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Abstract: Over the last decade, spatially-explicit modeling of landscape-scale forest attributes for
forest inventories has greatly benefitted from airborne laser scanning (ALS) and the area-based
approach (ABA) to derive wall-to-wall maps of these forest attributes. Which ALS-derived metrics to
include when modeling forest inventory attributes, and how prediction accuracies vary over forest
types depends largely on the structural complexity of the forest(s) being studied. Hence, the purpose
of this study was to (i) examine the usefulness of adding texture and intensity metrics to height-based
ALS metrics for the prediction of several forest resource inventory (FRI) attributes in one boreal and
two Great Lakes, St. Lawrence (GLSL) forest region sites in Ontario and (ii) quantify and compare
the site and forest type variability within the context of the FRI prediction accuracies. Basal area
(BA), quadratic mean diameter-at-breast height (QMD), and stem density (S) were predicted using
the ABA and a nonparametric Random Forests (RF) regression model. At the site level, prediction
accuracies (i.e., expressed as RMSE (Root Mean Square Error), bias, and R2) improved at the three
sites when texture and intensity metrics were included in the predictor set, even though no significant
differences (p > 0.05) could be detected using the nonparametric RMANOVA test. Stem density
benefitted the most from the inclusion of texture and intensity, particularly in the GLSL sites (% RMSE
improved up to 6%). Combining site and forest type results indicated that improvements in site level
predictions, due to the addition of texture and intensity metrics to the ALS predictor set, were the
result of changes in prediction accuracy in some but not all forest types present at a site and that these
changes in prediction accuracy were site and FRI attribute specific. The nonparametric Kruskal–Wallis
test indicated that prediction errors between the different forest types were significantly different
(p ≤ 0.01). In the boreal site, prediction accuracies for conifer forest types were higher than for
deciduous and mixedwoods. Such patterns in prediction accuracy among forest types and FRI
attributes could not be observed in the GLSL sites. In the Petawawa Research Forest (PRF), we did
detect the impact of silvicultural treatments especially on QMD and S predictions.
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1. Introduction

Over the last decade, spatially-explicit modeling of landscape-scale forest attributes for forest
inventories has greatly benefitted from airborne laser scanning (ALS), either as the only data source
to model forest inventory attributes [1–3], in combination with multi- or hyperspectral imagery [4],
or in combination with digital aerial photogrammetry (DAP) to update forest inventories [5] (for an
overview see Wulder et al. [6]). ALS has shown great utility for capturing the three-dimensional
structure of forest canopies [7] with ALS metrics, such as mean height of ALS returns, serving as
suitable predictors of forest structural attributes. In the context of forest resource inventories (FRI),
attributes such as timber volume (VOL), aboveground biomass (AGB), basal area (BA), quadratic mean
diameter-at-breast height (QMD), and stem density (S) have been successfully estimated using ALS
metrics, especially with area-based approaches (ABA), in a variety of forest ecosystems worldwide
(e.g., [2,3,8–14]). These attributes are crucial for the assessment of carbon and growing stock, size-class
distributions and timber assortment, and sustainable forest management (SFM) at local, provincial,
national, and global scales.

Many studies have focused on what ALS metrics to include in the predictor set to improve
FRI attribute predictions. Furthermore, an increasing number of studies are focusing on testing the
generality and transferability of ALS-based predictions of FRI attributes over larger landscapes and for
different forest sites to determine if relationships between key ALS metrics and FRI attributes remain
consistent over multiple sites and multiple forest cover conditions [1,3,8,11,15–17]. Kotivuori et al. [17]
found that forest structure and the specific ALS sensor and acquisition parameters have considerable
effect on FRI attribute predictions when they compared nationwide to regional-level prediction
models. The identification of key ALS metrics for the prediction of FRI attributes is important because
over time, a large set of ALS metrics have been developed from normalized height (z) information
contained in the ALS data. Given this plethora of ALS metrics, various authors have identified
points of concern (e.g., [16,18,19]). For example, strong intercorrelations between metrics can cause
problems in feature selection, i.e., the selection of a subset of predictors for a parsimonious and robust
model, and model generalization for sites with different vegetation and terrain conditions [18–20].
They can also hamper the interpretation of the relationships between ALS metrics and predicted FRI
variables [21]. Large numbers of highly correlated and redundant metrics can increase the likelihood
that the selected predictors are sensitive to stochastic “noise” rather than general trends in the data [22].
This, in turn, may adversely affect model generalization, i.e., the quality of the predictions may decrease
when applied to new data [23,24]. Based on reviews of the literature, White et al. [25,26] conclude that
ALS metrics related to height, the variability of height, and canopy cover/density are often the most
reliable predictors of FRI attributes. Others, e.g., Bouvier et al. [16], have argued that ALS metrics
used for the prediction of FRI attributes should also incorporate ALS metrics that characterize the
vertical structure of forest stands. Even though in most studies these ALS metrics explain the majority
of variation within FRI attributes, additional ALS metrics may be required to improve FRI attribute
predictions in more complex forest ecosystems, e.g., forest ecosystems with a large variety of tree
species or ones undergoing partial-harvest silviculture, or when modeling more complex forest stand
attributes such as diameter distributions.

