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Abstract

A new generation of surveillance strategies is being developed to help detect emerging 
infections and to identify the increased risks of infectious disease outbreaks that are expected 
to occur with climate change. These surveillance strategies include event-based surveillance 
(EBS) systems and risk modelling. The EBS systems use open-source internet data, such as 
media reports, official reports, and social media (such as Twitter) to detect evidence of an 
emerging threat, and can be used in conjunction with conventional surveillance systems to 
enhance early warning of public health threats. More recently, EBS systems include artificial 
intelligence applications such machine learning and natural language processing to increase 
the speed, capacity and accuracy of filtering, classifying and analysing health-related internet 
data. Risk modelling uses statistical and mathematical methods to assess the severity of disease 
emergence and spread given factors about the host (e.g. number of reported cases), pathogen 
(e.g. pathogenicity) and environment (e.g. climate suitability for reservoir populations). The 
types of data in these models are expanding to include health-related information from 
open-source internet data and information on mobility patterns of humans and goods. This 
information is helping to identify susceptible populations and predict the pathways from which 
infections might spread into new areas and new countries. As a powerful addition to traditional 
surveillance strategies that identify what has already happened, it is anticipated that EBS 
systems and risk modelling will increasingly be used to inform public health actions to prevent, 
detect and mitigate the climate change increases in infectious diseases.
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Introduction 

Climate warming trends have been accelerating over the last few decades. The world’s nine 
warmest years in the time period from 1850 to 2017 have all occurred in the last twelve years, with 
a total increase of approximately 0.97°C in the average annual air temperature for the time period 
from 1880 to 2017 (1). This ostensibly small increase in average global temperature is nevertheless 
responsible for significant changes in the worldwide weather patterns and associated effects on 
society through sea level rise (and associated erosion) and increased frequency and intensity of 
flooding, droughts (with associated wildfires and crop failures) and freezing rain events (2). Of 
particular importance to Canada, climate warming is even more acute at higher latitudes and in 
the winter months (3). Over the past 70 years, the overall annual average temperature in Canada 
has increased by 1.8°C (4), with an average winter temperature increase of 3.4°C (4). In some areas 
in the northwest, this increase has been even higher. Because climate change affects not only 
temperatures but precipitation patterns, Canada is experiencing generally drier conditions in the 
west and above average precipitation in the east (4). 
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Climate-driven changes to temperature and precipitation are 
known to affect the risk of infectious disease transmission. 
Climate change is modifying range distributions of disease 
vectors (i.e. ticks and mosquitoes) and reservoir populations 
(i.e. birds, rodents and deer) that participate in the transmission 
of pathogens from ticks and mosquitoes to humans as climate 
suitability for vector and reservoir populations change (5,6). 
For example, the increase in cases of Lyme disease in Canada 
reflect the northward expansion of the range of the black-legged 
tick vector, Ixodes scapularis, in the United States (US) and into 
southern Canada, as climate change has made Canada more 
conducive to establishing tick populations (7,8). This expansion 
of the area where the vectors and their reservoirs can thrive 
means not only an increased risk of sporadic infectious disease 
but also an increased likelihood that these vectors, and the 
diseases that they carry, can become endemic (6,9–11). 

In addition, climate change is influencing the mobility patterns 
of people and goods. An increase in “climate refugees”, people 
displaced when their lives and/or livelihoods are at risk from 
extreme weather events, is expected (11). Refugees, often from 
geographical areas where infectious diseases are more common 
and with different vaccination schedules and practices, may 
inadvertently bring these diseases into Canada (12). Tourism 
is also affected by climate change, as changes in both home 
and travel destinations influence the push and pull of factors 
motivating people to travel and the potential for disease spread 
(13–15). Vectors and pathogens can inadvertently be transported 
through shipments by air, land and sea (16–18). Land and sea 
containers are known to support the invasion of mosquitoes 
because larva can develop in trapped standing water, and if 
no water exists, eggs can withstand desiccation for weeks to 
months (19,20). Air travel has also been responsible for travellers 
carrying infections into new areas. In Canada, returning travellers 
have brought with them the Zika virus and have also sparked 
an outbreak of severe acute respiratory syndrome (SARS) 
coronavirus (15,21,22). 

