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in Zhejiang Province, southeastern China. The main objective was to test the process-based 
hybrid model TRIPLEX1.0 in simulating density, tree height (H), diameter at breast height 
(DBH), litter pool and biomass using forest growth and yield data collected from three forest 
types: subtropical evergreen broad-leaved, coniferous broad-leaved mixed and warm tem-
perate pine (Pinus massoniana Lamb.) forests. The results show that simulated density, H, 
DBH, litter pool, aboveground and total biomass are consistent with observed data collected 
through Zhejiang Province, suggesting that the TRIPLEX1.0 model is capable in simulating 
forest growth and biomass dynamics of subtropical forest ecosystems. The coefficient of 

determination (r2) between simulated values and yield measurements show a 0.91 variabil-
ity for density, 0.86 for DBH, 0.83 for H, 0.89 for aboveground biomass and 0.91 for total 
biomass (except for litter pool that showed a 0.54 variability). The independent validations 
obtained by utilizing TRIPLEX1.0 demonstrate that the model offers competency while pro-
viding confidence when applying its ability to extrapolate outcomes at regional scales and 
its ability to withstand rigorous testing for simulating carbon storage in subtropical forest 

  

ecosystems. © 2008 Elsevier B.V. All rights reserved. 

    

    

1. 	Introduction 	
ecosystem carbon pools may change as climate and land use 
change in the future (Melillo et al., 1996). Accurate estimates, 

Accurately estimating carbon storage and its dynamics on 	
however, of forest ecosystem contribution to the global car- 

vegetation and soil is critical for predicting how terrestrial 	
bon cycle remains a major challenge (Dixon et al., 1994; Song 
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and Woodcock, 2003; Houghton, 2005). There is a growing need 
for computer simulation models that can assist in the estima-
tion of carbon budgets, net ecosystem exchange or trace gas 
emissions (Mosier, 1998; Landsberg, 2003; Van Vliet et al., 2003; 
Battaglia et al., 2004; Miehle et al., 2006). Traditionally, empir-
ical statistical models (growth and yield) have been used to 
estimate tree height (H), diameter at breast height (DBH), and 
total volume. These statistical models are limited, however, by 
their inability to simulate either the impacts of future climate 
change on forest stands or the growth dynamics of some forest 
regions, because growth and yield predictions are completely 
based upon past measurements and simulate forest stands 
without considering climatic variables such as temperature, 
precipitation, and change in CO2 concentrations (Kimmins, 
1993; Bossel, 1996; Peng, 2000). 

In order to improve on the shortcomings of empirical sta-
tistical models, a number of process-based models have been 
developed (Running and Coughlan, 1988; Parton et al., 1993; 
Kimmins, 1993; Korol et al., 1994; Kimmins and Scoullar, 
1995; Bossel, 1996; Landsberg and Waring, 1997) for describ-
ing the complex process interactions of forest ecosystems. 
Bossel (1991) and Kimmins (1993) have reviewed the histor-
ical developments of process-based models while Battaglia 
and Sands (1998), Landsberg and Coops (1999), Makela et al. 
(2000) and Peng (2000) have recently discussed the features 
and specifications of process-based models for applications 
aligned towards sustainable forest management. As these 
researchers suggested, process-based models have obvious 
advantages in predicting future ecosystem structure and func-
tions under different scenarios of climate change, silviculture 
practices, and land use. However, most process-based mod-
els are unable to simulate forest stand variables (e.g., H, DBH, 
and volume) since they were not designed for forest man-
agement and do not predict forest stand attributes. TRIPLIEX 
1.0 combines the advantages of both empirical and process-
based models; it bridges the gap between empirical forest 
growth and yield and process-based carbon balance models 
(Peng et al., 2002). To date, TRIPLEX1.0 has been successfully 
calibrated and validated against age-dependent growth mea-
surements from 12 permanent sample plots (PSPs) at jack pine 
stands in northern Ontario (Peng et al., 2002), boreal mixed-
wood stands in the Lake Abitibi Model Forest (Zhou et al., 
2004, 2005, 2006a), and other boreal tree stands in BOREAS 
sites located in central Canada (Zhou et al., 2004). TRIPLEX1.0 
can be used successfully for simulating both the short and 
long-term carbon and nitrogen dynamics of boreal regions 
in Canada, but needs further testing for larger scale areas. 
This study presents the first attempt at testing the TRIPLEX1.0 
model in applying it to simulate forest growth and the car-
bon dynamics of forests in subtropical forest ecosystems in 
southeastern China. To expand the TRIPLEX1.0 application to 
regions around the world, some parameters of the model were 
calibrated and improved upon for this study to render it more 
specific to China's subtropical zone. 