Based on the utility of texture metrics derived from optical imagery for forestry applications
(e.g., [27,28]), texture metrics have also been developed from ALS-based canopy height models
(CHM) [29–32]. These texture metrics allow for a more detailed characterization of horizontal
forest structure or upper canopy variability, i.e., in the prediction of species [29], growing stock
attributes [31,33], and the spatial arrangement of trees [30,32]. Ozdemir and Donoghue [31] showed
that texture metrics generated from ALS-derived canopy height models (CHM) explained tree size
diversity (tree height and QMD diversity). Niemi and Vauhkonen [33] found that texture metrics
improved predictions of VOL and BA in Finland’s boreal forest and helped cluster forest stands into
groups with increasing maturity and stocking characteristics. Hence, texture appears to capture upper
canopy variability which can be indicative of stand development stage [33].
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Intensity metrics are another set of ALS metrics that, until recently, have generally been excluded
from ALS metric sets for the prediction of FRI attributes because of the radiometric heterogeneities
in uncalibrated intensity values due to system- and environment-induced distortions [34]. These
distortions degrade the intensity quality and hence may reduce the performance and robustness of the
predictive models applied. However, some studies have incorporated intensity-based ALS metrics to
improve ABA growing stock [35], diameter distribution models [36], tree species classification [37],
and gap fraction [38]. The utility of intensity data is primarily attributed to its ability to discriminate
among tree species and characterize foliage distribution within the canopy [39]. Shang et al. [36]
postulated that intensity metrics may capture the permeability or layering of the canopy. For example,
early forest stand development stages are characterized by simple forest structure which results in a
relatively low overall canopy density/high canopy permeability. In such stands the authors observed
low variance of intensity values.

The variability in FRI attribute prediction accuracy within forest types has been addressed
either by predicting FRI attributes separately by forest type [9,10,13,40–45] or by predicting FRI
attributes over the entire forest site and subsequently extracting predictions (and error) by forest
type (e.g. [13,44,45]). For example, Pitt et al. [44] found that the quality of FRI attribute predictions
varied with forest type regardless of which prediction method used. Studies in boreal and temperate
regions in Europe (e.g., [40,41,43,46]) found more accurate predictions of FRI attribute estimates for
conifers than deciduous or mixed forest types. However, Spriggs et al. [45] found that BA and S were
more accurately predicted for broadleaved species than conifers in the Great Lakes, St. Lawrence
(GLSL) forest region in Ontario. The authors postulated that estimation models fit dominant forest
type better. Hence, prediction accuracies for coniferous species are better in boreal regions (where
conifers are dominant), whereas prediction accuracies for deciduous species are better in deciduous
dominated forests such as the GLSL. In addition, Heurich and Thoma [42] found that not only forest
species composition but also forest management practices influenced the relationships between FRI
attribute prediction accuracies and the ALS-based predictors. Their FRI prediction accuracies showed
no significant differences between deciduous and coniferous forest areas in a montane mixed forest in
Germany which they attributed to selective harvesting activities within some of the conifer stands and
that subsequently lowered the overall predictive accuracies in their conifer forest area.

Here, we examine the inclusion of CHM texture and intensity metrics on FRI attribute prediction
of BA, QMD, and S because these metrics characterize stand structural properties not characterized
by ALS metrics derived from the normalized height information. We test these metrics at three study
sites in Ontario that vary in terms of forest complexity. We then compare forest site and forest type
variability in the FRI attribute prediction accuracies within and between these sites to determine how
FRI predictions and errors vary. We ask the following questions.

(1) How does the inclusion of CHM texture and/or intensity information affect the FRI attribute
prediction accuracy at the overall site level? We hypothesize that the addition of texture and
intensity information will benefit predictions more for complex forest ecosystems, i.e., the GLSL,
than for structurally simpler forest ecosystems, i.e., the boreal forest region.

(2) How does inclusion of CHM texture and/or and intensity information affect FRI attribute
prediction accuracy at the forest type level? Are FRI attribute prediction errors within forest types
significantly different from each other within and between sites and how does it change when
additional texture and/or intensity metrics are used in the predictions.

