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A B S T R A C T

The objectives of this study were to (1) develop wood quality prediction models for a suite of commercially-
relevant jack pine (Pinus banksiana Lamb.) fibre attributes (wood density (Wd), microfibril angle (Ma), modulus
of elasticity (Me), fibre coarseness (Co), tracheid wall thickness (Wt), tracheid radial (Dr) and tangential (Dt)
diameters and specific surface area (Sa)), (2) given (1), incorporate the parameterized equations within struc-
tural stand density management models (SSDMMs), and (3) given (2), exemplify their utility in silvicultural
decision-making via the comparative assessment of attribute outcomes arising from operationally-relevant crop
plans. Analytically, the equations were developed deploying Silviscan-determined attributes derived from
transverse breast-height radial xylem sequences obtained from 61 trees sampled from 2 geographically-sepa-
rated thinning experiments located in the central region of the Canadian Boreal Forest Region. Hierarchical
mixed-effects regression modeling combined with cross-validation procedures were used to specify, para-
meterize and evaluate the attribute-specific prediction equations. Overall, the results revealed that the attribute
trajectories were size-dependent and the resultant models were adequate in terms of their goodness-of-fit
characteristics (e.g., I2 values of 75, 71, 71, 66, 60, 55, 49 and 38% for Co, Me, Wt, Sa, Wd, Ma, Dr and Dt

respectively), lack-of-fit indicators (e.g., temporally invariant patterns of absolute and relative errors devoid of
evidence of systematic bias), and predictive performance (e.g., 95% probability that 95% of all future relative Dt,
Dr, Sa, Wd, Co, Wt, Me and Ma errors would be within ± 5, ± 9, ± 11, ± 12, ± 12, ± 13, ± 35 and ± 43% of
their true values, respectively). Incorporating the jack pine equations along with a similar suite of functions
previously developed for black spruce (Picea mariana (Mill) B.S.P) into the SSDMM analytical framework,
yielded a pair of enhanced stand-type-specific (natural-origin and planted stands) decision-support systems for
each species. These systems enabled the estimation of attribute-specific developmental trajectories for the ro-
tational tree population from which diameter-class and stand-level wood quality performance measures were
derived. As exemplified, the development of size-dependent fibre attribute prediction models and their sub-
sequent integration within SSDMMs provides forest managers with a decision-support platform for evaluating
and comparing end-product-related consequences of selected crop plans.

1. Introduction

Jack pine (Pinus banksiana (Mill) B.S.P.) is an intensively-managed
coniferous species which occupies a wide range of sandy site types
throughout the Canadian Boreal Forest Region (Rowe, 1972). The
species is a major feedstock for numerous conversion mills that derive a
multitude of commercially-relevant end-products from harvested logs
including dimensional lumber and associated solid wood derivatives
(window frames, doors, shelving, mouldings and panelling), composite
building materials (glulam-based beams, headers, and trusses, and
finger-jointed joists and rafters), and pulp and paper products (paper-
boards, newsprint, facial tissues and specialized coated papers) (Zhang

and Koubaa, 2008). The end-product potential of an individual jack
pine tree is largely governed by the (1) internal wood quality char-
acteristics of the xylem tissue (e.g., wood density, microfibril angle,
modulus of elasticity, tracheid wall thickness, fibre coarseness, radial
and tangential tracheid diameters, and specific surface area), and (2)
external morphological characteristics (e.g., stem size (diameter,
height), taper, sweep and branchiness). Functionally, the internal at-
tributes can be explicitly linked to various performance measures which
are used to define the overall type and grade of potential end-products
(Defo, 2008). For example, the stiffness and strength of extracted solid
wood products such as dimensional lumber are directly proportional to
modulus of elasticity and wood density, respectively, and inversely
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proportional to microfibril angle. Similarly, the tear and tensile strength
of extracted paper products are directly proportional to fibre coarseness
and specific surface area, respectively.

Quantitatively, the cumulative temporal developmental trends of
fibre attributes within commercially-important boreal conifers has been
characterized as polymorphic-like and size-dependent (e.g., black
spruce (Picea mariana (Mill.) B.S.P.); Newton, 2016). These fibre attri-
bute development trajectories can be manipulated through various
stand-level forest management inputs and by consequence affect end-
product outcomes (sensu Barbour et al., 2003). These inputs included
crop planning decisions such as species, genotype and initial spacing
(IS) choices at the time of establishment, and the timing and intensity of
subsequent density management treatments (precommercial thinning
(PCT) and commercial thinning (CT)) applied over the rotation (Kang
et al., 2004; Watt et al., 2011; Rais et al., 2014). Currently, explicitly
managing for end-products by controlling fibre attribute developmental
patterns is challenging given the general lack of crop planning decision-
support tools that include fibre prediction models that are capable of
producing wood quality outcome metrics (sensu Defo et al., 2016).

Analytically, however, the size-dependency of attribute develop-
mental trajectories provides a plausible mechanism for embedding at-
tribute prediction equations within crop planning decision-support
systems that include diameter distribution recovery modules. The
structural stand density management model (SSDMM) which has been
developed for a number of boreal species (e.g., jack pine, black spruce
and mixed jack pine – black spruce stand-types (Newton, 2009, 2012a,
2012b, 2012c)), is one such system that includes the prerequisite
functionality. Specifically, SSDMMs employ Weibull-based parameter
prediction equations to recover the diameter distribution at any point
during a stand’s development. This functionality enables the potential
integration of size-dependent fibre attribute prediction equations which
could generate the required wood quality metrics for evaluating end-
product potentials of specified crop plans. Contextually, SSDMMs are
classified as stand-level distance-independent size distribution yield
projection systems (sensu Porté and Barlelink, 2002) which are com-
prised of an integrated set of functional and empirical relationships that
collectively quantifies the effects of density management on stand de-
velopment. These relationships include the reciprocal equations of the
competition–density (C-D) and yield–density (Y-D) effect (Kira et al.,
1953; Shinozaki and Kira, 1956), self-thinning rule (Yoda et al., 1963;
Newton, 2006), composite height-diameter, taper, biomass, product
and value equations (e.g., Newton and Amponsah, 2007), diameter
recovery parameter prediction equation systems (e.g., Newton and
Amponsah, 2005), and response models for quantifying genetic worth
and thinning effects (Newton, 2015a, 2015b, respectively). Further-
more, as empirically validated, the predicted stand structure develop-
mental patterns and associated yield outcomes produced from these
SSDMMs, largely conform to expectation in regards to known forest
dynamic processes and ecological axioms (see Newton (2015c) for a
comprehensive assessment).

SSDMMs produce a comprehensive set of outcome metrics which
are useful in designing density management regimes for a given stand-
level management objective. These include annual, periodic and rota-
tional performance metrics reflective of volumetric productivity (e.g.,
piece-size), product production (e.g., mill-type-specific (stud and ran-
domized length) chip and lumber volumes), and economic viability
(e.g., land expectation value given inputted fixed and variable cost
assumptions). Currently, however, SSDMMs lacks the ability to predict
commercially-relevant fibre attributes which underlie end-product po-
tential. Consequently, the goal of this study was to examine the plau-
sibility of developing and integrating fibre attribute prediction models
into the SSDMM platform. Analytically, this goal was addressed by
realizing the following 3 sequential objectives. Firstly, developing size-
dependent hierarchical mixed-effects regression equations for a suite of
commercially-relevant fibre attributes that underlie end-product type
and grade: wood density, microfibril angle, modulus of elasticity, fibre

coarseness, tracheid wall thickness, tracheid radial diameter, tracheid
tangential diameter and specific surface area (henceforth denoted Wd,
Ma, Me, Co, Wt, Dr, Dt and Sa, respectively). Secondly, incorporating the
resultant functions along with a previous developed equation suite for
black spruce (Newton, 2016), into the species-specific SSDMMs devel-
oped for natural-origin and plantation stand-types (Newton, 2009,
2012a). Thirdly, demonstrating the utility of the enhanced SSDMMs in
silvicultural decision-making via the comparative assessment of fibre
attribute outcomes arising from operationally-relevant crop plans.

2. Material and methods

2.1. Development of hierarchical mixed-effects fibre attribute prediction
equations

2.1.1. Data acquisition, disk processing and fibre attribute determination
Sixty-one trees from two geographically-separated (450 km) long-

term (monitored for 20+ years) jack pine thinning experiments located
in the north-eastern (denoted the Sewell site which falls within the
Sewell River watershed) and north-central (denoted the Tyrol site
which falls within the western portion of the Namewaminkan River
watershed) regions of the Canadian Province of Ontario, were selected
for analyses. These trees were grown under a nominal range of silvi-
cultural intensities for natural-origin stand-types which are reflective of
the forest management strategies currently employed in the central
portion of the Canadian Boreal Forest Region (McKinnon et al., 2006).
Specifically, these included an (1) extensive regime in which no density
management treatments were implemented, (2) low intensive regime
involving the early application of PCT treatments in order to shorten
the time to stand operability status, and (3) moderate intensive regime
involving both PCT and CT treatments in order to capture merchantable
volume mortality losses and diversify end-product potential at rotation.
At the Sewell site, 31 jack pine sample trees were selected within 6
variable-size plots that were established in 3 jack pine stands that had
regenerated naturally following a stand-replacing wildfire event during
the 1958–1960 period. The sample trees were selected deploying a
pseudo-stratified random sampling design in which trees were choosen
across the observed diameter distribution (e.g., approximately 1 tree
was selected within each diameter-class-based quintile). The sample
trees were devoid of visible deformities such as major stem forks,
periderm injuries (blazing scars), and damaged crowns. The stands
were situated on medium-to-good quality sites (mean site index of
18 m@50 yr; Carmean et al., 2001), geographically located within
Forest Section B.7 – Missinaibi-Cabonga of the Canadian Boreal Forest
Region (Rowe, 1972), and were approximately 53 years of age at breast
height (1.3 m) when sampled in 2013. The glacial-derived soils were
characterized as deep (> 1 m) with coarse-to-medium sandy textures
situated on gently undulating (rolling) topography. Silviculturally, the
stands were subjected to 1 of 3 treatments, resulting in 3 different
density management regimes: (1) unthinned controls; (2) PCT at age 11
(1971); and (3) PCT at age 11 followed by a light pseudo-CT at age 43
(2003).