The carbon budget of China's subtropical forests has 
received little attention until recently (Zhang et al., 2007), 
although there have been many studies that have focused 
mainly on carbon sequestration within tropical, temperate 
and boreal forests (Sundquist, 1993; Dixon et al., 1994; Chave 
et al., 2003; Martin et al., 2003; Houghton, 2005). Large areas of 

Fig. 1 - Sample plots in subtropical forests in Zhejiang 
Province, southeastern China (modified from Zhang et al., 
2007). 0, +, * represent data measured in 47 evergreen 
broad-leaved forest stands, 32 mixed forest stands and 38 
Pinus massoniana forest stands, respectively. 

afforestation and reforestation have been established in the 
subtropical zones of China that influence its carbon budget 
in terms of sinks or sources, however, significant uncertain-
ties in the reliability of carbon budget measurements in these 
regions exist despite previous research (Fang and Chen, 2001; 
Wang et al., 2001; Cao et al., 2003). This study sought to test 
the accuracy of TRIPLEX1.0 to expand the application of the 
model. Sites based upon data from local measurements were 
investigated that incorporate the diverse forest types found in 
this region. 

The goal of this study, therefore, was to calibrate and 
validate the TRIPLEX1.0 hybrid model in simulating height, 
diameter, litter pool and biomass by applying the forest growth 
and yield data collected from three forest types in the sub-
tropical forest ecosystems of Zhejiang Province, southeastern 
China, to the model. 

2. 	Data and methods 

2.1. 	Study area 

Zhejiang Province (118°01' to 123°10'E, 27°06' to 31°31'N), is 
located south of the Yangtze River Delta, along the southeast-
ern coast of China (Fig. 1). The whole study area maintains an 
average annual temperature between 15.3 and 18.5 °C with the 
average temperature of the coldest month (January) between 
2.7 and 7.9°C and the average temperature of the hottest 
month (July) between 27.0 and 29.5 °C. Annual precipitation is 
between 1000 and 2000 mm and has a tendency to increase 
from the northeast to the southwest. The region is char-
acteristic of a subtropical monsoon climate featuring long 
severe summers and short cold to moderate winters. Major 
soil types include mainly red, yellow and red-yellow earth and 
also includes a small amount of lime soil, purple soil, etc. 
(Liu et al., 2002a). Initially, the vegetation type of the region 
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was composed of evergreen broad-leaved forests, but after 
thousands of years of human disturbance, particularly after 
the last century, this primary vegetation type is now uncom-
mon. Other types of vegetation, such as coniferous, deciduous 
broad-leaved, bamboo and mixed forests can also be found in 
this region (Yu, 1997). Afforestation and natural forest restora-
tion processes in Zhejiang have increased rapidly in the past 
20 years in which forest cover has reached 59.4% of the total 

land area (Liu et al., 2002a). 

2.2. 	Input data 

2.2.1. Forest stands 
TRIPLEX1.0 required input data concerning stand and forest 
type, tree age, stocking, and tree species to simulate each dis-
tinct stand. Stand data were derived from the 1999 Inventory 
Investigations, which provides information for a total of 117 
forest stands across 21 counties (Fig. 1). Tree age ranged from 
between 5 and 50 years in 1999. The vegetation of subtropical 
forests in Zhejiang can be categorized into three types, ever-
green broad-leaved forest (EF), coniferous and broad-leaved 
mixed forest (MF) and Pinus massoniana forest (PF) (Zhang et 
al., 2007). Shrub and herb layer data were not included in the 
TRIPLEX1.0 simulation for this study since the model is forest-
based and does not include the shrub component. 

EF is mainly composed of three dominant broad-leaved 
species: Castanopsis sclerophylla (Lindlo) Schott, Schima superba 
Gardn. et Champ., CyclobalanoPsis glauca (Thunb.) Oerst; and 
Liquidambar formosana Hance. The former two are the ever-
green species, and the latter is deciduous specie. 