2. Materials and Methods

2.1. Study Sites

We conducted our research across three forest sites in northern and central Ontario, Canada
to capture some of the diversity that exists within Ontario’s managed forest ecosystems (Figure 1).
One forest site is representative of the boreal forest region (i.e., Hearst Forest (HF)) and two sites
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represent the GLSL forest region (i.e., Petawawa Research Forest (PRF) and Haliburton Forest and
Wildlife Reserve (HFWR)), the transitional zone between the northern boreal forest and the eastern
deciduous forest of North America. Even though PRF and HFWR are both in the GLSL forest
region, they do differ in terms of species composition. Due to differences in annual precipitation,
soils, and management practices, PRF tends to be dominated by conifer species while HFWR is
more hardwood dominated. For forest management planning purposes, Ontario recognizes eight
provincial forest types that have been grouped by ecological and site characteristics such as species
composition and ecosite: (i) white and red pine (white and red pine mixedwood stands); (ii) jack
pine; (iii) upland conifers (predominantly mixed spruce, jack pine, and fir stands on upland sites);
(iv) lowland conifers (predominantly black spruce stands on low, poorly drained sites); (v) mixedwood
(mixed stands containing spruce, jack pine, fir, poplar, and white birch); (vi) poplar; (vii) white birch;
and (viii) tolerant hardwoods (predominantly maple and oak). Variability does exist within these forest
types, e.g., mixedwoods and tolerant hardwoods are more heterogeneous than jack pine. This can be
attributed to varying stand development and seral stages, stand age, understory species composition,
natural disturbances, and the impact of silvicultural practices. The three study sites overlap in
provincial forest types to some extent, i.e., forested wetlands (lowland conifers), spruce forests (upland
conifers), intolerant hardwoods (poplar and white birch), and mixedwoods stands can be found at
all three sites. However, these forest types and sites are managed differently, i.e., spruce forests are
managed at HF and unmanaged at HFWR. Tolerant hardwoods are only found in the GLSL forest
region sites and the pine forest types are only encountered at HF and PRF.

2.1.1. Hearst Forest (HF)

The Hearst Forest (49◦40′ N, 83◦40′ W) is located in northeastern Ontario and is the largest of the
three sites (1,200,000 hectares) of which more than 1,000,000 ha is productive forest managed by Hearst
Forest Management Inc. (HFMI) under a Sustainable Forest License (SFL) [47] (Figure 1a). This means
that stands are predominantly managed under a clear cut silvicultural system in an attempt to emulate
natural disturbance regimes, i.e., fire. The region’s climate is classified as modified continental with
mean daily temperatures of −17.9 ◦C and 17.4 ◦C in January and July, respectively, and an average
precipitation of 830 mm. The greatest amount of precipitation occurs in July (average of 102 mm) and
there is an average of 101 frost-free days annually. The most dominant tree species in the Hearst Forest
is black spruce (Picea mariana Mill. B.S.P.), being present as a major component in various forest types
that cover 67% of the land base. On better drained, more productive lowland transitional and upland
sites, black spruce may be found with white spruce (Picea glauca [Moench.] Voss), jack pine (Pinus
banksiana Lamb.), balsam fir (Abies balsamea [L.] Mill), and trembling aspen (Populus tremuloides Michx.).
In lowland areas (in the clay belt section of the forest) with poor drainage, pure black spruce stands
and black spruce in association with cedar (Thuji occidentalis L.) and tamarack (Larix laricina [Du Roi]
Koch) are prevalent, whereas in wet but very well drained lowland areas black spruce is found in
combination with cedar, tamarack, and white spruce. In upland sites, mixedwood stands with jack
pine, black and white spruce, trembling aspen, balsam poplar (Populus balsamifera L.), white birch
(Betula papyrifera Marsh.) and balsam fir; intolerant hardwood stands (predominantly trembling aspen
and white birch); and jack pine dominated stands are found [47].

2.1.2. Petawawa Research Forest (PRF)

The PRF (45◦57′ N, 77◦34′ W) (Figure 1b) encompasses approximately 10,000 ha and is located
within the GLSL forest region. This region’s climate is continental and subhumid with mean monthly
temperatures of −11.8 ◦C and 20.3 ◦C in January and July, respectively, and an average precipitation
of 859 mm per year. The greatest amount of precipitation occurs in June with an average of 87 mm
and there is an annual average of 139 frost-free days. The overstory of this mixed mature forest
is characterized by eastern white (Pinus strobus L.), red (Pinus resinosa Ait.) and jack pine on dry,
nutrient-poor sites, and trembling aspen and white birch on sandy to clayey upland sites. Tolerant
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hardwood species such as sugar (Acer saccharum Marsh) and red maple (Acer rubrum L.) are also
abundant, especially on nutrient-rich uplands. Red oak (Quercus rubra L.), albeit in lower abundances,
is found on upper, south-, and west-facing slopes with shallow soils while shade-tolerant conifers,
such as eastern hemlock (Tsuga canadensis L.) are more commonly found in valleys and on north-
and east-facing slopes [48,49]. The PRF was established to improve the scientific basis for forest
management, hence plantations of different species and initial planting densities, white and red pine
stands treated with a uniform shelterwood system, and natural unharvested control stands can be
found in PRF [10].