At the Tyrol site, 30 jack pine sample trees were selected within 4
variable-size plots that were established in 2 jack pine stands which had
regenerated naturally following a stand-replacing wildfire event during
the early 1940s. Similar to the Sewell site, the sample trees were devoid
of visible deformities and selected deploying a pseudo-stratified
random sampling design. The Tyrol stands were situated on good-to-
excellent quality sites (mean site index of 21 m@50 yr; Carmean et al.,
2001), geographically located within Forest Section B9 (Superior) of
the Canadian Boreal Forest Region (Rowe, 1972), and were approxi-
mately 71 years of age at breast height when sampled in 2015. Similar
to the Sewell site, the soils were characterized as deep (> 1 m) with fine
sandy textures situated on gently rolling topography. These stands were
subjected to 2 density manipulation treatments: PCT at age 18 (1962)
followed a light pseudo-CT treatment during 1998 at an age of
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approximately 54. In summary, the 61 sample trees selected were re-
presentative of the diameter-class range observed at the time of sam-
pling and hence were considered an appropriate sample population for
examining size-dependent differences in fibre attribute developmental
patterns. Table 1 includes a descriptive statistical summary of the
mensurational characteristics of the sample trees.

In terms of field sampling, at the conclusion of the 2013 and 2015
vegetative growing seasons at the Sewell and Tyrol sites, respectively,
each selected sample tree was felled and sectioned deploying destruc-
tive stem analysis. Specifically, each sample tree was felled at stump
height (≈0.3 m), delimbed and topped at an 80% relative height po-
sition. The stem was then sectioned into 0–20%, 20–40%, 40–60% and
60–80% log-length intervals employing a percent-height sampling
protocol. Cross-sectional samples were extracted at stump height
(0.3 m), breast-height (1.3 m), relative height positions of 10, 30, 50
and 70% (centre-point of each of the 4 logs), and at the 80% relative
height position, yielding a total of 7 disks per tree. These disks were
immediately (≤8 h) placed in short-term cold storage (< 0 °C) near the
sampling sites, subsequently transported and placed in long-term cold
storage (< 0 °C) at the Great Lakes Forestry Centre (Sault Ste. Marie,
Ontario, Canada), and eventually shipped to FPInnovations
(Vancouver, British Columbia, Canada) for laboratory processing and
fibre attribute determination deploying the Silviscan-3 system. Note,
for the purposes of this study, only the results for the breast-height disk
were utilized. Briefly, the Silviscan-3 system is the most recent variant
of the Silviscan system originally developed by CSIRO’s
(Commonwealth Scientific and Industrial Research Organisation)
Forestry and Forest Products Division, in Australia. Automated image
acquisition and analysis (cell scanner), X-ray densitometry, and X-ray
diffractometry, are combined into an integrated system from which a
multitude of commercially-relevant xylem attributes can be readily
determined. These include radial and tangential tracheid diameters,
and tracheid wall thickness as directly determined from image analysis
(Evans, 1994), wood density as directly derived from X-ray densito-
metry (Evans, 1994), microfibril angle as directly ascertained through
X-ray diffraction (Evans et al., 1996), and the modulus of elasticity as
indirectly determined via a combination of X-ray densitometry and
diffraction measurements (Evans, 2006). Fibre coarseness and specific
surface area are indirectly calculated using the cell dimensions and
wood density estimates (Evans, 1994). The preparatory laboratory-
based processing involved the extraction of a 2 × 2 cm transverse bark-
to-pith-to-bark sample along the geometric mean diameter of each
breast-height cross-sectional disk. One of the two pith-to-bark radial
sequences was randomly selected from each of the 61 transverse sam-
ples. These sequences were then subjected to extraction techniques so
that resins that could influence density estimates were removed prior to
the Silviscan-3 analysis. This consisted of soaking the samples in
acetone for 12 h followed by extraction for 8 h at 70 °C using a modified
Soxhlet system. The sequences were then air-dried for approximately
12 h, conditioned to a 40% relative humidity at a temperature of 20 °C,
and then processed via the Silviscan-3 system. A descriptive statistical

summary of the resultant attribute estimates is provided in Table 1.

2.1.2. Computations and analyses
In order to control for intrinsic physiological-based age-dependent

effects on fibre attribute development among a group of sample trees
that differed in their chronological breast-height ages due to differential
rates of height growth during early stand-development, cambial age
(number of annual rings from the pith) was employed as the temporal
variate of change in the first-level hierarchical model specification
(level-one independent variable). The corresponding fibre attribute
value (level-one dependent variable) was represented by the pith-to-
bark cumulative annual ring-area-weighted moving average (Eq. (1)).

= =

=

V
v a

a
li

j

i
lj lj

j

i
lj

( )
1

( )

1

k

k

( )

( )

(1)

where V li( ) k( ) is the cumulative annual ring-area-weighted moving
average specific to the kth attribute (wood density, microfibril angle,
modulus of elasticity, fibre coarseness, tracheid wall thickness, tracheid
radial diameter, tracheid tangential diameter or specific surface area)
and lth sample tree calculated from cambial age 1 up to the ith cambial
age, v lj( ) k( ) is the mean annual area-weighed value specific to the kth
attribute, lth sample tree and jth annual ring, and alj is the area of the
jth annual ring (mm2) specific to the lth sample tree. Note, the V li( ) k( )
value for a given tree reflects the accumulated status of the kth attribute
up to the ith cambial age and hence can be used to indirectly infer the
composite end-product potential of a tree if it was harvested at that
specific age.

2.1.3. Model specification, parameterization and evaluation
2.1.3.1. Specification. Preliminary graphical analysis was used to
examine the temporal trends of each individual-tree attribute-specific
time series and their relationship with tree size (diameter). This
analysis indicated that the attribute-specific polymorphic-like
nonlinear relationships varied systematically with tree size (Fig. 1).
Consequently, at the first hierarchical level, an exponential-based
specification was selected to describe these trends (sensu Ratkowsky,
1990): specifically, the modified Hoerl’s (1954) compound exponential
function (Eq. (2)).
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where ml k( ), m= 0,..,3 are model parameters specific to the kth
attribute and lth sample tree, ac li( ) is the ith cambial age specific to
the lth sample tree, and li( ) k( ) is a random error term specific to kth
attribute, lth sample tree and ith cambial age. The Hoerl’s function has
shown promise in describing complex nonlinear patterns as exemplified
by Daniel and Wood (1980). In relation to wood quality modelling,
Newton (2016) demonstrated its specific utility in describing the fibre
attribute developmental trends of black spruce. Nevertheless, in this
study, the specific applicability of the modified Hoerl model for jack

Table 1
Descriptive statistical summary of the mensurational characteristics and breast-height wood quality fibre attributes of the 61 jack pine sample trees.

Variable Unit Mean Standard error Minimum Maximum Coefficient of variation (%)

Diameter at breast-height (1.3 m) cm 20.5 2.93 14.7 27.0 14.3
Age at breast-height yr 59 9 47 71 15.8
Wood density kg/m3 438.0 31.04 358.1 509.4 7.1
Microfibril angle ° 13.9 2.90 8.1 20.7 20.9
Modulus of elasticity GPa 12.5 1.87 8.3 16.3 14.9
Fibre coarseness µg/m 412.1 27.91 366.4 481.9 6.8
Tracheid wall thickness µm 2.8 0.22 2.2 3.3 8.0
Tracheid radial diameter µm 30.8 1.22 28.3 33.5 4.0
Tracheid tangential diameter µm 27.7 0.68 26.2 29.7 2.5
Specific surface area m2/kg 308.7 20.43 263.9 355.3 6.6
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pine was assessed directly. Each individual tree-based attribute-specific
temporal trajectory was fitted with the logarithmically-transformed
variant of the full model (Eq. (2)), along with a logarithmically-

transformed reduced model variant in which the exponential square
term was excluded. The resultant models were then compared to
determine the statistical significance of including the squared term

Fig. 1. Three-dimensional visualization of tree-specific temporal developmental trends graphically illustrating patterns of change in attribute-specific cumulative
area-weighted moving average values with increasing cambial age and tree size.
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(sensu Gujarati, 2006). This comparative analysis supported the
selection of the modified Hoerl-based variant as the most applicable
first-level model specification: i.e., the squared term was significant
(p≤ 0.05) in 79, 85, 75, 95, 93, 74, 100 and 94% of the Wd, Ma, Me, Co,
Wt, Dr, Dt and Sa individual-tree regressions, respectively.

The size-dependence of the individual-tree attribute-specific tra-
jectories was revealed graphically via an examination of the 3D-scat-
terplots (Fig. 1), and statistically through correlation analyses. The
latter analysis consisted of firstly obtaining ordinary least squares
parameter estimates for the logarithmically-transformed modified
Hoerl model by attribute for each tree. Secondly, the magnitude and
significance of the correlation coefficient for the relationship between
each of the 4 parameters and cumulative tree size (diameter at breast-
height (db) at the time of sampling) was determined and assessed. These
results largely confirmed the graphical-based size-dependent inference:
i.e., at least 1 of the 4 coefficients were linearly correlated (p≤ 0.10)
with diameter for 6 of the 8 attributes assessed (Wd, Me, Co, Dr, Dt and
Sa).