2.2.2. Climate conditions 
The spatial patterns of mean temperatures and annual pre-
cipitation (Fig. 2), which generalized the climate condition 
averages for all counties, were used in the TRIPLEX1.0 sim-
ulations for forest growth, biomass, productivity and soil 
carbon quantity. Average precipitation, temperature and rel-
ative humidity data were obtained from the publication 
"Climography of Zhejiang Province" (Zhu and Chen, 1999) 
while vapor pressure deficiency (VPD, Campbell and Norman, 
1998) was derived from the monthly average precipitation and 
temperature based upon Zhou et al. (2004) as follows: 

17.269 x T \ 
svp = 6.1076 x exp (- T + 237.3 

svp 
vp = RH x  100 

VPD = svp - vp 

(1)  

(2)  

(3)  

Fig. 2 - Spatial pattern of mean temperature, annual precipitation, soil and vegetation for Zhejiang Pr199
ovince, southeastern 

China. Data was obtained from the publication "ClimographY of Zhejiang province" (Zhu and Chen, 
	9). 
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where svp represents saturation vapor pressure (mbar), vp 
vapor pressure (mbar), T the average temperature per month 
(°C) and RH relative humidity (%). The ratio of frost days 
required to calculate GPP was determined by the average 
monthly temperature. 

2.3. 	TRIPLEX model description 

TRIPLEX1.0 is a hybrid model incorporating forest growth 
as well as carbon and nitrogen dynamics that were inte-
grated from features from three well-established models: 3-PG 
(Landsberg and Waring, 1997), TREEDYN3.0 (Bossel, 1996), and 
CENTURY4.0 (Parton et al., 1993). One special feature is its 
ability to simulate growth and yield of a stand based upon 
ecological mechanisms and subsequently provide growth and 
yield information. The structure of TRIPLEX1.0 (shown in 
Fig. 3) includes four submodels: (1) forest production; (2) forest 
growth and yield; (3) soil carbon and nitrogen; (4) soil water 
balance. The TRIPLEX1.0 simulation involves key variables 
including photosynthetically active radiation (PAR), GPP, for-
est growth, biomass, soil carbon, soil nitrogen and soil water. 
All simulations were conducted in a monthly time step while 
the simulation output was summarized yearly. 

In the TRIPLEX simulation, initial PAR (I0pAR) was calculated 
as a function of the solar constant (1360 W m-2), radiation frac-
tion ((pPAR), solar height (Sin t3), and atmospheric absorption 

(Katm): 

IopAR  = 1360(ppAR sin(fl)e-(Katm)/(sin(M) 	 (4) 

Monthly canopy received PAR (Im) is estimated from a 'mix-
ture' of monthly PAR under both clear sky (Imck) and cloudy  
sky(Imcid): 

Im  = (1 — Ccld)Imclr Ccldlmcld 
	 (5) 

A cloud factor (Cold) is used by Bossel (1996) to calculate 
monthly PAR. 

GPP was calculated as a function of Im  modified by the con-
version constant k as well as the leaf area index (LAI), mean 
monthly air temperature (ft), soil drought (fw), and the per-
centage of frost days within a 1-month period (fd): 

GPP = kIm  LAI fa ftiwid 
	

(6) 

Carbon allocation features from 3-PG (Landsberg and War-
ing, 1997) were utilized by parameterizing based upon field 
data and empirical coefficients (Zhou et al., 2006b); the 
biomass growth rate was calculated from annual increments 
while soil water, carbon and nitrogen were calculated by the 
corresponding modules based upon the CENTURY4.0 model 
(Parton et al., 1993). A detailed description of the features, 
structure, mathematical algorithm sensitivity analysis and 
building strategy of the TRIPLEX1.0 model have been previ-
ously provided by Peng et al. (2002) and Liu et al. (2002b). 

m) 

Precipitation Humidity 
• 

Solar Radiation 	 Atmospheric CO2 	 Temperature 

GPP 
	4- 

N limitation 

Fig. 3 - The structural model of forest growth and carbon simulation from TRIPLEX1.0 (modified from Peng et al., 2002). 
Rectangles represent key pools or state variables, ovals represent core simulation processes, dotted lines represent controls, 
and solid lines represent the flow of carbon (C), nitrogen (N), water, and the fluxes between the forest ecosystem and 
external environment l‘vo arrow cycles refer to two feedbacks. 

stern 
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Table 1 - Parameters used in TRIPLEX1.0 for simulating subtropical forest ecosystems in southeastern China 

Parameter 
	 Description Note 

Tabl 
den  - 
valu 

PAR 
Absorp = 0.15 
PARfactor = 0.47 

GPP 
MaxCond = 0.02 
StomCond = 0.005 
B1Cond = 0.2 
CoeffCond= -0.5 
ExtCoef = 0.5 
"PaMin = 5 
TaMax = 40 
Topt = 15 
NitrogenFactor = 0.2 

Soil C and N 
Lnr =0.26 
Ls =0.215, 0.215, 0.255, 0.235, 0.255 

Soil water 
Al, A2, A3 =15 
AWL1, 2, and 3 =0.5, 0.3, and 0.2 
KF = 0.5 
KD=0.5 
KX = 0.3 
AWater = 250.0 