Thus, the increased risks of infectious diseases with climate 
change pose important public health risks and work is underway 
to monitor, assess and predict the impact of these risks. In the 
past, public health management has depended on notifiable 
disease reporting surveillance systems to detect outbreaks, 
monitor disease progression and inform prevention and 
mitigation policies. However, traditional surveillance systems are 
typically characterized by delays in the reporting and analysis of 
the data and the communication of the results. 

To address the need for closer to real-time surveillance of 
emerging issues and earlier insight on potential health impacts, 
two risk assessment strategies have been, and are being, 
developed: event-based surveillance (EBS) systems, which 
increasingly incorporate artificial intelligence; and risk modelling. 
The objective of this overview is to describe these two risk 
assessment strategies and how they can inform public health 
actions to prevent, detect and mitigate the climate change 
increases in infectious diseases.

Event-based surveillance systems

Event-based surveillance systems use a variety of open-source 
internet data and assessment techniques to identify disease 
threats (23,24). Typical open-source internet data include online 
newswires, social media and other internet data streams, in 
multiple languages, to detect early-warning signals of threats 
to public health. These systems have proven to be more timely 
in comparison with conventional surveillance data sources 
from laboratory results or hospitals (25), and can be used in 
conjunction with conventional surveillance systems to enhance 
early warning of public health threats (26). The more quickly 
signals from an evolving outbreak are identified, the more quickly 
the outbreak can be tracked and a public health response can be 
planned and implemented (27). 

There are three types of EBS systems: moderated; partially 
moderated; and fully automated (28). The level of automation 
influences how the information flow in EBS systems is managed 
from the open-source internet data from news aggregators (e.g. 
Factiva, Google News, Moreover Baidu), Rich site summary (RSS) 
and social media feeds from official and unofficial sources (e.g. 
Twitter for US Centers for Disease Control and general public), 
and validated official reports (e.g. World Health Organization, 
US Centers for Disease Control). The Program for Monitoring 
Emerging Diseases (ProMED) is an example of a moderated 
system and was on the forefront of EBS development over 25 
years ago (29,30). ProMED is run by volunteer analysts (who are 
expert curators) who monitor and choose news articles, validate 
the content and notify subscribers of noteworthy infectious 
disease events. Strengths of this system include having a low 
signal-to-noise ratio, being open access and having a broad 
reach. However, volunteers do not cover all populations at risk, 
volunteer biases can influence the moderation of events and 
volunteers do not have the resources (nor are they expected) 
to provide detailed information giving situational awareness for 
assessing the threat level (29). 

The Global Public Health Intelligence Network (GPHIN) is 
a partially moderated system that was developed by the 
Government of Canada, in collaboration with the World Health 
Organization, four years after ProMED (31–33). GPHIN access 
is restricted to agencies with health-related mandates. Artificial 
intelligence (AI) algorithms in GPHIN automate a stream of two 
to three thousand news articles per day that are moderated by 
12 expert analysts who identify and issue alerts for threats using 
tacit contextual information (e.g. historic context, market trends, 
travel bans and climate anomalies). An example of the usefulness 
of GPHIN dates back to early 2003 when analysts identified 
reports from China referring to increased sales of antiviral 
therapies just before the global onset of the SARS epidemic (34). 
Unlike ProMED, GPHIN benefits from multi-staged filtering using 
AI and trained analysts. Artificial intelligence enables processing 
of a larger data stream, and analysts have the resources to 
provide information for situational awareness. Both ProMED 
and GPHIN can function in multiple languages; however, it is 
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expensive for GPHIN to add in other languages because of the 
cost to hire analysts with language fluency (33).