Analytically, the hierarchical mixed-effects regression model was
then derived as follows: (1) re-expressing the 1st level hierarchical
model specification into its logarithmic equivalent (Eq. (3)), (2) speci-
fying the 2nd level models in which the first-level parameters were
expressed as linear functions of cumulative tree size (Eq. (4)), and (3)
given (1) and (2), re-incorporating the 2nd level models back into the
logarithmic variant of the 1st level model resulting in the final hier-
archical model specification (Eq. (5)).
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where ml k( ), m= 0,1,2,3 are size-dependent 1st level change para-
meters specific to the kth attribute which are allowed to vary randomly
across sample trees, and log li( ) k( ) is a random error at the ith cambial
age for the lth sample tree specific to the kth attribute, that is assumed
to be normally distributed with a mean of zero, and uncorrelated across
sample trees.
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where mn k( ), n= 0,1 are second-level parameters specific to the kth
attribute which represents the effect of tree size (db) on the mth level-
one parameter, and Uml k( ) is the second-level random effect error term
specific to the mth parameter, lth sample tree and kth attribute.
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where = =i j, 0, 1, 2, 3 and  0,1i j k( ) are model parameters specific
to the kth attribute.

2.1.3.2. Parameterization. Statistically, serial correlation may be
present within fibre attribute developmental sequences composed of
cumulative moving average values (e.g., Newton, 2016). Consequently,
partial autocorrelation coefficients were deployed to determine the
presence of serial correlation within each attribute sequence for each
sample tree. Resultantly, significant (p≤ 0.05) first-order serial
correlation between adjacent consecutive values was found to be
present in all sequences irrespective of attribute. Furthermore,
significant (p≤ 0.05) second-order serial correlation was also
occasionally present. Thus to potentially avoid erroneous model
specification and associated inferences regarding the importance of
the potential covariates and the significance of the parameter estimates
due to the presence of serial correlation, each individual-tree attribute-
specific sequence was reduced. The degree of reduction was determined
by systematically removing consecutive values at various temporal lags
until the presence of significant serial correlation was eliminated. The

results of this preliminary assessment indicated that partial
autocorrelation coefficients were largely non-significant (p < 0.05)
when 2 or more consecutive values were removed. Consequently, a data
stratification procedure in which consecutive values were removed in a
systematic fashion was implemented. Starting from the 2nd cambial
year, this involved removing values for 3rd and 4th cambial years, 6th
and 7th cambial ages, and so on, for each sequence. This ultimately
resulted in the creation of calibration and validation data subsets
consisting of retained and removed observations, respectively.
Additionally, in order to potentially account for stand-type or density
management regime effects, the attribute values for the thinning
treatment years were also retained within the calibration data subset:
i.e., attribute values for the years 1971 and 2001 for the trees sampled
at the Sewell site, and the years 1962 and 1998 for the trees sampled at
the Tyrol site. In summary, this stratification procedure resulted in a
calibration data subset consisting of 1232 observations per attribute
(i.e., comprised of attribute values for cambial ages 2,5,8,11,…,n−1
inclusive of ages at which thinning treatments were implemented), and
a validation data subset consisting of 2271 observations per attribute
(i.e., comprised of attribute values for cambial ages 3,4,6,7,..,n).

The hierarchical linear and nonlinear modeling software program,
HLM7 (Raudenbush et al., 2011), was used to derived parameter esti-
mates for each attribute-specific model (Eq. (5)) deploying the cali-
bration data subset. Statistically, the program provides empirical Bayes
estimates for the 1st level coefficients, generalized least squares esti-
mates for the 2nd level coefficients, and maximum-likelihood estimates
for the variance and covariance components (sensu Raudenbush et al.,
2011). The parameter estimates from the 1st level regression relation-
ships were treated as random whereas the parameter estimates from the
2nd level relationships were treated as fixed. However, upon para-
meterization it was evident that convergence would not be obtained
unless the parameter for the square term ( l3 k( )) was treated as fixed.
Consequently, the model specification was adjusted accordingly, re-
parameterized and subsequently evaluated on the significance of the
fixed effects (db) deploying both univariate and multivariate tests of
significance. Analogous to the backward variable selection method
commonly used in stepwise regression analysis (Neter et al., 1990), the
specification process continued by removing insignificant size-depen-
dent terms (p > 0.05) in an iterative fashion until the reduced model
specifications only consisted of variables that were significantly
(p≤ 0.05) contributing to explaining the variation of a given depen-
dent variable.

These final model forms were then evaluated for compliance to the
underlying statistical assumptions according to the protocol advanced
by Raudenbush and Bryk (2002). These included (1) assessing the
constant variance assumption using the test statistic for homogeneity,
(2) determining the presence of significant size-dependent fixed effects
using multivariate contrasts, (3) validating the final model specification
by determining if other 2nd level covariates should have been explicitly
included (e.g., testing to determine if thinning significantly influenced
the 1st level parameters using an indicator variable), and assessing the
significance of the random effect terms (i.e., testing the null hypothesis
that the level-one parameters included random variation among in-
dividual trees versus the alternative hypothesis of no random varia-
tion). Using raw residual scatterplots, the parameterized models were
also assessed for the presence of potential outliers, influential ob-
servations and systematic biases. The occurrence of serial correlation
among the first-level Bayes residuals within an individual-tree attribute
sequence was evaluated deploying an autocorrelation coefficient in
conjunction with the Box-Ljung statistic. The proportion of variation
explained by the regression models in their untransformed specification
and associated observed-predicted scatterplots, were also used to assess
overall model performance.

2.1.3.3. Model evaluation: goodness-of-fit, lack-of-fit, and predictive
ability. Employing the validation data subset, the retransformed
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parameterized models were assessed using goodness-of-fit, lack-of-fit,
and prediction error indices. Specifically, the index of fit squared (I2)
which quantifies the proportion of variability in the dependent variable
explained by the retransformed model and is analogous to the
coefficient of multiple determination, was employed as an overall
goodness-of-fit measure (Eq. (6)). The degree of lack-of-fit was
determined through an evaluation of the magnitude and temporal
pattern of mean absolute biases (B̄a k( ); Eq. (7)) and mean relative biases
(B̄r k( ); Eq. (8)) with respect to their 95% confidence intervals (Eq. (9);
e.g., means with intervals not overlapping zero were considered
indicative of the presence of bias). Predictive accuracy was evaluated
employing prediction and tolerant intervals for both absolute and
relative errors (Eqs. (10) and (11), respectively; Reynolds, 1984;
Gribko and Wiant, 1992).
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where V li( ) k( ) is the predicted cumulative moving average value for the
kth attribute at the ith cambial age for the lth sample tree, and n(k) is the
number of predicted-observed pairs specific to the kth attribute, Sa,r(k) is
the standard deviation of the absolute (Sa(k)) or relative (Sr(k)) biases
specific to the kth attribute, t n( 1,0.975)k( ) is the 0.975 quantile of the t-
distribution with n(k) −1 degrees of freedom specific to the kth
attribute, np is the number of future predictions considered (i.e.,
np = 1), and g is a normal distribution tolerance factor specifying the
probability ( ) that at least a proportion of the distribution of errors (P;
95%) will be included within the stated tolerance interval. The
temporal-based lack-of-fit and prediction error metrics were
calculated for all cambial ages which had a minimum of 11
observational pairs (sensu Gribko and Wiant, 1992). A secondary
data-centric measure of systematic bias as inferred from the linear
relationship between the observed and predicted values, was also
utilized (sensu Ek and Monserud, 1979). Lastly, for demonstration
purposes and subsequent use in the SSDMMs, the final model
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Fig. 2. Schematic illustration of the enhanced modular-based structural stand density management model with the inclusion of the new Silviscan-based fibre
attribute prediction sub-module (denoted in red). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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specifications were also parameterized deploying the full data set.

2.2. Model integration, attribute-based performance metrics, and
simulations

The parameterized suite of hierarchical mixed-effects fibre attribute
prediction equations were incorporated into the jack pine SSDMM
structure via the introduction of a new Silviscan-based Fibre Attributes
sub-module, as shown in Fig. 2. Given that the attribute equations de-
ploy a cumulative size-dependent variate (final breast-height diameter),
predictions were only generated for the rotational diameter distribution
representing the final crop tree population. Additionally, in order to
assess the magnitude of attribute variation for the harvestable trees
within a given diameter class, attribute estimates were generated for
cambial age 1 through N where N is the cambial age at rotation. These
diameter-class-specific temporal sequences were then used to calculate
measures of central tendency (mean) and variation (standard deviation
and coefficient of variation). Stand-level attribute performance metrics
were also calculated: i.e., diameter-class-based basal-area-weighted
stand-level mean attribute values with associated relative measures of
variation. Additionally, in order to introduce a comparative analysis
among species, the suite of fibre attribute prediction models previously
developed for black spruce (Newton, 2016), were also integrated into
the upland black spruce SSDMM structure employing the identical
procedure as that described for jack pine.

The utility of the resultant enhanced SSDMMs was demonstrated by
generating and comparing rotational fibre attribute outcomes for a set
of operationally-relevant crop plans. Specifically, the following 4 sce-
narios were considered: (1&2) unthinned natural-origin jack pine and
black spruce stands which established following a stand-replacing dis-
turbance at high densities (5000 stems/ha) on medium-to-good quality
sites (site index = 18 m @ 50 years (breast-height age) (Carmean et al.,
2001, 2006)); and (3&4) unthinned jack pine and black spruce plan-
tations which were established using improved stock (genetic worth
effects of 7% at a selection index age of 20 years for jack pine, and 10%
at a selection index age of 15 years for black spruce (sensu Newton,
2003)) at conventionally-deployed densities of 2500 stems/ha on
scarified harvested sites of medium-to-good quality (site index = 18 m
@ 50 years (breast-height age) (Carmean et al., 2001, 2006)). Identical
rotational lengths and operational adjustment factors for density-in-
dependent mortality were used for all 4 simulations: i.e., 50 years and
0.01%/yr, respectively.