2.4. 	Parameterization and initialization 

To provide a robust test condition of the TRIPLEX1.0 model, 
most of the general and nonspecific site parameters from pre-
vious studies (Peng et al., 2002; Zhou et al., 2004, 2005, 2006a) 
were left unchanged (Table 1). These include PAR parameters; 
the minimum, maximum, and optimum temperature for tree 

growth; stomata and canopy conductance; initial nitrogen for 
tree growth; the lignin-nitrogen ratio and lignin fraction of 
leaf, fine and coarse roots as well as the fraction of soil water 

flow. 
Three key variables related to initial conditions exist for 

forest growth and yield simulations: tree density (number of 
trees), H and DBH. Several new parameters of interest are listed 

aBossel (1996); bKimball et al. (1997); `Ryan et al. (1997); dthe values are given by CENTURY (Parton et al., 1993; Metherell et al., 1993); eCoops et 

al. (2001). 

Table 2 - Parameters used in TRIPLEX1.0 to simulate different forest types of subtropical forest ecosystems in 

southeastern China 
Forest type 
	 Note 

Parameter 

Evergreen broad-leaved 
	

Mixed 
	Pinus massoniana 

 

Conversion of GPP to NPP 
Wood carbon density (tC m-3) 
Specific leaf area (m2  kg-1) 
Normal mortality (yearly) 
Crowding mortality (yearly) 
Crown/DBH 
Leaf fraction 
Branch fraction 
Wood fraction 
Coarse root fraction 
Fine root fraction 
Min growth factors 
Max growth factors 

a  Estimation based upon Ryan et al. (1997). 
b  Estimation based upon Fang et al. (1996). 
e Estimation based upon Kimball et al. (1997). 
a 
 Suggested by Bossel (1996), stand mortality was assumed as normal mortality (no canopy competition for light) plus crowding mortality. 

e  Based upon forest estimated in the present study. 

0.495 
0.54 

20 
0.004 
0.02 

20 
0.18 
0.22 
0.38 
0.06 
0.16 

47.16 
114.95 

0.490 
0.51 

15 
0.004 
0.02 

20 
0.39 
0.19 
0.13 
0.08 
0.21 

50.46 
125.96 

0.450 
0.26 
6 
0.006 
0.01 

20 
0.23 
0.25 
0.38 
0.04 
0.10 

56.23 
102.14 

a 
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e 
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Table 3 - Simulation errors of TRIPLEX1.0 applied to subtropical forest ecosystems in southeastern China, comparing 
density (stems ha 1), DBH (cm), height (m), litter pool (t ha 1), aboveground and total biomass (t ha 1) between modeled 
values and forest inventory data collected from 89 forest stands 

Forest Density DBH (cm) Height (m) Litter pool (t ha-1) Aboveground Total biomass (t ha-1) 
(stems ha-1) Biomass (t ha-1) 

n 79 89 86 81 85 88 
0.91 0.86 0.83 0.54 0.89 0.91 

e 121.59 -0.29 -0.65 1.16 -0.51 -2.64 
Se 400.17 1.44 1.08 2.24 13.53 16.46 
Bias 6.7% -3.0% -9.3% 15.7% -0.9% -3.9% 
p-Value <0.001 <0.001 <0.001 <0.001 < 0.001 <0.001 

Note: n, numbers of stands; r2, coefficient of determination; e, average prediction error; Se, standard error of the predicted value for each observed 
value in their regression, which is a measure of the amount of error in the prediction for an individual observation. 

ote 

in Table 2, like wood carbon density, specific leaf area (SLA), 
mortality, the fraction of leaf, branch, wood and coarse and 
fine roots were adopted and adjusted from default model val-
ues to better represent the forest ecosystems of subtropical 
China for this study. 

2.5. 	Simulation runs 

TRIPLEX1.0 was calibrated and validated by randomly select-
ing each forest type, respectively, before simulation runs. The 
simulation was executed for H, DBH, litter pool, aboveground 
and total biomass. We simulated each stand from its respec-
tive year of regeneration to the year 1999 at which point all 
simulations across all stands within the subtropical forest 
region were summed up. The same procedure used by Zhou 
et al. (2004) was followed for all model runs. 

This study performed regional simulation runs that first 
required being initialized within a spatial dimension (Fig. 2). 
All initial stand biomass measurements were launched on the 
month of January of the regeneration year. The spatial pattern 
of tree density was initialized depending on the species and its 
distribution. The initial tree density was assumed to be 4950, 
2500, and 4183 stems ha-1  for evergreen broad-leaved, mixed, 
and pine forest stands for the regeneration year, respectively. 
Subsequent stand density was then simulated from the point 
of the initial density and incorporates the crowding mortality 
factor once competition starts.  

