaviours are ultimately driven by mechanisms that
may be wildly nonlinear but rarely discontinuous. His study
area was roughly equivalent to the one described here. But
there was no exploration of projection uncertainty, and he
projected future outbreak characteristics (duration and defoli-
ation) using only one IPCC story line and only one climate
model. Candau and Fleming (2011) justifiably criticised re-
duced rank regression for its linear restriction. The transfor-
mation of duration and defoliation code (Fig. 3) in the work
described here addresses that restriction. Still, there remains
considerable debate regarding the application of highly flexi-
ble or less flexible model types to alternative (e.g. future)
conditions (Elith et al. 2002; Thuiller 2003; Araújo et al.
2005; Randin et al. 2006).

This work has compared more sources of uncertainty than
were considered in previous work and it has quantified the
separate contributions of each source to the total uncertainty.
Similar to the study of Boulanger et al. (2015), climate sce-
nario was not a leading contributor to uncertainty of projected
outbreak duration (5.6%; Table 3). However, climate scenario
was the second largest contributor (13.5%) to uncertainty of
projected defoliation code. Climate models did not contribute
substantially to uncertainty 6.6 and <1% to duration and de-
foliation code, respectively. Model data source (forest
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composition used as explanatory dataset) was by far the
greatest contributor to uncertainty to projected duration and
defoliation code 69 and 73%, respectively.

Boulanger et al. (2015) found model data source (of the ex-
planatoryvariables) tobe thebiggestcontributor touncertainty in
their comparison of three contributors. They assembled two al-
ternative explanatory datasets for model building: (1) host bio-
mass (from the NFI dataset) and climate variables and (2) host
biomass(fromNFI)multipliedbyaoverwinteringsurvival factor
from a process-based phenology model (Régnière et al. 2012).
The choice here was between two alternative forest inventories.
TheCanFIandNFI estimatesof forest compositionwerederived
byverydifferentmethodologies, and they result indifferent“pic-
tures”ofessentially thesameforest: thefirstcanonicalcorrelation
between the CanFI and NFI databases was 0.8 (both spatial res-
olutions) but decreased to 0.6 and 0.4 by the third and fourth
canonical correlations (both spatial resolutions). It is assumed
that despite the difference inwhen the databases were compiled,
thetrueforestcompositionswillnothavechangedsignificantlyat
thevery largespatial scaleusedhere, anddifferencesbetween the
databases are predominantly due tomethodologies.Both studies
illustrate the importance that estimates of initial conditions (i.e.
the statusof the explanatorydataduringmodel building)haveon
projections of future outbreaks. Changing inventory datasets be-
tween model building and outbreak projections also serves as a
sensitivity test of the assumption (Candau and Fleming 2011;
Gray 2013; Boulanger et al. 2015) that projections of future out-
breaks do not need to be done under the conditions of a climate-
changed forest composition. We see here that changing the esti-
mated forest composition betweenmodel building and outbreak
projection contributed 6 and 8% to uncertainty of outbreak dura-
tion anddefoliation, respectively (Table 3).Unfortunately, at this
time, there does not exist a quantitative, climate-sensitivemodel
of forest succession that can project future forest compositions at
the required national and subnational levels for this Canadian
study area.

Estimates of initial conditions (specifically, the datasets
chosen to represent forest composition) made the largest con-
tribution to predictions of future outbreaks in this study
(Table 3). Gray (2008, 2013) used the CanFI database because
it was the only database available at the time that covered the
study area. Candau and Fleming (2005, 2011) used a more
precise provincial database because they restricted their study
area to Ontario. Boulanger et al. (2015) used the NFI database
because its format lends itself to more accurate compilation at
one’s chosen spatial resolution. Similarly, Candau and
Fleming’s (2005, 2011) estimates of defoliation were restrict-
ed to Ontario, where defoliation categories were somewhat
consistent over time. But Gray (2008, 2013, and here) and
Boulanger et al. (2015) created broader (and, therefore, fewer
and less precise) defoliation categories in order to incorporate
the differences among the multiple provincial categories of
their study area. It seems highly likely that projections of

future outbreaks could be improved by building a new out-
break model with more precise outbreak data. The new and
ongoing outbreak of spruce budworm in eastern Canada
(Natural Resources Canada 2014) presents an opportunity to
collect defoliation observations using uniform and temporally
consistent categories that can be used with the regularly up-
dated NFI data to build a new outbreak model with less
uncertainty.

There seems less opportunity to reduce the uncertainty
in outbreak projections that are attributable to our uncer-
tainty in the future climate (climate model plus climate
scenario). If this uncertainty cannot be reduced (and it
may not be possible to substantially reduce it), alternative
decision strategies may be required. McInerney et al.
(2012) define strategy robustness as “trading a small de-
crease in a strategy’s expected performance... for a signif-
icant increase in a strategy’s performance in the worst
case”. McDaniels et al. (2012) employ a similar defini-
tion. McInerney et al. (2012) compare three decision strat-
egies under conditions of deep uncertainty.

Policy decisions invariably rely on projections of future
outcomes that have some amount of uncertainty. As projec-
tions become more uncertain, they become less useful in de-
cision making (Thuiller et al. 2004). Uncertainty may be “a
fact of life” (Walker et al. 2003), but a better understanding of
the types of uncertainty, their sources, their sizes and their
implications for policy choices will ultimately lead to better
policy (Walker et al. 2003). In addition to better policy deci-
sions, assessing the magnitude of the various uncertainty
sources suggests an efficient allocation of limited resources
to reduce uncertainty (e.g. better parameter estimates, better
model construct and better input data).
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