3. Results

3.1. Hierarchical mixed-effects fibre attribute prediction equations

3.1.1. Model specifications, parameter estimates and compliance with
underlying statistical assumptions

Attribute-specific parameter estimates and associated regression
statistics including the results from the assessment of serial correlation
are presented in Table 2. The resultant models included only significant
(p≤ 0.05) random and fixed effects as determined from univariate and
multivariate tests of significance, and exploratory analysis of second-
stage predictors (sensu Raudenbush and Bryk, 2002). Random effects
that were determined to be significant (p≤ 0.05) were indicative of the
presence of random variation among individual trees that could be
partially explained by the second-stage fixed-effect predictor variable
(cumulative breast-height diameter at time of sampling). The results
from the serial correlation assessment deploying autocorrelation coef-
ficients in conjunction with the Box-Ljung statistic, indicated there was
evidence of the presence of first-order serial correlation among con-
secutive first-level Bayes residual values for a proportion of the attri-
bute-specific sequences (Table 2): 18, 23, 26, 28, 28, 30, 31 and 57% of
the Dr, Sa, Co, Me, Dt, Wt, Wd and Ma residual sequences exhibited sig-
nificant (p≤ 0.01) correlation, respectively. Although further remedial

efforts in terms of iteratively removing additional observations from the
sequences in order to create smaller calibration data subsets may re-
duce the occurrence of serial correlation, this approach could also
compromise model specification (e.g., yielding insufficient observations
to explicitly reflect the size-dependent non-linear temporal trends pre-
sent within the trajectories (Fig. 1)). Consequently, no further remedial
efforts were exercised given that approximately 65% of the original
observations within the individual tree sequences had already been
removed.

Graphical examination of residual scatterplots which revealed no
evidence of systematic bias supported the non-rejection of the homo-
geneity of variance assumption. The potential effect of thinning on the
2nd level parameter estimates was assessed using the exploratory
analysis option within the HLM7 software program (sensu Raudenbush
and Bryk, 2002): generating approximate Student t-to-enter statistics
for plausible but excluded 2nd level variables on each of the attribute-
specific random parameters ( 0,1,2). Results indicated that thinning ef-
fects would be inconsequential if included in terms of influencing the
overall fibre attribute trajectories (i.e., Student t-values were much less
than the critical threshold value). In terms of explanatory power, the
proportion of variation explained by the models was 74, 72, 72, 65, 60,
57, 55, and 28% for Co, Me, Wt, Sa, Wd, Ma, Dr and Dt, respectively (as
measured by the index of fit (Table 2)). Furthermore, graphical ex-
amination of the observed versus predicted values for each attribute-
specific regression relationship (not shown) revealed that most values
fell within close proximity to the diagonal line of equivalence.

3.1.2. Model performance indicators: goodness-of-fit, lack-of-fit and
predictive ability

The goodness-of-fit, lack-of-fit, and prediction error indices gener-
ated employing the validation data subset, are provided in Table 3. The
values of the goodness-of-fit metric, I2, were indicative of acceptable
levels of explanatory power in terms of the percent of variation ex-
plained by the models: 75, 71, 71, 66, 60, 55, 49, and 38% for Co, Me,
Wt, Sa, Wd, Ma, Dr and Dt, respectively. These values are similar to those
for the models parameterized using the calibration data subset (Table 2)
and revealed an identical order when sorted on the basis of magnitude.
Furthermore, graphical examination of these relationships in terms of
their residual patterns did not reveal the presence of consequential
outliers or influential observations. The secondary measure of sys-
tematic bias employing the observed-predicted regression relationships,
indicated that the intercept and slope values were not significantly
(p≤ 0.05) different from zero and unity, respectively, for 6 of the 8
attributes (Table 3). Only the models for Wt and Dt failed to meet this
criterion.

Lack-of-fit was assessed via the graphical examination of the tem-
poral pattern of absolute and relative biases with increasing cambial
age. Specifically, Fig. 3a illustrates the attribute-specific temporal
trends in mean absolute bias with associated 95% confidence intervals
whereas Fig. 3b presents attribute-specific temporal patterns in mean
relative bias and associated 95% confidence intervals. Examination of
the absolute and relative biases on an individual attribute basis in-
dicated the absence of systematic lack-of-fits. Furthermore, with very
few exceptions, the biases were not significantly (p≤ 0.05) different
from zero, as inferred by the lack of non-overlapping confidence in-
tervals (e.g., inconsequential annual exceptions being the absolute and
(or) relative biases for Wd, Co, Wt, Dr, Dt and Sa at cambial age 3, and
those for Wd, Wt, Dr, and Sa at cambial age 67). Although exceptions
infrequently occurred at the end of the age range considered (e.g.,
biases for Ma and Me at cambial age 69), the relative biases did not
exceed ± 10% for the majority of the cambial ages assessed. Compar-
isons among the attributes in terms of relative biases indicated that the
model developed for Ma exhibited the greatest range whereas the model
developed for Dr exhibited the least. The increased width of the con-
fidence intervals for both absolute and relative biases at cambial ages
greater than 50 years for all 8 attributes was partially due to the
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systematic reduction in the number of sample observations available.
This sampling artifact arose principally from the differential in total
stand age between the 2 sampling sites: the sample trees from the
Sewell site had a maximum age of 51 compared to the sample trees
from the Tyrol site which had a maximum age of 71. Consequently, the
total number of values declined from 61 to 30 at an approximate
cambial age of 52.

Predictive accuracy was assessed using absolute and relative pre-
diction and tolerance error intervals (Reynolds, 1984; Gribko and
Wiant, 1992). Table 3 provides attribute-specific 95% prediction and
tolerance limits for both error types across all cambial ages and tree
sizes. The prediction interval quantifies the precision of the equations in
terms of predicting fibre attributes for a newly sampled tree: specifi-
cally, there is a 95% probability that the error generated from a single
new prediction would fall between the specified limits. Examining the

resultant intervals indicated that there was a differentiation among the
attributes in terms of the absolute width of their relative intervals:
Dt < Dr < Sa < Wd < Co < Wt< <Me < < <Ma. Overall, how-
ever, for both interval types, absolute and relative mean errors were not
significantly (p≤ 0.05) different from zero, indicating that the models
would generate unbiased predictions.

The temporal trend of the mean absolute and relative prediction
errors along with their 95% confidence intervals, are presented in
Figs. 4a and 4b, respectively. The attribute-specific temporal patterns
and the magnitude of the errors among the attributes were interpreted
as follows: (1) with very few exceptions, prediction errors were not
significantly (p≤ 0.05) different from zero as inferred by overlapping
prediction intervals (i.e., intervals intersecting the horizontal null-line);
(2) the majority of relative errors did not exceed ± 10% for Dt, ± 15%
for Wd, Co, Dr, and Sa, ± 20% for Ma and Wt, and ± 60% for Me; and (3)

Table 2
Parameter estimates and associated statistics for the attribute-specific hierarchical mixed-effects models (Eq. (5)) parameterized employing the calibration data
subset.

Attributea Parameter estimateb Statisticsc

00 00 01 10 11 20 21 30 31 SEE n (1) (%) I2

Wd 347.6651 5.851100 – −0.014900 – 0.005606 0.000155 -0.000068 – 0.014 19 (31) 0.602
Ma 31.2562 3.441706 0.011445 −0.269022 – −0.002842 – 0.000059 – 0.032 35 (57) 0.569
Me 2.5038 0.916984 – 0.465419 – −0.00999 0.000273 −0.000011 – 0.041 17 (28) 0.719
Co 226.4852 5.422567 – 0.214446 −0.003076 −0.005823 0.000365 −0.000038 – 0.015 16 (26) 0.738
Wt 1.7119 0.537494 – 0.125281 −0.002682 −0.000389 0.000350 −0.000066 – 0.016 18 (30) 0.717
Dr 33.5959 3.514372 −0.021775 0.017324 0.008901 −0.007113 −0.000243 0.000074 – 0.008 11 (18) 0.546
Dt 21.2310 3.055431 0.008212 0.115254 −0.005140 −0.001950 0.000217 −0.000028 – 0.008 17 (28) 0.279
Sa 413.5901 6.024791 – −0.023824 – −0.003009 −0.000177 0.000059 – 0.013 14 (23) 0.647

a Wd, Ma, Me, Co, Wt, Dr, Dt and Sa denote wood density, microfibril angle, modulus of elasticity, fibre coarseness, tracheid wall thickness, tracheid radial diameter,
tracheid tangential diameter and specific surface area, respectively.

b Attribute-specific parameter estimates obtained from hierarchical mixed-effects regression analyses. Note, the intercept parameter estimates includes a cor-
rection factor for the bias introduced via the logarithmic transformation (Sprugel, 1983): = +e SEE

00 00
2/2.

c SEE denotes the standard error of estimate in natural logarithmic units specific to the kth attribute (Table 1); n (1) is the number of highly significant (p≤ 0.01)
first-order autocorrelation coefficients ( (1)) between consecutive residual values at the individual tree level for the 61 sample trees; I2 is the index of fit squared (Eq.
(6)).

Table 3
Goodness-of-fit and lack-of-fit statistics and overall predictive ability of the transformed attribute-specific hierarchical mixed-effects models.