3. 	Results 

3.1. 	Model validation 

The simulated H and DBH were compared to the yield mea-
surements from the subtropical forest region to test the 
accuracy of the model. A summary of the results from the 
TRIPLEX1.0 validation tests for the subtropical forest region 
is shown in Table 3. We also validated the model against all EF 
indices as well as 29 MF and 32 PF indices (Tables 4 and 5). 
The comparison revealed high coefficient of determination 
(r2) results (0.91 for density, 0.86 for DBH, 0.83 for H, 0.89 
for aboveground biomass and 0.91 for total biomass) except 
for litter pool that showed a variability of 0.54. Small aver-
age prediction errors (e) were detected (-0.29 for DBH, -0.65 
for H, 1.16 for litter pool, -0.51 for aboveground biomass and 
-2.64 for total biomass) except for density that showed a 
variability of 121.6. And low biases (the averaged prediction 
error divided by the averaged observation) were also detected 
(6.7% for density, -3.0% for DBH, -9.3% for H, -0.9% for 
aboveground biomass and -3.9% for total biomass) except 
for litter pool that showed a variability of 15.7% (Fig. 4 and 
Table 3). 

To conduct a model validation using large samples of 
growth and yield data in the subtropical forest ecosystems 
at a regional scale, we also compared simulations with 

Table 4 - Simulation errors of TRIPLEX1.0 applied to three forest types in the subtropical forest ecosystems of 
southeastern China, comparing height (m) and DBH (cm) between modeled values and forest inventory data collected 
from 28 evergreen broad-leaved forest (EF) stands, 29 mixed forest (MF) stands and 32 Pinus massoniana forest (PF) stands 

Height (m) 
	

DBH (cm) 

EF 

 

MF PF 

    

 

EF 

 

MF PF 

    

       

n 28 29 32 28 29 32 
0.83 0.57 0.92 0.84 0.85 0.94 

e -0.27 -1.06 -0.73 -0.41 -0.48 -0.14 
Se 1.94 1.48 0.68 1.32 1.30 1.00 
Bias -2.46% -14.89% -11.11% -5.59% -5.19% -1.55% 
p-Value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

Note: n, numbers of stands; r2, coefficient of determination; e, average prediction error; Se, standard error of the predicted value for each observed 
value in their regression, which is a measure of the amount of error in the prediction for an individual observation. 
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Table 5 - Simulation errors of TRIPLEX1.0 applied to three forest types in the subtropical forest ecosystems of 

southeastern China, comparing litter pool (t ha 1), aboveground and total biomass (t ha 1) between simulations and 

estimates collected from 33 evergreen broad-leaved forest (EF) stands, 29 mixed forest (MF) stands and 32 Pinus 

massoniana forest (PF) stands 

EF 	MF 	PF 	EF 	MF 	 PF 
	 EF 

N 27 	25 	32 	27 	29 	32 

r2 	0.79 	0.59 	0.50 	0.79 	0.83 	0.95 

e -0.76 	0.55 	-1.06 	-0.76 	-3.84 	-0.54 

Se 	1.92 	1.99 	0.86 	1.92 	16.21 	5.93 

Bias 	-7.92% 	7.18% 	13.34% 	-2.81% 	-7.72% 	-1.33% 

p-Value 	<0.001 	<0.001 	<0.001 	<0.001 	<0.001 	<0.001 

Note: n, numbers of stands; y2 , coefficient of determination; e, average prediction error; Se, standard error of the predicted value for each observed 

value in the regression, which is a measure of the amount of error in the prediction for an individual observation. 

Litter pool (t ha-1) Aboveground biomass (t ha-I) 	 Total biomass (t ha 1) 

MF 	PF 

33 	29 	32 

	

0.81 	0.88 	0.94 

	

-6.72 	-10.67 	-0.57 

	

29.25 	19.18 	6.92 

	

0.81% 	-16.57% 	-1.21% 

	

<0.001 	<0.001 	<0.001 

observations for the averaged density, H, DBH, litter pool, 
aboveground biomass and the total biomass within sub-
tropical forest stands reported by Zhang et al. (2007). The 
predictions were found to be highly correlated to field mea- 

surements (Fig. 4). 