2.1.3. Haliburton Forest and Wildlife Reserve (HFWR)

The HFWR (45◦13′ N, 78◦35′ W) (Figure 1c) is also located in the GLSL forest region. It is a
privately owned Forest Stewardship Council (FSC)-certified forest covering 23,800 ha. The forest has
an extensive management history, starting in the mid-1800s with the selective removal of white pine.
Since the 1960s, the forest has been managed using various forms of partial harvesting to maintain
a balance between economic value and ecological integrity. This has resulted in uneven-aged forest
stands in addition to some old-growth stands on steeper terrain [50,51]. Like the PRF, the climate
is continental and subhumid with mean monthly temperatures of −9.9 ◦C and 18.7 ◦C in January
and July, respectively, and an average precipitation of 1074 mm per year. The greatest amount of
precipitation (mixed) occurs in November (average of 116 mm) and there is an average of 104 frost-free
days annually. The HFWR is a mixed forest dominated by sugar maple, but with a significant conifer
(eastern hemlock and balsam fir) and hardwood presence (American beech (Fagus grandifolia Ehrh.)
and yellow birch (Betula alleghaniensis Britt.)) [51].

Figure 1. The three study sites in Ontario, Canada.

2.2. Data Collection

2.2.1. Field Data Collection

For all three study sites, field data were collected close to the year of the ALS data acquisition.
All field data were collected in forest stands (average tree height ≥5 m.) using a stratified random
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sampling design, albeit varying by site. In HF, the study site was stratified by forest type (eight) and
development stage (young to over-mature conditions) using an ALS metric (vertical complexity index:
VCI) but excluded forest stands impacted by harvest, insect infestation, fire, and blowdown [13]. In the
PRF a subset of previously established field plots [52] was selected that covered the majority of the
provincial forest types and a range of BA conditions. The HFWR was stratified by seven ecotypes
and then further subdivided into six levels of canopy openness [53]. In the established circular plots,
information on tree species, status (living or dead), and diameter at breast height (DBH: 1.3 m) were
collected for all trees over a DBH threshold of 9 cm. The center of each plot was geo-referenced using a
GPS system (Table 1). The largest number of tree species were present in PRF and HFWR, i.e., both sites
included 23 species. Ten tree species were found in the HF dataset. The relative abundance of tree
species in the sampled plots varied by site (Table 1). The dominant tree species were eastern white
pine, sugar maple, and black spruce for PRF, HFWR, and HF, respectively. To be able to compare FRI
attribute prediction accuracies among forest types, each plot was assigned to one of eight Ontario
provincial forest types. Because plot numbers in the poplar and white birch were low, these two forest
types were merged into one forest type (i.e., intolerant hardwoods). We also merged the jack pine
and red and white pine forest types into one pine forest type because HF was the only site including
jack pine dominated plots and PRF the only site that included red and white pine mixedwood plots.
It should be noted however that the jack pine forest type in HF and the white and red pine forest types
in PRF are very different in terms of species characteristics and ecosites that they occupy and hence no
comparison between the HF and PRF sites with respect to this merged forest type were made in this
study. Additional field data collection and sampling specifications are listed in Table 1.

Table 1. Field data specifications.

Parameter PRF HFWR 1 HF 2

Data collection 2016, 2017
(June–July)

2008, 2010, 2011
(May–October)

2010
(June–July)

Number of plots 84 185 387
Plot size (m2) 1000 2500 400

DBH threshold (cm) 9 9 9

Species’ relative
abundance (> 5%)

E. white pine (29%)
White spruce (10%)

Balsam fir (9%)
Red maple (8%)
Red pine (8%)
Red oak (7%)

Sugar maple (29%)
Eastern hemlock (19%)

Red maple (11%)
American beech (9%)

Balsam fir (7%)
Yellow birch (7%)

Black spruce (37%)
Trembling aspen (14%)

Jack pine (11%)
White spruce (11%)
N. white cedar (9%)

Balsam fir (6%)

GPS unit
(listed accuracy)

SX Blue II-GNSS
(2drms = sub-60 cm,

95% confidence)

Trimble ProXT
(rms = 20–30 cm, in real time:
sub-meter, 63% confidence)

SX Blue II-
GNSS

(2drms = sub-60 cm,
95% confidence)

PRF = Petawawa Research Forest; HFWR = Haliburton Forest and Wildlife Reserve; HF = Hearst Forest; 1 see
Spriggs et al. [53], 2 see Penner et al. [13].

A summary of the field data is presented in Table 2. The cumulative distributions and overall
means of BA, QMD, and S in the GLSL forest sites (PRF and HFWR) are more comparable to each other
than to the boreal forest site (HF) where overall mean BA and QMD was lower than in the GLSL sites
(22.4 m2 ha−1 compared to 27.5 and 29.3 m2 ha−1 for BA, and 16.7 cm compared to 22.3 and 22.6 cm
for QMD, for HF, HFWR, and PRF, respectively) and overall mean S was higher (1019 stems ha−1

compared to 757 and 881 stems ha−1 for HF, HFWR, and PRF, respectively). We also see a larger range
of BA and S values in the boreal compared to the GLSL sites (Table 2).
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Table 2. Field data summaries (mean and standard deviation) for all sample plots and by provincial
forest types.