Fully automated systems include the European Commission’s 
Medical Information System (MedISys), Pattern-based 
Understanding and Learning System (PULS) and HealthMap. 
These systems are open to the public, but also have restricted 
access to serve the needs of health agencies such as private 
discussion forums, increased functionality and data processing 
of commercial sources (35,36). Fully automated systems are 
faster at processing data and less expensive to operate than 
moderated systems. The main drawback is the higher signal-to-
noise ratio meaning that there is an increased risk of identifying 
false threats (37,38). The EBS systems can be connected in 
synergistic ways to address this risk (39). For example, MedISys 
uses low signal-to-noise ratio data from ProMED and GPHIN, 
and uses more advanced language processing algorithms from 
PULS. The PULS extracts information about events identified in 
the MedISys stream and then returns these data back to MedISys 
(36,40). The different types of EBS systems are summarized in 
Table 1.

Artificial intelligence applications
The ability of EBS systems to quickly and accurately detect 
threats (such as outbreaks of infectious diseases) has been 
revolutionized by artificial intelligence applications for data 
processing. Open-source internet data are considered 
“unstructured” in the sense that news articles, blogs, tweets, 
etc., provide a narrative describing an event. The text, numbers 
and dates are not organized in a data model, such as a database, 
that can be used for automated event detection and risk 
modelling; therefore, open-source data must be processed to 
extract and structure information about what happened, where 
it happened, when it happened and to whom it happened. 
The EBS systems use natural language processing (NLP) 
methods to process and understand event narratives (46–48). 
Natural language processing is a field of research dedicated 
to understanding human discourse (49). Early methods include 
the sub-language approach, where rules and patterns are used 
to interpret and classify vocabulary, syntax and semantics of 
the unstructured narrative. The EBS systems have taxonomies 
of terms to match predefined terms and their synonyms to 
those found in the data sources. Much like with a conventional 
literature search, taxonomic classification of narratives can 
identify health-related articles by searching for related terms 
(e.g. human influenza A synonyms include H1N1, swine flu, 
California flu, human influenza and influenza A) (50). The 
sublanguage approach for identifying health-related data in EBS 
systems is effective but also has drawbacks. Taxonomies are not 
easily generalizable and must be developed for each disease 
being monitored and kept up-to-date as language evolves and 
new discoveries about diseases are made. In this light, NLP has 
established a strong foundation in using machine learning (ML) 
methods.

Machine learning is a subset of AI that uses algorithms, such 
as statistical models, to perform a specific task without using 
explicit instructions; instead, relying on patterns and inference. 
The EBS systems gather open-source internet data (feeds and 
web queries) and then filter these data through a combination 
of the sublanguage approach and ML methods, where the latter 
is used to perform more complex tasks for analysing syntax, 
semantics, morphology, pragmatics and discourse (51). For 
example, ML methods can be used to determine the difference 
between non-health related articles (e.g. “Bieber fever” refers 
to avid supporters of Justin Bieber) and those discussing 
an infectious disease outbreak (43,51,52). Machine learning 
methods can also be used to distinguish between ambiguities 
in dates and locations, such as past and present outbreaks in 
articles that discuss historical context (53,54). Novel applications 
for ML methods are also being developed, such as structuring 
disease case information into epidemiological line lists (a listing 
of individuals affected by the disease and related information; 
i.e. health status, sex, location, date of onset, hospitalized) that 
can be used in outbreak investigations and risk modelling (55). 
Once the information from open-source internet data has been 
processed into a data model, the event can then be reviewed 
and reported, as appropriate; furthermore, additional data 

Type Example Establishment Public 
availability

Moderated 
systema

Program for 
Monitoring 
Emerging 
Disease 
(ProMED) (29,30)

In 1994 as 
a nonprofit 
organization

Yes

Partially 
moderated 
systemb

Global 
Public Health 
Intelligence 
Network (GPHIN) 
(31–33)

In 1998 through 
partnership 
between the 
Government 
of Canada and 
World Health 
Organization

No; available 
to partnered 
health 
agencies 

Fully 
automated 
systemc

Medical 
Information 
System 
(MedISys) 
(36,41,42)

In 2004 by 
the European 
Commission

Yes

HealthMap 
(35,38,40,43)

In 2006 
by Boston 
Children’s 
Hospital 

Yes

Pattern-based 
Understanding 
and Learning 
System (PULS) 
(36,44,45)

In 2007 by the 
Department 
of Computer 
Science, 
University of 
Helsinki, Finland

Yes 

Table 1: Summary of some event-based surveillance 
systems 

a A moderated system: volunteer expert-curators identify, review and validate sources and create 
the reports
b A partially-moderated system: automatically acquires, categorizes, and filters sources. Expert-
curators moderate the subset of sources and create the reports
c A fully-automated system: automatically acquires, categorizes, filters and reports the health-
related sources
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analytics can be performed to communicate the current and 
predicted impact of the health threat. A summary of information 
flow from data collection, processing, analytics and reporting for 
EBS systems is presented in Table 2.