3.2. 	Modeling H and DBH for three main forest types 

Comparisons between H and DBH predicted by TRIPLEX1.0 
with those observed from the field sites showed a significant 
correlation (Table 4). The highest coefficient of determination 

(r2) throughout the three forest types was approximately 0.92 
for H and 0.94 for DBH of PF. Mean prediction errors and biases 
were calculated for both H and DBH for each forest type sepa-
rately (EF, MF and PF). The biases were within -2 to -15% for 
both H and DBH. All p values were less than the critical value 

of a = 0.001 (Table 4).  

3.3. 	Modeling litter pool and biomass for three main 

forest types 

Table 5 shows the comparison results and the statistical anal-
ysis for litter pool and aboveground and total biomass for all 

three forest types. The r2  correlation between the model simu-

lations and the field observations were relatively high: r2  = 0.79 

for litter pool of EF, r2  = 0.95 for aboveground biomass of PF and 

r2  = 0.94 for total biomass of PF. The comparison between lit-

ter pool (t ha-1) simulated by TRIPLEX1.0 with litter pool field 
data measured from 79 forest plots located within all three for-
est types showed a significant correlation (Table 5). The mean 

coefficient of determination (r2) for litter pool was 0.59 for MF 
and 0.50 for PF while simulated errors were relatively small, 

between -1.06 and 0.55 t ha-1  exhibiting a high bias (-7.92% 
to 13.34%). Litter pool simulated by TRIPLEX1.0, however, 
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Fig. 4 - The comparisons of tree density, height, DBH, litter pool, aboveground and total biomass between simulations and 
observations from yield measurements in the subtropical forest zone of Zhejiang Province (n = 79-89, p <0.001). 
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Fig. 5 - Comparison between total biomass (t ha-1) simulations (a) and estimates based upon field measurements (b) for 
Zhejiang Province, southeastern China. The grid size is 30 m x 30 m. 
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appears to be inaccurate compared to aboveground and total 
biomass. The simulated mean errors for the total biomass are 
approximately -0.57 to -10.67 t ha-1, which translates into 
biases -16.6 to 0.8%, respectively (Table 5). All p values 
were less than the critical value of a=0.001. In addition, 
the simulated spatial pattern of total biomass (Fig. 5a) 
is consistent with the observed total biomass distribution 
(Fig. 5b). 

3.4. 	Spatial pattern of NPP 

NPP is a key ecosystem variable and an important component 
of forest carbon budgets due to its important role in terres-
trial carbon cycles and ecosystem processes. The simulated 
NPP distribution was also compared to the NPP estimated from 
field measurements at the landscape level (Fig. 6). The simu-
lation results showed that the averaged NPP was predicted by 

(a) Simulation (b) Observation 

Fig. 6 - Comparison at landscape levels between (a) net primary productivity (NPP) (t ha-1  year simulations and (b) 
estimates based upon field measurements for Zhejiang Province, southeastern China (Zhang et al., 2007). The grid size is 
30m x 30m. 
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Fig. 7 - Mean monthly precipitation and temperature for subtropical forests in Zhejiang, southeastern China, and for boreal 

forests in Canada. 

125 

100 

75 

50 

25 

-25 

(b)Manitoba. Canada 

—+—Precipitation 

• • -e• • • Temperature 

4 5 6 7 8 9 10 

Month 

250 125 

200 100 

150 75 

100 50 

50 25 

0 

-50  -25 	
Month 

(c) Saskatchewan. Canada 

3 4 5 6 7 8 9 10 	12 

250 

200 

4. 	Discussion 

4.1. 	Model performance and parameter effects on 

model accuracy 

Process-based carbon dynamic models are rarely validated 
against empirical statistical forest growth and yield data 
and are difficult to use as a practical tool for management 
(Landsberg and Waring, 1997; Landsberg and Coops, 1999; Peng 
et al., 2002; Zhou et al., 2005). The process-based hybrid model 
of TRIPLEX1.0 has been calibrated and validated firstly for 
growth and carbon budget in the subtropical forest regions 
of China. This validation of the TRIPLEX1.0 model demon-
strates that it is capable in simulating density, H, DBH, litter 
pool, aboveground and total biomass offering, therefore, com-
petency while providing confidence when applying its ability 
to extrapolate outcomes at regional scales to further investi-
gate the potential impacts of future climate change on forest 
biomass and carbon budgets. In general, biases of values pre-
dicted by TRIPLEX1.0 were -1.6 to -5.6% for DBH and -14.9 to 
-11.1% for H (Table 4), larger than those seen in boreal forests 
as reported by Zhou et al. (2005), respectively. This discrep-
ancy may be due to dominant young forests, while the model 
provided the best dynamic predictions for trees between 50 
and 90 years old and less accurate for trees under 50 years old 