FRI Attribute Forest Type *
(n in Site Order)

PRF
(n = 84)

HFWR
(n = 185)

HF
(n = 387)

Basal Area (BA) All 29.3/11.1 27.5/7.3 22.4/12.4

(m2 ha−1)
CL (5, 0, 114)
CU (8, 22, 97)

16.3/8.3
28.0/5.7

-
34.2/8.5

21.3/10.8
21.3/13.5

INT (8, 12, 53) 34.9/9.6 30.2/6.0 25.7/11.6
MW (9, 59, 62) 26.6/8.0 30.1/6.9 27.0/9.9
PIN (39, 0, 61) 31.1/12.7 - 18.4/14.4

THW (15, 92, 0) 28.5/8.8 23.8/5.2 -

Quadratic Mean All 22.6/7.9 22.3/4.2 16.7/5.1

Diameter (QMD) (cm) CL (5, 0, 114)
CU (8, 22, 97)

15.5/4.8
20.3/4.5

-
22.2/4.1

14.5/2.4
15.5/3.8

INT (8, 12, 53) 20.4/3.6 18.6/2.7 19.7/5.3
MW (9, 59, 62) 18.3/2.4 23.6/5.1 21.6/6.0
PIN (39, 0, 61) 25.1/9.4 - 15.3/4.8

THW (15, 92, 0) 23.3/7.1 22.0/3.5 -

Stem Density (S) All 881/429 757/314 1019/573

(stems ha−1)
CL (5, 0, 114)
CU (8, 22, 97)

898/454
942/348

-
925/320

1259/578
1036/603

INT (8, 12, 53) 1074/146 1131/238 891/424
MW (9, 59, 62) 1034/320 757/312 820/428
PIN (39, 0, 61) 850/534 - 860/605

THW (15, 92, 0) 731/255 667/271 -

* Forest type abbreviations: CL = conifers, lowland; CU = conifers, upland; INT = intolerant hardwoods (poplar and
white birch); MW = mixedwoods; PIN = pines (white, red, and jack pine); THW = tolerant hardwoods.

2.2.2. ALS Data Acquisition and Processing

ALS data for all three forest sites were collected during the growing season (i.e., during leaf-on
conditions). Each of these data sources were acquired in different years with different sensors and
sensor specifications (Table 3).

Table 3. Airborne laser scanning (ALS) sensor specifications.

Parameter PRF HFWR 1 HF 2

Sensor Teledyne Titan Optech ALTM 3100 Leica ALS50
Acquisition date July 2016 August 2009 July-Sept. 2007
Wavelength (nm) 1064 (channel 2) 1064 1064
Pulse rate (kHz) 375 70 119
Scan rate (Hz) 40 36 32

Scan half angle (◦) 20 16 15
Flying height (km agl) 1.1 1.5 2.4

Overlap (%) 50 30 20
Average pulse density [range] (ppm2) ~12.4 [2.5–20.4] ~2.5 [0.8–9.0] ~1.5 [0.3–7.8]

1 see Spriggs et al. [53], 2 see Penner et al. [13].

The ALS data for each site had been preprocessed to varying levels. The HF and HFWR ALS
data were classified into ground and nonground returns by North West Geomatics Ltd. (Calgary, AB,
Canada) and Teledyne Optech Inc. (Vaughan, ON, Canada) respectively and normalized by subtracting
the elevation of a modeled triangular irregular network (TIN) based on ALS points classified as ground
returns from each ALS nonground point [13,36]. For the PRF, the vendor (Teledyne Optech Inc.,
Vaughan, ON, Canada) collected multispectral ALS data of which only the near infrared channel was
used in this study. The latter were not classified into ground and nonground returns by the vendor but
were normalized using ground returns from a previous ALS data acquisition over PRF.
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ALS metrics were calculated at the plot level, using all returns and without any height threshold
to filter the point data. The latter was based on the results of Woods et al. [10,12] who found that
FRI attribute models using ALS metrics without a height threshold performed better than models
with a height threshold. To date, the most common algorithms that can be used for radiometric
processing of the ALS intensity data, aim to account for the influence of varying path lengths on
the ALS returns [37,54,55]. These algorithms require at a minimum the range between the sensor
and individual returns, which is contained within the trajectory file of the plane. This trajectory
file, i.e., range information, was not available for two of the ALS datasets (HF and HFWR) and,
hence, no radiometric normalization was performed on the intensity data in this study. This lack of
normalization may limit the application of FRI attribute models that include intensity-based predictors
to landscape level predictions.

We divided our set of ALS metrics into three groups: normalized height-based ALS metrics,
CHM-based texture metrics, and intensity-based metrics. The first group included measures of central
tendency, measures of dispersion, height percentiles, canopy cover/density, and stand complexity
metrics based on ALS normalized height (z) values. The second group included eight gray level
co-occurrence matrix (GLCM) texture metrics [56] derived from the 2-m gridded CHM. The GLCM is
a tabulation of how often different combinations of pixel gray levels, i.e., CHM pixel values, occur at a
specific distance and orientation [57]. The GLCM texture metrics that can subsequently be calculated
can be categorized as contrast, orderliness and descriptive statistics. We used two to three texture
metrics per category since many of the GLCM texture metrics are correlated [57]. The last group
included ALS intensity metrics consisting of measures of central tendency, dispersion and cumulated
intensity at height percentiles. See Table A1 for the complete list of ALS metrics.