Risk modelling
An important advancement for risk assessment is increasing 
the variety of data being used in modelling approaches. Risk 
modelling in the context of infectious diseases is the process 
of identifying and characterizing factors in individuals or 
populations that increase their vulnerability to contracting 
disease (e.g. age, proximity to outbreak). Statistical inference is 
a well-grounded and informative risk modelling approach that 
includes regression analysis. This method is used to determine 
how risk factors (explanatory variables) are associated with the 
outcome of interest (e.g. number of reported cases). Regression 
models, and statistical inference in general, are developing to 
include information from open-source internet data. An early 
example was the inclusion of search query engine data from 
Google Flu Trends as a predictor for the outcome of the number 
of reported physician visits for flu-like illnesses (56). The resulting 
model was then used to predict the number of seasonal influenza 
cases one to two weeks into the future; however, this approach 
was not as effective in predicting outbreaks outside of the 
traditional flu season because of associations being identified 
with search query trends not related to seasonal influenza (e.g. 
winter basketball season) (57). Subsequent work improved 
the accuracy of predicting seasonal influenza flu trends by 
using additional sources of open-source data (e.g. Twitter) and 
expanding the regression method to benefit from ML algorithms 
that can find complex associations among the outcome and 
explanatory variables (58). Furthermore, regression modelling 
for the risk of infection has improved by including, in addition 
to open-source internet data, additional explanatory variables 

(e.g. climate and meteorological data from satellite imagery) 
that account for the presence, movement and distribution of 
pathogens, vectors, reservoir populations and infected people 
(59,60). For example, in China, the expected number of cases of 
hand, foot and mouth disease in children was best predicted by 
including data on weekly temperature and precipitation as well 
as data on hand, foot and mouth disease-related queries from 
the Chinese Baidu search engine (61).

Another dominant risk modelling approach is the use of 
compartmental models to mathematically simulate transmission 
dynamics of a population; that is, the flow of individuals among 
health states, such as susceptible (S), infectious (I) and recovered 
(R). For example, SIR models require defining parameters for 
the infectious rate (or inversely, the infectious period) and the 
rate of infectious contacts. It is then possible to estimate if an 
infected population will become epidemic, and to characterize 
the prevalence of a disease over time. The compartmental 
modelling approach has more recently developed to simulate 
transmission dynamics among multiple populations (meta-
populations). This requires the inclusion of mobility data to 
define the rate of individuals moving among populations (62). 
Human mobility at a meta-population level can be considered as 
the movement of people in a connected network of cities and 
countries. These data can be obtained from mobile phone call 
records and air traffic passenger volumes (63,64). Through meta-
population modelling, it is possible to identify the travel routes 
through which pathogens may spread or be carried to Canada, 
as well as to determine the likelihood of these events (65,66). 
For example, the Zika virus is estimated to have first appeared in 
Brazil between August 2013 and April 2014 by infected travellers 
entering the country at Rio de Janeiro, Brasilia, Fortaleza and/
or Salvador; and this introduction was followed by epidemics in 
Haiti, Honduras, Venezuela and then Colombia (21). 