Attributea Goodness-of-fit statistics Lack-of-fit measuresd Predictive ability: 95% error intervalsf

I2b Hypothesesc Absolutee Relative (%) Prediction interval Tolerance interval

= 00 = 11 Mean bias 95% CL Mean bias 95% CL Absolutee Relative (%) Absolutee Relative (%)
95% CL 95% CL 95% CL 95% CL

Wd 0.597 H0 H0 −2.186* ± 0.992 −0.180 ± 0.244 ± 47.304 ± 11.620 ± 48.600 ± 11.937
Ma 0.545 H0 H0 −0.223* ± 0.138 2.704* ± 0.853 ± 6.576 ± 40.647 ± 6.756 ± 41.757
Me 0.706 H0 H0 −0.179 ± 0.064 0.863* ± 0.711 ± 3.046 ± 33.890 ± 3.129 ± 34.817
Co 0.752 H0 H0 −1.317* ± 0.914 −0.001 ± 0.245 ± 43.547 ± 11.669 ± 44.737 ± 11.988
Wt 0.714 H1 H1 −0.017* ± 0.007 −0.247 ± 0.262 ± 0.316 ± 12.475 ± 0.324 ± 12.816
Dr 0.490 H0 H0 0.024 ± 0.052 0.258* ± 0.174 ± 2.498 ± 8.275 ± 2.566 ± 8.501
Dt 0.377 H1 H0 −0.022 ± 0.030 −0.010 ± 0.111 ± 1.430 ± 5.275 ± 1.469 ± 5.420
Sa 0.656 H0 H0 0.799* ± 0.762 0.545* ± 0.227 ± 36.330 ± 10.835 ± 37.322 ± 11.131

a As defined in Table 2.
b As defined in Table 2.
c Based on the simple linear regression relationship between transformed observed (y) and predicted (x) values ( = + +y x0 1 where is an error term), testing

the (1) null hypotheses that = 00 versus the alternative hypothesis 00 where H0 and H1 denote the non-rejection and rejection of the null hypothesis at the 0.05
probability level, respectively, and (2) null hypotheses that = 11 versus the alternative hypothesis 11 where H0 and H1 denote the non-rejection and rejection of
the null hypothesis at the 0.05 probability level, respectively.

d Mean absolute (Eq. (7)) and relative (Eq. (8)) bias and the limits (CL) of the associated 95% confidence interval (Eq. (9)) where mean values significantly
(p≤ 0.05) different from zero (denoted by superscript *) were suggestive of a potentially biased relationship.

e Absolute error units are specific to each attribute: kg/m3, °, GPa, µg/m, µm, µm, µm, and m2/kg for Wd, Ma, Me, Co, Wt, Dr, Dt and Sa, respectively.
f Confidence limit(s) (CL) for the 95% prediction and tolerance error intervals for absolute and relative errors (Eqs. (10) and (11), respectively): mean bias ± 95%

CL. Note: (1) there is a 95% probability that the a future error will be within the stated prediction interval; (2) there is a 95% probability that 95% of all future errors
will be within the stated tolerance interval; and (3) underlined values indicate approximations given non-normality within the underlying error distribution (sensu
Reynolds, 1984; Gribko and Wiant, 1992).
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there was a lack of systematic temporal trends for both error types ir-
respective of attribute. Even though the parameterized specifications
exhibited no systematic trends, the magnitude of relative errors did
vary among attributes: Dt < Wd, Co, Dr, Sa < Ma, Wt< <Me. Al-
though not shown, the temporal patterns in both the absolute and re-
lative tolerance error intervals were consistent with the results ob-
served for the prediction error intervals. The only overall difference was
that, as expected, the values for the tolerance error intervals were
slightly greater in magnitude than those observed for the corresponding
prediction error intervals (n., comparison of the composite values for
the prediction and tolerance error intervals for all ages combined, as
shown in Table 3, is also in agreement with this graphical-derived in-
ference).

3.1.3. Presentation and interpretation of size-dependent temporal
developmental trajectories

Table 4 provides the parameter estimates and associated regression
statistics for the final model forms parameterized employing the full
data set. Overall, the parameter values were similar in terms of their
sign and magnitude to those estimated using the calibration data subset
(cf. Table 2 with Table 4). Likewise, contrasting the standard error of
estimates and the index-of-fit metrics from Table 4 to those reported in
Table 2, revealed that the magnitude of the regression statistics were
also comparable. Fig. 5 exemplifies the size-dependent nature of de-
velopmental variation for each attribute, as predicted from the two-
stage hierarchical mixed-effects models parameterized using the full
data set. Although non-linear cumulative-based developmental trajec-
tories were observed for all attributes irrespective of tree-size, the tra-
jectories did exhibit size-related temporal differentiation in terms of
curve shape and rate of change.

Specifically, the trajectories for Wd and Me exhibited temporally
increasing separation in which values varied directly with tree size:

smaller-sized trees exhibited lower wood density and stiffness values
than those predicted for larger-sized trees for any given age and the
differences increased with cambial age. The trajectories for Ma ex-
hibited a minimal size-dependent effect that was relatively temporally
invariant (e.g., smaller-sized trees having a slightly lower microfibial
angle than larger-sized trees for any given age). The trajectories for Co
and Wt where similar in that both followed the same initial pathway
with minimal size-dependency until intersecting briefly at cambial ages
of approximately 30 and 25, respectively. Thereafter, dramatically ex-
hibiting increasingly size-dependent divergence with increasing cam-
bial age: e.g., the smallest sized tree attained substantially lower fibre
coarseness and tracheid wall thickness values than that attained by the
largest sized tree and the difference increased with cambial age. The
most complex set of size-dependent trajectories among all 8 attributes
were those for Dt. Specifically, the Dt trajectories exhibited 2 intersec-
tion points and an associated size-dependence reversal where the in-
versely proportional relationship with tree size observed over the 10–50
year range become directly proportional thereafter. Although the tra-
jectories for Sa exhibited rapid initial declines followed by an upward
trend with increasing cambial age for all 3 tree sizes, the smallest size
tree exhibited the highest cumulative values at any given age with the
size-dependent differential increasing with age. Among all the attribute
trajectories examined, only those for Ma and Dr exhibited decreasing
size-dependence with increasing age.

3.2. Resultant enhanced SSDMMs and their exemplification in crop
planning

The parameterized fibre attribute prediction equations when in-
corporated into the SSDMM structure via the new Silviscan-based Fibre
Attributes sub-module (Fig. 2), enabled the generation of attribute es-
timates and associated composite metrics at the diameter class and

Fig. 3a. Model evaluation – lack-of-fit analysis: attribute-specific temporal profiles of mean absolute bias with associated 95% confidence intervals.
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stand levels. Essentially, for a given crop plan, the grouped-diameter
distribution outputted from the Diameter and Height Recovery Module
along with age information are used to generate rotational attribute
estimates for each diameter class, deploying the parameterized models.
For example, Table 5 provides the resultant diameter-class-specific and
stand-level fibre outcome metrics for the 4 crop plans selected to ex-
emplified the utility of the enhanced SSDMMs.

Examination of the size-dependent attribute-specific trends for the
jack pine crop plans, indicated that the solid-wood end-product po-
tential increased with increasing tree size (e.g., increasing Wd, Me and
Wt values with increasing diameter class). Conversely, for the black
spruce crop plans, solid-wood end-product potential declined with in-
creasing tree size (e.g., decreasing Wd, Me, and Wt values with in-
creasing diameter class). For both species, although pulp and paper
end-product potential increased with increasing tree size according to
some attributes (e.g., increasing Co values with increasing diameter
class), the trends were not as definitive as those presented for the solid-
wood related attributes. Additionally, in order to broaden the discus-
sion in terms of addressing both the quality and quantity of fibre pro-
duced, rotational volumetric-related yield metrics (stand density, and
chip and lumber volumes) are provided in Table 6. It is evident from the
results for both species, initial spacing had a large effect on stand
structure (grouped-diameter frequency distribution) and associated
product volumes relative to the untreated natural-origin stands. Es-
sentially, initial spacing shifted the diameter distribution towards the
larger diameter classes resulting in greater product volumes at both the
diameter class and stand levels. For example, at the stand-level, the jack
pine and black spruce plantations respectively produced 55% and 33%
greater chip volumes, and 80% and 120% greater lumber volumes, than
did their natural-origin stand counterparts. Although these comparisons
are specific to the crop plan configurations selected for exemplification,
the results are in general accordance with expectation: i.e., reduced

intraspecific competition over the rotation due to regulating spatial
patterns and overall site occupancy via initial spacing, results in higher
individual tree growth rates and lower rates of competition-induced
mortality that ultimately leads to greater volumetric product yields at
rotation.

Inferring wood quality and associated end-product potential directly
from internal fibre attributes of standing boreal coniferous species is
challenging due to the lack of relationships that explicitly link tree-
based attribute values to those within the derived end-products, and
attribute-based design specifications for a given end-product.
Consequently, 2 alternative implicit-based approaches were deployed
in this study: (1) utilizing species-specific sample-based mean attribute
values derived from surveys and experiments in order to formulate
population-like reference estimates; and (2) using lumber grading
guidelines to extract a plausible range of attribute values that can be
presumptively deployed to delineate standing crop trees into specific
grade classes. With respect to the first approach, Silviscan-based attri-
bute values determined from breast-height radial xylem samples ob-
tained from 61 trees sampled within natural-origin semi-mature and
mature jack pine stands (this study; Table 1) along with a similar at-
tribute set derived from 111 trees sampled within natural-origin semi-
mature and mature black spruce stands distributed throughout the
study region (central portion of the Canadian Boreal Forest Region
(Rowe, 1972) as referenced in Newton, 2016) where used to established
species-specific population-like mean estimates. Specifically, the mean
attribute values generated from these samples were as follows: (1)
438 kg/m3, 13.9°, 12.5 GPa, 412 µg/m, 2.8 µm, 30.8 µm, 27.7 µm, and
309 m2/kg for Wd, Ma, Me, Co, Wt, Dr, Dt, and Sa, respectively, for jack
pine; and (2) 537 kg/m3, 12.8°, 14.9 GPa, 375 µg/m, 2.6 µm, 27.6 µm,
26.4 µm, and 301 m2/kg for Wd, Ma, Me, Co, Wt, Dr, Dt, and Sa, respec-
tively, for black spruce. Contrasting these sample based means with
model-based outputs provides a reference point for evaluating the

Fig. 3b. Model evaluation – lack-of-fit analysis: attribute-specific temporal profiles of mean relative bias with associated 95% confidence intervals.
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quality of attributes produced for a given crop plan. For example,
comparing these values against the stand-level mean estimates as
shown in Table 5, revealed that the selected jack pine crop plans pro-
duced wood of slightly lower quality in terms of both solid-wood, and
pulp and paper, end-product potentials: e.g., ≈6% decline in wood
density, ≈5% increase in microfibrial angle, ≈11% decrease in stiff-
ness (modulus of elasticity), ≈5% reduction in fibre coarseness, and
≈8% decline in cell wall thickness. Similar contrasts in regards to the
black spruce crop plans indicated much more dramatic declines in end-
product potentials, particularly with respect to the plantation: e.g.,
≈21% reduction in wood density, ≈30% increase in microfibrial angle,
≈32% decline in stiffness (modulus of elasticity), ≈13% reduction in
fibre coarseness, and ≈23% decline in cell wall thickness.