We performed the majority of calculations to derive the ALS metrics in R version 3.4.1 [58] using
the lidR package version 1.5.0 [59]. The GLCM texture metric calculations were performed in Definiens
eCognition (version 9.0) [60]. The GLCM was calculated using all CHM pixels within each object, i.e.,
each of the sample plot extents, unlike window-based GLCM texture metrics, and for all directions (0◦,
45◦, 90◦, 135◦) to ensure that the texture metrics were directionally invariant. To reduce border effects,
CHM pixels bordering the sample plots directly were also used in the GLCM calculation [60].

2.3. Statistical Analysis

Our major analyses are summarized in Figure 2. First nonparametric models were constructed to
predict BA, QMD, and S at our three sites using four different sets of ALS metrics as predictor variables.
With the four sets of predictor variables we set out to test whether BA, QMD and S predictions in
boreal and GLSL sites improved with additional characterization of the upper canopy (also known as
texture) and/or additional characterization of canopy permeability (also known as intensity). We then
assessed the performance of these four RF models in each study site and at the forest type level using
%RMSE, %Bias, and R2. Lastly, we tested if the prediction errors on the site and forest type level were
significantly different from each other using Friedman’s and Kruskal–Wallis tests.

The methods to predict and map FRI attributes vary greatly and range from parametric
ordinary least square (OLS) regression to nonparametric approaches such as Random Forests
(RF [61]) [26]. There is no consensus on which of these methods performs best as this depends on how
model performance is defined, the purpose of the analysis, available resources, data characteristics,
and underlying biophysical conditions of the forest [62]. For the operational prediction of FRI attributes,
e.g., in Ontario [13,44] and elsewhere [63–65], nonparametric machine learning approaches have
been shown to offer advantages. These studies found that RF, with its ability to handle complex,
high-dimensional interactions between predictors [66], had equivalent results when compared to
parametric methods in terms of accuracy and precision of the FRI attributes predicted for a boreal
forest in northern Ontario [13]. Penner et al. [13] stated that one important advantage of RF modeling
was the use of cross-validation during model development which resulted in relatively robust models.
RF’s relative ease of wall-to-wall mapping of the predictions, excluding the need for (i) precise
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forest-type information at the spatial resolution of the predictive model(s), (ii) forest polygons with
tree species information, or (iii) stratifying the [13,65], gives the RF modeling approach a significant
advantage from an operational perspective.

Hence, to predict the three FRI attributes over the three different sites we applied RF. In the RF
approach, a virtual forest or ensemble of regression trees is built using bootstrapped (with replacement)
sample plot calibration data. The ensemble of regression trees is allowed to grow to maximum
predictive accuracy [67], while bootstrapping minimizes the correlation between residuals of single
trees [68].
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We used leave-one-out cross-validation (LOOCV) to assess model performance over the full
range of forest conditions at each of the forest sites because plot numbers varied greatly among the
three sites and plot numbers were low at PRF. We calculated the average bias (absolute and relative),
RMSE (absolute and relative) as a measure of error spread, and the coefficient of determination (R2) to
evaluate the predictive performance of the RF models at the site and forest type level. Bias, RMSE and
R2 were calculated as follows.

bias =
1
N

N

∑
i=1

(ŷi − yi) (1)

bias% =
bias

y
× 100 (2)

RMSE =

√√√√ 1
N

N

∑
i=1

(ŷi − yi) (3)
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RMSE% =
RMSE

y
× 100 (4)

R2 = 1− ∑(y− y)2

∑(y− y)2 (5)

where N is the number of validation plots, yi is the observed value for plot i, ŷi is the predicted value
for plot I, and ȳ is the mean of the observed variable, i.e., BA, QMD, or S.

To compare the FRI attribute prediction error of the different RF models within each site
we used the RMANOVA (repeated-measures analysis of variance) [69]. The nonparametric
RMANOVA test, i.e., Friedman’s Test including a post hoc test, evaluates the null hypothesis
that the medians of the prediction errors for each of the FRI attributes are the same among the
four RF models that used different sets of predictor variables [69]. If significant differences exist,
the Wilcoxon–Nemenyi–McDonald–Thompson post hoc test performs a comparison on each paired
RF model. We used a nonparametric version of the RMANOVA because not all FRI attributes over
the three study sites fulfilled the assumptions of a normal distribution and equal variances of the
residuals [69].

To compare the FRI attribute prediction errors at the forest type level, we used the nonparametric
Kruskal–Wallis test (including a post hoc test). The Kruskal–Wallis test can be used when groups do
not have the same sample sizes [69]. The Kruskal–Wallis test evaluates the null hypothesis that the
medians of the FRI attribute prediction errors are the same among the forest types within each of the
sites. If significant differences in medians exist among the forest types, the pairwise Mann–Whitney
U-test can be used as a post hoc analysis to identify which forest type pairs have significantly different
medians. The nonparametric Kruskal–Wallis test was used because not all of the FRI predictions over
the forest types fulfilled the assumption of a normal distribution and equal variances of the residuals.