(Peng et al., 2002). 
Understanding the spatial and temporal variation of site 

conditions is important for developing accurate carbon esti-
mates. Site factors, such as average rainfall, temperature and 
soil fertility are significant determinants to the potential total 
biomass carrying capacity at maturity and to the average 
rate of forest growth (Waterworth et al., 2007). Actual growth 
and yield over short periods is sensitive to climate variability 
and forest age. Model calibration and validation were imple-
mented for climate data variables, which have implications to 
biodiversity, carbon sequestration and the exchange of green- 

house gases (Coops et al., 2005), but local site conditions, such 
as exposure to wind or aspect differences, were not captured. 
Climate data may have introduced further uncertainties to 
the performance of the model (Miehle et al., 2006). To over-
come these uncertainties and distinguish model errors from 
climate data errors, we need to collect climate data from the 
forest stand scale in future work. Another uncertainty could 
be that Zhejiang Province has over thousands years history of 
anthropogenic disturbances in the form of intensive human 
activity over large-scale areas that have left almost no mature 
forests intact. Since China's Resistance War against Japanese 
Aggression and national scale steel production from 1958, 
have caused truculence deforestation, and during the past 28 
years the regional landscape was modified significantly by the 
rapid economic developing process. 

TRIPLEX1.0 calibrations were conducted to determine a set 
of suitable parameters and to generalize those parameters 
for making the model practicable to wider subtropical forest 
regions. To apply the model for subtropical forest ecosystems 
in southeastern China, we need to adjust some parameters 
(Table 2). This was especially true for parameters like Stem-
pm and Stempra that affect the growth rate (Landsberg and 
Waring, 1997) of tree stems in some plots depending on cer-
tain site conditions since forest climate data from Zhejiang 
Province, having a higher average precipitation and tempera- 
ture, which are quite different from that of the boreal forest in 
Canada (Fig. 7). Although the Stempm and Stempra parame- 
ters are defined to describe growth rates due to physiological 
causes in TRIPLEX1.0, they can also be indicators of climate 

conditions. 

4.2. 	Comparison to other results from subtropical 

forest regions 

Most existing process-based growth and yield models have 
been developed for tree species found in the northern hemi-
sphere. Several biomass estimates and NPP of major planted 
forests in China were based upon forest inventory data (Fang et 
al., 1996; Zhao and Zhou, 2005). The models that include the 
simulations of forest growth in Zhejiang Province are CASA 
(Fang et al., 2003), CEVSA (Cao and Woodward, 1998; Cao et al., 
2003) and GLO-PEM (Cao et al., 2003), which have been applied 
mainly in China. A comparison between the predictive capac-
ity of these models and inventory measurements is presented 

in Table 6. 

TRIPLEX1.0 to be 4.19 t ha-1  year-1  for 1999 within the subtrop-

ical forest ecosystems, which is consistent with the estimated 

average NPP (5.59 t ha-1  year The simulated NPP spatial dis-

tribution pattern (Fig. 6a) was similar to the estimation from 
field measurements of Zhang et al. (2007) (Fig. 6b). Both of them 
have higher NPP in southwest mountainous region and lower 

NPP in northeast coastland. 
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Tabl 6 - Estimates of biomass and NPP in the present study and from similar regions reported in different studies 

Forest type Source Biomass (t ha-1) NPP (t ha-1  year-1) Age range Site Reference 

Evergreen broad-leaved forest TRIPLEX 92.86 3.323 8-50 Zhejiang This study 
Field 89.19 8.35 5-50 Zhejiang Zhang et al. (2007) 
Inventory 133 10.43 5-50 China Fang et al. (1996) 
CASA 4.183 China Fang et al. (2003) 
CEVSA 0.4-12 China Cao et al. (2003) 
GLO-PEM 0.4-0.6 China Cao et al. (2003) 

Coniferous and broad-leaved TRIPLEX 53.68 7.845 5-33 Zhejiang This study 
mixed forest Field 70.06 6.59 5-33 Zhejiang Zhang et al. (2007) 

Inventory 97.6 11.26 China Fang et al. (1996) 
CASA 2.960 China Fang et al. (2003) 
CEVSA 0.4-12 China Cao et al. (2003) 
GLO-PEM 0.4-0.6 China Cao et al. (2003) 