The second approach can be exemplified by contrasting the dia-
meter-class attribute predictions to corresponding threshold values
derived from grading rules which are used operationally to define end-
product type and grade. For example, for solid-wood end-products
(dimensional lumber) derived from sawlog-sized trees (diameter-
classes ≥ 14 cm), an estimate of grade category based on the modulus
of elasticity and wood density can be extracted from the SPS-2 design
standard issued by the National Lumber Grade Authority (NLGA) for
the spruce-pine-fir species group. Presuming approximate equivalence
between Silviscan-based modulus of elasticity estimates within standing
trees and the static modulus of elasticity within extracted dimensional
lumber, 3 grade groupings were derived from the design specifications
given in Table 2 of the NLGA standard for machine stress-rated (MSR)
lumber (NLGA, 2013): (1) low MSR grade class grouping (1.2E to 1.7E)
as defined as sawlog-sized trees having a Me value in the range of > 8.3
to 12.1 GPa, and a Wd value in the range of > 400 to 440 kg/m3; (2)

medium MSR grade class grouping (1.8E to 1.9E) as defined as sawlog-
sized trees having a Me value in the range of > 12.1 to 13.5 GPa, and a
Wd value in the range of > 440 to 480 kg/m3; and (3) high MSR grade
class grouping (2.0E to 2.4E) as defined as sawlog-sized trees having a
Me value in the range of > 13.5 to 16.5 GPa, and a Wd value in the
range of > 480 to 520 kg/m3. Although design specifications for the
other attributes are not officially specified, trees within diameter-
classes for which the Ma mean value is greater than 15° were tagged as
potentially problematic in terms their pulp and paper, and solid-wood
end-product potentials. These grade classes when applied to the rota-
tional diameter distributions generated for the 4 crop plans (Table 5)
suggested that lumber end-product potential would varied considerably
with tree size and species. For example, the grade of lumber produced
from the sawlog-sized (≥14 cm diameter class) jack pine trees would
fall within the low quality class but systematically increase with in-
creasing tree size. Conversely, the grade of lumber extracted from
sawlog-sized black spruce trees would systematically decline from high
to low with increasing tree size. In collective consideration of these
wood quality attribute predictions along with rotational estimates of
stand densities, and lumber and chip volumes produced, suggested that
the jack pine plantation would yield a greater number of higher quality
crop trees and associated product volumes (75%) than its natural-origin
stand counterpart (Table 6). This could potentially translate into overall
increases in the quality and quantity of derived end-products. Although
the black spruce plantation would similarly produced a greater number
of larger-sized crop trees and product volumes (75%) than its natural-
origin stand counterpart (Table 6), the overall quality of the wood
produced would be inferior. Furthermore, the high microfibril angles
(> 15°) for the largest diameter classes (≥22 cm) with the plantation

Fig. 4a. Model evaluation – predictive ability: attribute-specific temporal profiles of mean absolute prediction error with associated 95% intervals.
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would also negatively affect end-product potential.

4. Discussion

4.1. Size-dependent temporal developmental trajectories of commercially-
relevant fibre attributes

The final parameterized model specifications reflect the attribute-
specific and size-dependent developmental trajectories of 8 primary
fibre-based determinates of end-product potential (Table 2; Fig. 5):
specifically, wood density, microfibril angle, modulus of elasticity, fibre
coarseness, tracheid wall thickness, tracheid radial diameter, tracheid
tangential diameter and specific surface area (sensu Defo, 2008). Sta-
tistically, the jack pine models (1) explained a moderate proportion of
the variation in the dependent variables (i.e., ranging from a minimum

of 38% for Dt to a maximum of 75% for Co as quantified by the index of
fit metric; Table 3), (2) exhibited no consequential patterns of sys-
tematic lack-of-fit (Fig. 3a and 3b), and (3) generated relatively precise
predictions (≤ ± 13%) for all attributes except Ma and Me (Table 3;
Figs. 4a and 4b). These goodness-of-fit, lack-of-fit and predictive per-
formance measures reconfirm the utility of a two-stage hierarchical
mixed-effects model specification for describing size-dependent fibre
attribute developmental trends of boreal conifers. Previously, Newton
(2016) deployed a similar modelling approach for quantifying the
temporal attribute developmental trajectories for plantation black
spruce trees. Specifically, utilizing a two-level hierarchical model spe-
cification with random and fixed effects where Hoerl’s (1954) com-
pound exponential regression model was deployed at the 1st level, and
tree size (cumulative diameter) was employed as the 2nd level predictor
variable. Although the models for the black spruce attributes were

Fig. 4b. Model evaluation – predictive ability: attribute-specific temporal profiles of mean relative prediction error with associated 95% intervals.

Table 4
Parameter estimates and associated statistics for the attribute-specific hierarchical mixed-effects models (Eq. (5)): parameterized employing the full data set.

Attributea Parameter estimateb Statisticsc

00 00 01 10 11 20 21 30 31 SEE I2

Wd 353.9963 5.869174 – −0.028030 – 0.006781 0.000157 −0.000079 – 0.015 0.597
Ma 29.9767 3.399737 0.009902 −0.220091 – −0.006925 – 0.000092 – 0.037 0.545
Me 2.5613 0.939504 – 0.445814 – −0.008902 0.000322 −0.000031 – 0.045 0.706
Co 252.6516 5.531747 – 0.157867 −0.003968 −0.001039 0.000454 −0.000097 – 0.023 0.752
Wt 1.8163 0.596596 – 0.093448 −0.003134 0.002349 0.000396 −0.000098 – 0.019 0.714
Dr 29.6195 3.388374 −0.015729 0.072807 0.006254 −0.008989 −0.000154 0.000074 – 0.011 0.490
Dt 19.5205 2.971323 0.017443 0.141691 −0.009895 0.000110 0.000428 −0.000082 – 0.017 0.377
Sa 391.3092 5.969370 – 0.014559 – −0.006120 −0.000192 0.000089 – 0.016 0.656

a As defined in Table 2.
b As defined in Table 2.
c As defined in Table 2.
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Fig. 5. Size-dependent temporal developmental trends of cumulative area-weighted mean values by attribute as described by the models parameterized employing
the full data set (Table 4): triangles, squares and diamonds denote the trends for small (db = 14), medium (db = 20) and large (db = 26) diameter trees, respectively.
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slightly superior to those developed for jack pine, in terms the pro-
portion of variation explained and overall predictive performance, the
differences were of minor consequence.

The non-linear pattern of the jack pine developmental trajectories
varied by attribute and systematically with cumulative size in respect to
curve shape and rate of change (Fig. 5). The trends for the attributes
most closely aligned with wood strength and stiffness, i.e., wood den-
sity, modulus of elasticity and cell wall thickness, could be character-
ized as polymorphic-like: values gradually increasing, attaining
asymptotic maximums and thereafter gradually declining. The presence
of directly proportional size-dependent effects suggested that the xylem
tissue within larger-sized trees would be stronger and stiffer than that
within smaller-sized trees (e.g.,W M W d, ,d e t b). The trends for micro-
fibril angle indicated minimal size-dependent differentiation among the
initial exponential-like declining trajectories that eventually stabilized
over time. The attributes mostly aligned with pulp and paper perfor-
mance metrics related to tear and tensile strength, i.e., fibre coarseness
and specific surface area, differed in their size-dependence: directly

proportional convex (Co) versus inversely proportional (Sa) concave
size-dependent polymorphic-like trends. The trajectories for tracheid
diameters (radial and tangential) exhibited the most complex devel-
opmental patterns in terms of variable rates of change (e.g., rapid initial
increases followed by temporal stability for Dr) and shifting size-de-
pendence (e.g., from inversely to directly proportional within in-
creasing cambial age for Dt).

Although the range of cambial age differed between species (max-
imum cambial ages of 41 and 71 for black spruce and jack pine, re-
spectively), it is noteworthy that the size-dependent temporal trends
observed for jack pine in this study differed from those reported for
black spruce (Newton, 2016). For example, directly proportional size-
dependent effects were found for all attributes but Sa for jack pine while
inversely proportional size-dependence for Wd, Me, Wt and directly
proportional size-dependence for Ma, Co, Dr, Dt and Sa were observed for
black spruce. These species-specific differences imply that the solid-
wood end-product potential increases with increasing tree size for jack
pine and conversely decreases with increasing tree size for black spruce.

Table 5
Rotational diameter-class and associated stand-level fibre attribute outcomes for natural-origin and plantation jack pine and black spruce stand-types situated on
medium-to-good quality sites as predicted by the enhanced SSDMMs.