All statistical analyses were performed in R version 3.4.1 [58] using the caret package version
6.0-77 [70] and randomForest package version 4.6-12 [71] to predict FRI variables. A function by
Galili [72] was applied to compare the FRI attribute predictions generated with the four different ALS
datasets. The kruskal.test and pairwise.wilcox.test functions to perform the Kruskal–Wallis and post
hoc tests for the FRI attribute prediction comparisons among forest types are found in the native stats
package in R.

3. Results

3.1. FRI Attribute Prediction at the Forest Site Level

Although the prediction accuracy metrics (i.e., %RMSE, %Bias, and R2) for the four predictor
variable sets showed considerable variation over the three forest sites and FRI attributes,
some tendencies were observed (Figure 3, Table 4). At all three sites, the addition of texture and/or
intensity metrics to the predictor set improved %RMSE, %Bias, and R2. For the PRF, including
intensity metrics in the predictor set always improved (i.e., lowered) %RMSE. In HFWR, including
texture and intensity metrics resulted in the lowest %RMSE. For HF, the inclusion of texture metrics
improved %RMSE more than the inclusion of intensity metrics; however, the lowest %RMSEs in HF
for BA, QMD, and S were observed when all predictors were combined. The largest improvements in
%RMSE were observed in S predictions for HFWR and PRF (6% and 3.4%, respectively) when intensity
metrics were added to the set of predictor variables. In terms of %Bias, the lowest average bias was
observed over all three FRI attributes and sites when texture metrics were combined with our baseline
predictors, with the exception of BA in PRF where the lowest average bias was observed using only
height-based metrics. Figure 3 illustrates that all RF models were on average over-predicting BA,
QMD, and S regardless of which predictor variable set was being used, with the exception of QMD
predictions in PRF which were on average underpredicted. Patterns in R2 (Table 4) corresponded
closely with patterns observed in %RMSE. For PRF, R2‘s for BA, QMD, and S were highest when
intensity metrics were included. In HFWR and HF, RF models that included both texture and intensity
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metrics often resulted in the highest R2 values. The largest improvements in R2 were observed in S
predictions when the predictor sets in HFWR and PRF included intensity metrics (0.48 to 0.67 and
0.27 to 0.41, respectively). Overall, S predictions benefited the most by including texture and intensity
metrics, particularly for the GLSL forest region sites, whereas BA and QMD predictions show minimal
change/improvement, especially in HF.Forests 2018, 9, x FOR PEER REVIEW  13 of 26 

 

 
Figure 3. FRI predictive models for BA, QMD, and S for each of the sites developed using the RF 
model including all ALS metrics (z, texture and intensity) and leave-one-out cross-validation. Linear 
fitted lines by site and the 1:1 line are added to show the different model fits by forest site. 

Figure 3. FRI predictive models for BA, QMD, and S for each of the sites developed using the RF model
including all ALS metrics (z, texture and intensity) and leave-one-out cross-validation. Linear fitted
lines by site and the 1:1 line are added to show the different model fits by forest site.



Forests 2019, 10, 226 12 of 26

Table 4. Site level BA, QMD, and S predictive RF model accuracies (%RMSE, %Bias, and R2,
respectively) for the four different predictor sets (H only: normalized height metrics; H+T: normalized
height and CHM texture metrics; H+I: normalized height and intensity metrics; and H+T+I: normalized
height, CHM texture and intensity metrics) using leave-one-out cross-validation.

FRI Site H only H+T H+I H+T+I

RMSE Bias R2 RMSE Bias R2 RMSE Bias R2 RMSE Bias R2

BA PRF 22.8 −0.11 0.63 22.9 0.26 0.63 21.7 0.20 0.67 21.8 0.34 0.67
HFWR 22.2 0.52 0.31 21.3 0.23 0.36 21.2 0.24 0.37 20.8 0.40 0.40

HF 25.4 0.36 0.79 24.9 0.34 0.80 25.3 0.38 0.79 24.7 0.35 0.80

QMD PRF 25.9 −0.90 0.45 26.3 −0.52 0.43 25.4 −0.94 0.47 25.5 −0.70 0.46
HFWR 12.3 0.19 0.58 12.3 0.14 0.58 11.8 0.27 0.61 12.0 0.22 0.60

HF 13.3 0.29 0.81 12.9 0.27 0.82 13.3 0.28 0.81 12.9 0.29 0.82

S PRF 41.4 0.98 0.27 42.8 0.75 0.22 38.0 1.26 0.41 39.4 1.10 0.36
HFWR 30.0 0.79 0.48 28.0 0.43 0.55 24.0 0.69 0.67 24.0 0.53 0.67

HF 30.8 0.60 0.70 29.5 0.50 0.73 30.2 0.60 0.72 29.1 0.74 0.74

Best models in terms of %RMSE, %Bias or R2 are indicated in bold.