Pinus massoniana forest TRIPLEX 46.10 2.628 9-41 Zhejiang This study 
Field 51.25 4.85 9-41 Zhejiang Zhang et al. (2007) 
Inventory 40 4.30 3-37 Eastern China Zhao and Zhou (2005) 
Inventory 36.52 8.412 China Fang et al. (1996) 
CASA 2.455 China Fang et al. (2003) 
CEVSA 0.4-12 China Cao et al. (2003) 
GLO-PEM 0.4-0.6 China Cao et al. (2003) 

Comparing with similar regions reported in different stud-
ies, TRIPLEX1.0 can predict biomass with a high level of 
accuracy for all three forest types (Table 6). The results from 
this study indicated that TRIPLEX1.0 biomass simulated for 
EF (92.86 t ha-1) and PF (46.10 t ha-1) was between the field 
inventory results, whereas modeled result for MF (53.68 t ha-1) 
was lower than other estimates. As shown in Table 6, the NPP 
for both MF and PF simulated by TRIPLEX1.0 was similar to 
estimated by Zhang et al. (2007) and Fang et al. (1996), but 
was significantly different from other model results for whole 
China (Cao et al., 2003; Fang et al., 2003). For three forest types, 
the TRIPLEX1.0 model performed higher accuracy than other 
three models CASA, CEVSA and GLO-PEM in predicting NPP by 
contrast with field estimations. 

TRIPLEX1.0 has kept a minimal amount of input param-
eters so that it can operate from readily available datasets to 
produce regional growth and yield as well as biomass and NPP 
results (Fig. 6). These low parameter requirements, however, 
do not appear to have compromised the predictive precision 
of TRIPLEX1.0; it was able to satisfactorily predict biomass 
growth across a variety of climatic and edaphic situations 
within the subtropical zone. 

4.3. 	Future application and improvements to the 
model for subtropical forests 

Prior studies have extensively tested TRIPLEX1.0 by applying 
various field measurements collected within the Canadian 
boreal forest (Peng et al., 2002; Zhou et al., 2004, 2005, 2006a,b). 
This study has shown through model validation applying 
independent observations from subtropical forests in Zhe-
jiang, China, that TRIPLEX1.0 is able to estimate forest H, DBH, 
litter pool, aboveground and total biomass under subtropical 
forest ecosystem conditions. Carbon accumulation is affected 
by forest management, age, structure and specie or ecosystem 
type (Waterworth et al., 2007). Human induced changes such 
as agriculture, forest resource harvesting and urbanization, 
which can add further complications by enhancing changes  

to terrestrial ecosystems (Chapin et al., 2004), are extremely 
serious in Zhejiang Province. Unfortunately, TRIPLEX1.0 sim-
ulates forested land without consideration of this component. 
Moreover, the absence of a shrub module and herb layer within 
the forest is an additional weakness of the model. 

Another aspect is the difficulties in obtaining sufficient 
field sample measurements that, statistically speaking, has 
limited the application of process-based ecological models, 
although they have, in theory, a strong long-term forecast-
ing ability under changing climatic and other environmental 
conditions. The best way to validate process-based models 
is to compare model simulations to field data from growth 
and yield measurements (Fig. 4). Our results suggest that 
TRIPLEX1.0 produced less bias (about ±4%) when comparing 
simulated aboveground and total biomass and could produce 
a higher bias (about ±16%) when predicting H, DBH, and lit-
ter pool based upon forest field measurements (Table 3). In 
general, model parameterization always affects process-based 
model performance by accumulating errors at each time step. 
Increasing the model's ability to simulate soil carbon storage, 
carbon dynamics, N cycle and water balance for subtropical 
forest ecosystems in China is a high priority in the ongoing 
development of the model. 

5. 	Conclusion 

The process-based hybrid model TRIPLEX1.0 has been cali-
brated and validated successfully for 117 forest stands aged 
from 5 to 50 years in southeastern China for the first time. 
The results suggest that simulated forest growth, litter pool, 
aboveground biomass and total biomass are consistent with 
the observed data across Zhejiang Province. It was also 
demonstrated that TRIPLEX1.0 worked well for subtropical 
ecosystems at regional scales, even though it was originally 
developed for boreal ecosystems. The model, however, does 
not consider factors such as land use alteration, changes to 
forest structure and succession as well as fire disturbances, 
which inevitably introduce some uncertainty into model 
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simulations. Future study regarding these issues and further 
model improvements will certainly advance our understand-
ing of forest growth and carbon cycles of subtropical forest 
ecosystems in southeastern China. More tests in the model's 
ability to simulate soil carbon, carbon dynamics, N cycle and 
water balance for subtropical forest ecosystems in China are 
ongoing in advancing the model application. So it can assist 
in global change modeling and monitoring the sustainability 
of forest ecosystems. 
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