Attributea Stand- Stand-level Rotational diameter class (cm)d

(unit) typeb x̄ c CV 2 4 6 8 10 12 14 16 18 20 22 24 26 28

Wd PNb(N) 402[−8] 4.7 373 378 384 389 395 401 407 413
(kg/m3) PNb(P) 423[−3] 6.0 389 395 401 407 413 419 425 432 438

PIm(N) 486[−9] 7.5 584 566 549 533 517 501 486 472 457
PIm(P) 426[−21] 9.2 533 517 501 486 472 457 444 430 418 405 393

Ma PNb(N) 12.8[+8] 28.1 11.6 11.8 12.1 12.3 12.6 12.8 13.1 13.3
(°) PNb(P) 13.7[+1] 27.1 12.3 12.6 12.8 13.1 13.3 13.6 13.9 14.1 14.4

PIm(N) 11.6[+9] 27.8 6.9 7.5 8.1 8.9 9.7 10.5 11.4 12.4 13.5
PIm(P) 16.7[−30] 18.9 8.9 9.7 10.5 11.4 12.4 13.5 14.7 16 17.4 19 20.6

Me PNb(N) 10.5[−16] 25.8 9 9.3 9.6 9.9 10.2 10.5 10.8 11.2
(GPa) PNb(P) 11.7[−6] 27.0 9.9 10.2 10.5 10.8 11.2 11.5 11.9 12.2 12.6

PIm(N) 15.1[+1] 22.1 25.9 23.7 21.6 19.7 18 16.5 15 13.7 12.5
PIm(P) 10.2[−32] 14.7 19.7 18 16.5 15 13.7 12.5 11.4 10.5 9.5 8.7 8.0

Co PNb(N) 384[−7] 9.8 361 365 370 374 379 384 388 393
(µg/m) PNb(P) 401[−3] 10.9 374 379 384 388 393 398 403 408 412

PIm(N) 284[−24] 10.3 231 239 247 256 265 274 283 293 303
PIm(P) 328[−13] 12.9 256 265 274 283 293 303 313 324 335 347 359

Wt PNb(N) 2.5[−11] 8.5 2.4 2.4 2.4 2.5 2.5 2.5 2.6 2.6
(µm) PNb(P) 2.7[−4] 9.9 2.5 2.5 2.5 2.6 2.6 2.6 2.7 2.7 2.7

PIm(N) 2.2[−15] 7.3 2.5 2.4 2.4 2.4 2.3 2.3 2.2 2.2 2.1
PIm(P) 2.0[−23] 7.2 2.4 2.3 2.3 2.2 2.2 2.1 2.1 2.0 2.0 2.0 1.9

Dr PNb(N) 30.7[−0] 4.7 30.3 30.4 30.5 30.5 30.6 30.7 30.7 30.8
(µm) PNb(P) 30.9[+0] 6.5 30.5 30.6 30.7 30.7 30.8 30.9 30.9 31 31.1

PIm(N) 23.7[−14] 8.9 19.6 20.2 20.9 21.5 22.2 22.9 23.7 24.4 25.2
PIm(P) 27.2[−1] 11.0 21.5 22.2 22.9 23.7 24.4 25.2 26 26.9 27.7 28.6 29.5

Dt PNb(N) 28.1[+1] 4.2 28.2 28.2 28.2 28.1 28.1 28.1 28 28
(µm) PNb(P) 28.0{+1} 2.6 28.1 28.1 28.1 28 28 28 27.9 27.9 27.9

PIm(N) 24.4[−8] 6.4 22.6 22.9 23.2 23.5 23.8 24.1 24.4 24.7 25
PIm(P) 25.8[−2] 7.1 23.5 23.8 24.1 24.4 24.7 25 25.4 25.7 26 26.4 26.7

Sa PNb(N) 338.6[+10] 5.0 371 364 358 352 345 339 333 327
(m2/kg) PNb(P) 318.0[+3] 6.6 352 345 339 333 327 321 315 310 304

PIm(N) 357.9[+19] 6.0 363 362 361 360 360 359 358 357 356
PIm(P) 354.4[+18] 6.4 360 360 359 358 357 356 356 355 354 353 352

a As defined in Table 2.
b PNb(N) and PNb(P) denote natural-origin and plantation jack pine stand-types whereas PIm(N) and PIm(P) denote natural-origin and plantation upland black

spruce stand-types, respectively.
c Bracketed superscript values denote the magnitude of the stand-level mean relative differences (%) and their potential end-product related consequences

(positive (+) or negative (−)) between the predicted attribute values produced for the specified crop plans and those derived from sample-based surveys (i.e.,
attribute-specific sample-based values for jack pine (this study) and black spruce (Newton, 2016) were respectively, 438 and 537 for Wd (kg/m3), 13.9 and 12.8 for
Ma (°), 12.5 and 14.9 for Me (GPa), 412 and 375 for Co (µg/m), 2.8 and 2.6 for Wt (µm), 30.8 and 27.6 for Dr (µm), 27.7 and 26.4 for Dt (µm), and 309 and 301 for Sa
(m2/kg)).

d Projected lumber grade grouping for trees within diameter classes of sawlog size (≥14 cm): (1) low MSR grade class grouping (1.2E to 1.7E) as defined as
sawlog-sized trees having a Me value in the range of > 8.3 to 12.1 GPa and a Wd value in the range of > 400 to 440 kg/m3 are denoted via a bold font; (2) medium
MSR grade class grouping (1.8E to 1.9E) as defined as sawlog-sized trees having a Me value in the range of > 12.1 to 13.5 GPa and a Wd value in the range of > 440 to
480 kg/m3 are denoted via a bold italic font; and (3) high MSR grade class grouping (2.0E to 2.4E) as defined as sawlog-sized trees having a Me value in the range
of > 13.5 to 16.5 GPa and a Wd value in the range of > 480 to 520 kg/m3 are denoted via an italic font. Potentially problematic trees with Ma values greater that 15
are denoted by underlying where applicable.
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Although less definitive, the converse was true in regards to pulp and
paper end-product potential: decreasing with increasing tree size for
jack pine (exception being Co) and increasing with increasing tree size
for black spruce. These species-based differences may have important
consequences for end-product potential for density manipulated stands
where initial spacing or thinning treatments shifts the rotational dia-
meter distribution towards the larger size classes.

4.2. Forecasting fibre attribute outcomes and assessing associated end-
product potential

The integration of the new Silviscan-based Fibre Attributes sub-
module consisting of the suite of parameterized fibre attribute equa-
tions enabled the prediction of rotational estimates of wood density,
microfibril angle, modulus of elasticity, fibre coarseness, tracheid wall
thickness, tracheid radial diameter, tracheid tangential diameter and
specific surface area by diameter class for a given density management
regime and stand-type (e.g., Table 5). Although the resultant diameter
class distribution of attribute estimates provides a fine-scale projection
of wood quality characteristics for a given crop plan, the stand-level
mean and associated measure of variation are also useful descriptive
statistics for assessing overall differences and variability of end-product
potentials among a set of competing crop plans. For example, com-
paring the stand-level mean values between the natural-origin and
plantation stand-types for jack pine revealed that the plantation attri-
butes were marginally superior although the magnitude of the differ-
ences was not overly disconcerting (Table 5). Conversely, the differ-
ences between the black spruce crop plans were consequential given
that the stand-level attribute metrics for the plantation trees were
considerably inferior to those for the trees within the natural-origin
stand, particularly, for key solid-wood related attribute determinates
(e.g., wood density, microfibril angle, and modulus of elasticity).

Design specifications for the 8 attributes examined in this study in
terms of explicit linkages to end-product type (pulp and paper or solid
wood products) and associated grade class have yet to be defined for
standing trees. Consequently, explicit interpretation of attribute pro-
jections in terms of wood quality and associated end-product potential
is problematic. However, contextual inferences can be extrapolated
from (1) known end-product – attribute associations (Defo, 2008), (2)
empirically from population-level sample-based comparisons, and (3)
presumptively through direct application of grade rules. In relation to
the first approach for example, increased quantity and quality of pulp
and paper product yields would be conceptually associated with de-
creasing microfibril angle, and increasing fibre coarseness and specific
surface area. Similarly, increased solid wood yields and grades would
be conceptually associated with increasing wood density, modulus of

elasticity and tracheid wall thickness (Bowyer et al., 2007).
With reference to the second approach, species-specific empirical-

based population fibre attribute estimates derived from sample surveys
of mature trees can provide a comparative range of values unique to a
given species and region. For example, the selected jack pine crop plans
considered in this study produced mean stand-level attribute values
that were minimally inferior (≈10%) to their corresponding popula-
tion-like sample means. Conversely, the results for the black spruce
contrasts, particularly for the plantation crop plan, differences were
much more dramatic (Table 5): e.g., declines of 21% in wood density
and 32% in modulus of elasticity. Collectively, these differences could
potentially translate into reduced lumber strength and stiffness of de-
rived solid-wood end-products (dimensional lumber). Similarly, the
higher microfibril angles and lower fibre coarseness, tracheid dia-
meters, and specific surface areas associated with the black spruce
plantation trees, could also result in reduced quantities and qualities of
derived paper and paper related end-products. In regards to the third
approach, presumptions can be used to infer solid-wood end-product
potential using generalized grade-based attribute ranges provided in
grading manuals for dimensional lumber products. For example, for the
crop plans considered in this study, lumber end-product potential
would varied considerably among diameter-classes. The grade of
lumber produced from the sawlog-sized jack pine trees would system-
atically increase with increasing tree size irrespective of stand-type.
Conversely, the grade of lumber extracted from sawlog-sized black
spruce trees would systematically decline with increasing tree size.
Collectively, as demonstrated in this study, all 3 indirect approaches
can be of utility when attempting to interpret the SSDMM attribute
predictions within the context of rotational end-product potential.

Although outside of the inference space of this study given the
limited number of simulations examined, the rotational attribute fore-
casts for the black spruce plantation were nevertheless the most con-
cerning in terms of the potential degrade in the quality of both end-
product groups (solid-wood and pulp and paper products). This model-
based result is not dissimilar to that reported for black spruce plantation
experiments. Zhang et al. (2002) found that the wood quality attributes
within trees from black spruce plantations were inferior to those trees
grown in comparable natural-origin stands: specifically, plantation-
grown black spruce lumber stiffness was 29% less than that of lumber
produced from black spruce trees growing in stands which were of
natural-origin. Although not directly comparable given differences in
analytical approaches and subjective selection of the crop plans used for
simulation, the experimental observations are coincidentally not dis-
similar: mean stand-level modulus of elasticity of the plantation black
spruce wood was on average, 33% less than that from the natural-origin
stand at 50 years. Similar declines arising from stand structure

Table 6
Rotational stand-level and diameter-class densities and product volumes for jack pine and black spruce natural-origin stands and plantations situated on medium-to-
good quality sites as predicted by the enhanced SSDMMs.