EBS Data collection Data processing Data analytics Reporting

Moderated 
systems

Human analysts search and identify 
open-source internet data for health-
related concern

Human analysts 
review, filter and 
designate the threat 
level of the event

None Reports on health-related 
threats are communicated 
through email and posted on 
EBS system website

Partially 
moderated 
and fully 
automated 
systems

Automated feed of open-source 
internet data

Taxonomic 
classification and ML 
algorithms filter and 
classify events based 
on their metadata 
(e.g. type of threat, 
location and date). 
ML algorithms 
score the level of 
relevancy. In partially 
moderated systems, 
highly scored data 
sources are curated 
by human analysts

Analytic techniques evolve with 
time and differ among EBS 
systems. Current techniques 
include the following: mapping 
of geo-tagged events; bar plots 
showing changes over time to 
keyword counts, number of 
identified articles and expected 
and observed number of disease 
cases; word clouds showing 
importance of keyword terms; 
alert notices given sudden 
increases to case counts, 
reliability of sources and/or 
number of unique sources

Reports on health-related 
threats are communicated 
through email and posted 
on EBS system website and 
notified to appropriate web 
application user communities

Abbreviations: EBS, event-based surveillance; ML, machine learning

Table 2: Information flow from open-source internet data in event-based surveillance systems
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Discussion  

There is uncertainty as to how climate change will affect the 
many factors related to the occurrence and spread of infectious 
diseases. These factors will undoubtedly include changes 
to the distributions of vector and reservoir populations, and 
changes to the mobility of people and goods and potential 
transport of pathogens, with subsequent impacts on exposure 
and transmission risks. To monitor infectious disease outbreaks 
in an effective and timely manner, public health professionals 
need better access to up-to-date surveillance data. To achieve 
this, conventionally-obtained data, such as that from existing 
notifiable disease reporting surveillance systems, are increasingly 
being augmented by EBS systems. The EBS systems are 
benefiting from ML and NLP methods to more fully exploit 
the available data; however, challenges remain (59). There are 
issues of data sharing and privacy that need to be resolved. 
For example, at what level can personal data be used and 
disclosed in the detection of health-related events? Both 
Google and Twitter provide their data freely to the public as 
finely aggregated per week and city; however, more precise 
information on the timing and location of the source would 
enable more comprehensive event detection (26). Also, there 
are differences where and how people use the internet and 
social media around the world: there are gaps in internet and 
mobile phone use in Africa (67); Baidu, rather than Google, is the 
predominant search engine in China (61); and the propensity of 
people using Twitter to report illnesses is dependent on age and 
socioeconomic status (68).

Risk modelling provides a means of estimating the health impacts 
of emerging infectious diseases. Advances in risk modelling 
approaches include integrating open-source internet and climate 
data to inform these estimates, and accounting for the mobility 
of humans to spread infectious diseases globally. As with EBS 
systems, risk modelling approaches are limited by the availability 
of the data that can be obtained. For example, mobile phone call 
records and air traffic data provide information to the nearest cell 
phone tower and airport respectively, but more precise location 
data are available, granted privacy concerns, through the global 
position system in mobile phones. Information at the individual 
level could greatly increase our understanding of the factors 
affecting disease occurrence and pathogen spread, for example, 
the role of certain people to drive the 2003 SARS outbreak (69). 

Conclusion

Advances in assessing changes to vector and reservoir 
populations and human activity, and their impacts on infectious 
diseases, are now being monitored by a number of different 
surveillance and analytical strategies. Event-based surveillance 
systems use open-source data to gather information relating to 
infectious diseases. These systems can be moderated, partially 
moderated or fully automated, and each type of system has 
advantages and disadvantages. There is a growing trend 

towards automation because of the ability to process high 
volumes of data, and the accuracy of ML and NLP methods 
to identify events are improving and may one day surpass the 
ability of human moderators. Risk modelling to understand and 
predict the health impacts of infectious diseases is commonly 
performed using statistical inference and compartmental 
modelling approaches. These methods are advancing the ability 
to identify populations at risk to emerging diseases, and forecast 
health impacts and determine pathways of disease spread by 
integrating open-source internet data and human mobility 
data, along with more traditional data variables from climate 
data and infectious disease outbreak data. The methods we 
have presented here are promising new developments that will 
increase our capacity to deal with evolving disease threats as the 
climate changes. Having more information (and more accurate 
information) sooner will make it possible for public health 
professionals to confirm and evaluate potential infectious disease 
outbreaks faster and thus to develop and commence treatment 
and other mitigation strategies in a more timely fashion.
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