Stand-typea Yield metricb Unit Stand-level Diameter class level (cm)

2 4 6 8 10 12 14 16 18 20 22 24 26 28

PNb(N) Density stems/ha 2950 6 111 336 566 671 591 389 278
Chip vol m3/ha 44 9 13 12 10
Lumber vol m3/ha 104 18 28 30 28

PNb(P) Density stems/ha 1370 4 21 67 149 253 323 296 179 77
Chip vol m3/ha 68 1 4 9 15 18 13 7
Lumber vol m3/ha 187 2 8 22 40 50 40 22

PIm(N) Density stems/ha 2782 3 49 167 333 488 559 507 362 315
Chip vol m3/ha 92 11 18 22 21 21
Lumber vol m3/ha 90 5 12 20 23 30

PIm(P) Density stems/ha 1383 1 4 14 38 87 164 253 309 278 167 69
Chip vol m3/ha 122 1 4 10 19 28 29 20 9
Lumber vol m3/ha 198 1 3 10 24 43 52 42 22

a As defined in Table 5.
b Chip vol and Lumber vol refer to recoverable chip and lumber volumes for a randomized-length sawmill processing protocol.
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differences between stand-types can also be observed for the other at-
tributes underlying end-product potential. For example, rotational
plantation estimates of wood density, microfibril angle and fibre coar-
seness were inferior due principally to stand structure differences. Es-
sentially, the reduction in intraspecific competition due to the lower
initial establishment densities and the genetic worth effects resulted in
accelerated rates of individual tree growth within the plantation which
yielded consequential stand structural differences at rotation (e.g., in-
creased number of larger-sized trees of reduced quality).

The hierarchical mixed-effects model specifications used for quanti-
fying size-dependent fibre attribute developmental patterns in jack pine
(this study) and black spruce (Newton, 2016), excluded consideration of
stand-level effects given data limitations. Consequently, for a given spe-
cies, the diameter-class mean attribute values are identical for overlapping
classes irrespective of crop plan differences. Hence silvicultural treatment
and stand origin effects on wood quality attributes are indirectly ac-
counted for through stand structure differences. For example, the in-
creased production of larger-sized black spruce trees of inferior quality for
the plantation crop plan yielded an overall stand-level decline in wood
quality: modulus of elasticity and wood density declined and microfibril
angle increased. Furthermore, in terms of recoverable chip and lumber
volumes, the plantations produced considerable greater product volumes
than the natural-origin stand counterparts irrespective of species. Thus
combined with the much greater lumber volumes being produced from
plantations, potentially magnifies the wood quality differences to a con-
sequential level in terms of the future wood supply. Black spruce wood
quality concerns have also been raised from the results of initial spacing
experiments where site occupancy levels have been manipulated. Speci-
fically, Reid et al. (2009) reported that the relative distribution of MSR-
rated lumber derived from two black spruce plantations established in
northern Ontario on low quality sites (11.4 m at 30 years) differed ac-
cording to stocking level. Specifically, 44, 51 and 3% of the dimensional
lumber derived from the denser plantation (basal area of 41.1 m2/ha at 45
years post-establishment) was classified as high (2100F-1.8E), medium
(1650F-1.5E) and low (1450–1.3E) MSR grade classes, respectively. Con-
versely, no high or medium MRS grade class lumber products were pro-
duced from the plantation managed at the lower stocking level (basal area
of 35.8 m2/ha). Of further interest, Reid et al. (2009) also reported that
visual grade assignments substantially over-estimated the higher grade
percentages and under-estimated the lower grade percentages. Collec-
tively, these results suggest that (1) caution should be exercised when
considering establishing black spruce plantations at low densities when
managing for lumber production, and (2) deploying modulus of elasticity
estimates within the context of MSR-rating systems more precisely reflects
the actual solid wood end-product potential than grade class estimates
assigned through visual grading systems. These inferences and related
experimental observations highlight the potential utility of the enhanced
SSDMMs when managing for end-product potential. Specifically, via the
provision of wood density and stiffness estimates which enable such MSR-
like grade categorization along with estimates for other important fibre
attributes associated with end-product type, grade and economic worth.

4.3. Modeling challenges and advancing value-based management decision-
making

Modeling fibre attribute trajectories is a complex analytical en-
deavor given the competing age-dependent (ontogenetic) and growth-
dependent (environmental) influences on fibre attribute formation.
Diverse model-based approaches have been utilized in attempting to
address this analytical challenge (e.g., Pokharel et al., 2014; Cortini
et al., 2014; Wei et al., 2014; Townshend et al., 2015). However, most
of the previous efforts have been focused on modelling a single attribute
determinate of end-product potential at a single hierarchical level (e.g.,
temporal age-related developmental trends in wood density, microfibril
angle or modulus of elasticity). Although this study developed models
for describing the temporal developmental trajectories for a broader

suite of attributes inclusive of secondary level effects (tree size), in-
clusion of population or stand-level effects are still lacking. The omis-
sion of incorporating these higher hierarchical sources of attribute
variation in modeling studies is mostly due to the absence of large fibre
attribute data bases that include Silviscan-equivalent attribute esti-
mates obtained from the destructive sampling of a large number of trees
within diverse stand structures at various stages of development across
a species geographical range. This lack of stand-level driving variables
such as stand density within the model specifications, negates the
ability to account for initial spacing or thinning effects on attribute
development within a given size class.

The enhanced SSDMMs developed in this study, does however,
coarsely account for the overall effect these silvicultural treatments via
the use of stand-level metrics that are reflective of treatment-induced
changes in stand structure. As exemplified in the simulations, control-
ling initial spacing levels via plantation establishment and thus redu-
cing inter-tree competition, can positively skew the rotational size class
distributions. The resultant fibre attribute predictions yielded a set of
wood quality performance metrics that can be used to inform density
management decision-making. Nevertheless, in cases where responses
to density management treatments do not appreciatively affect stand
structure, treatment effects on attribute development patterns will be
largely muted. Consequently, once the prerequisite fibre attribute data
bases become available, development of tertiary-level hierarchical
mixed-effects modeling specifications in which ring-level (cambial age;
1st level), tree-level (size; 2nd level) and stand-level (density and site
qualilty; 3rd level) factors can be integrated, would be logical starting
point for further research endeavors. Furthermore, the relative con-
tribution of intrinsic genetic-driven versus environmental-driven effects
on attribute variation is largely unknown for boreal conifers. The
temporal developmental patterns of some attributes such as microfibril
angle are considered to have a strong physiological-based underlying
determinism (e.g., Lenz et al., 2010; Lachenbruch et al., 2011). Thus
including tree-level and stand-level covariates for such attributes may
yield limited gains in terms of increasing the portion of variation ex-
plained or enhancing the ability to delineate silvicultural treatment
effects on rotational end-product potential outcomes.

Efforts to develop and integrate fibre attribute prediction equations
within decision-support forecasting systems and silvicultural decision-
support models is central to transitioning to a value-added product-
based forest management paradigm (sensu Emmett, 2006a, 2006b).
Globally, research initiatives in support of this aspiration goal have
commence in various regions, resulting in the development of a number
of decision-support models which can accommodate end-product con-
siderations. These include the SILVA model built for Norway spruce
(Picea abies (L.) Karst.) and other conifers and deciduous species in
central Europe (Pretzsch et al., 2002), MOTTI model calibrated for
Scots pine (Pinus sylvestris L.) and other conifers in Finland (Hynynen
et al., 2005), FORSAT model parameterized for patula pine (Pinus patula
(Schiede ex Schlect. & Cham.)) in South Africa (Kotze and Malan,
2007), and COFORD model developed for Sitka spruce (Picea sitchensis
(Bong.) Carr.) in Great Britain (Gardiner et al., 2011). Apart from the
SYLVER model developed for Douglas fir (Pseudotsuga menziesii (Mirb.)
Franco) and other coniferous species in western Canada (Di Lucca,
1999), availability of similar decision-support models for other com-
mercially-important species in Canada is limited (sensu Defo et al.,
2016). The analytical approach and predictive scope of the enhanced
SSDMMs presented in this study are not dissimilar to these next-gen-
eration decision-support tools. Although further modeling efforts in
terms of explicitly accounting for the effects stand-level silviculture
interventions (precommercial and commercial thinning) and site pro-
ductivity differences on fibre attribute developmental trajectories may
increase predictive precision in crop planning decision-making, the
enhanced SSDMMs represent an incremental contribution towards
value-based decision-making.
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5. Conclusions

Successful transition from a volumetric yield maximization propo-
sition to one based on maximizing product value within the Canadian
forest sector is partially dependent on the provision of innovative tools
that incorporate consideration of the principal determinates which
underlie end-product potential (e.g., internal wood fibre attributes). For
jack pine, an intensely-managed boreal species, this study developed,
parameterized and evaluated a suite of hierarchical mixed-effects
models for predicting the size-dependent temporal developmental tra-
jectories for 8 fibre attributes explicitly related to end-product potential
(wood density, microfibril angle, modulus of elasticity, fibre coarseness,
tracheid wall thickness, tracheid radial diameter, tracheid tangential
diameter and specific surface area). These jack pine equations along
with those previously developed for black spruce, when integrated into
the SSDMM structure, yielded an enhanced decision-support platform
for evaluating fibre attribute outcomes and associated end-product
consequences of competing crop plans. Collectively, these models re-
present an incremental advancement over traditional volumetric-based
projection systems in that they can contribute to facilitating the para-
digm shift towards value-based management for these commercially-
important boreal species.
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