When prediction accuracy metrics were compared among the three sites, no trends were observed,
i.e., %RMSE’s for all FRI attributes were lowest in HFWR, the lowest %Bias values were observed in
PRF (BA) and HFWR (QMD and S), and R2’s for all FRI attributes were highest in HF, regardless of
which predictor variable sets used. The Friedman’s test indicated that none of the distributions of our
FRI prediction errors significantly differed from each other (p > 0.05) (Table 5).

Table 5. Site level prediction error differences between the RF models with different predictor
sets (H only: normalized height metrics; H+T: normalized height and CHM texture metrics; H+I:
normalized height and intensity metrics; and H+T+I: normalized height, CHM texture and intensity
metrics). p-values of the prediction error differences were acquired using the paired, nonparametric
Friedman’s test.

FRI Site ALS Dataset Differences
p-Value

PRF 0.84
BA (m2 ha−1) HFWR 0.23

HF 0.42

PRF 0.81
QMD (cm) HFWR 0.40

HF 0.65

PRF 0.44
S (stems ha−1) HFWR 0.44

HF 0.34
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3.2. FRI Attribute Prediction at the Forest Type Level

At the forest type level we also observed considerable variation in %RMSE, %Bias, and R2 among
FRI attributes and sites (Figures 4 and 5). In PRF and HFWR, we observed the greatest improvements in
%RMSE and %Bias in lowland conifers and intolerant and tolerant hardwood forest types when texture
and intensity metrics were included in the predictor set. For example, in PRF, %RMSE improved by 10%
and 7% in predicted S for lowland conifers and tolerant hardwoods, respectively. In HFWR, %RMSE
and %Bias improved in intolerant and tolerant hardwoods by 10% and 9% (%RMSE), respectively,
and 10% and 6% (%Bias), respectively, for S predictions. Meanwhile, the least amount of change
in %RMSE and %Bias was observed for HF (all forest types show <5% change), when texture and
intensity metrics were included.

Including texture and intensity metrics in the predictor set also impacted R2 values (Figure 5).
Changes in R2 are observed in S predictions for PRF and HFWR, BA predictions for HFWR, and QMD
predictions for PRF, but vary among forest types. For example, in PRF we see improvements in
R2 in QMD and S predictions in intolerant hardwoods, red/white pines, and tolerant hardwoods,
and decreasing R2 values of QMD in lowland conifers. In HFWR, improvements in R2 values were
seen in BA and S predictions for intolerant and tolerant hardwoods. Hence, when we combine both
site and forest type level results, it appears that changes in site level %RMSE, %Bias, and R2, due to the
addition of texture and intensity metrics to the predictor set, are the result of the improvement in some
but not all forest types present at a site and that improvements are site and FRI attribute specific.

In terms of comparing prediction accuracy between forest types, we see that in the boreal site (i.e.,
HF), prediction accuracies for conifer forest types (CL, CU, and PIN) were better than for intolerant
hardwoods and mixedwoods for all three FRI attributes. For example, the highest R2 values for BA,
QMD, and S were observed in jack pine followed by upland and lowland conifers. In the GLSL
forest sites (i.e., HFWR and PRF), such consistent patterns in prediction accuracies among forest types
and FRI attributes were not evident, with PRF showing the most variability in prediction accuracy
among forest types. For example, for the predictions using all ALS metrics (height-based, texture,
and intensity), the differences between the forest types with the lowest and highest %RMSE in PRF
were 19.4% (BA), 31.3% (QMD), and 35.4% (S). In contrast, in HFWR and HF the differences in %RMSE
between certain forest types were much lower, i.e., 6.7%, 8.6%, and 12.3% in HFWR, and 9.5%, 11.9%,
and 15.9% in HF for BA, QMD, and S, respectively. However, no consistency in forest types displaying
lowest or highest %RMSE could be determined for any of the sites.

When we tested for differences in BA, QMD and S prediction errors between forest types,
all three FRI variables and sites showed significant differences (p < 0.01 to p <= 0.0001) (Figure 6).
The Mann–Whitney U post hoc tests indicated that pairwise differences between forest types varied
within and between sites for the three FRI attributes. However, in HF and HFWR we observed more
significant differences between forest types than in PRF (Table A2).
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Figure 6. Site and forest type specific BA, QMD, and S predictive model residuals for the four different
ALS metric datasets (H only: normalized height metrics; H+T: normalized height and CHM texture
metrics; H+I: normalized height and intensity metrics; and H+T+I: normalized height, CHM texture
and intensity metrics). p-values of the prediction error differences between forest types were acquired
using the unpaired nonparametric Kruskal–Wallis test (p-values of the Mann–Whitney U post hoc tests
can be found in Table A2).

4. Discussion

Our results demonstrate that FRI attribute predictions improved at all three sites in terms of
RMSE, bias, and R2, albeit to varying degrees, when texture and/or intensity metrics were integrated
with normalized height metrics derived from ALS data. These findings support previous studies
(e.g., [31,33,35,36]). Ozdemir and Donoghue [31] found that the CHM-based texture metrics improved
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predictions of height, DBH, and crown variability over using point-based ALS metrics alone in their
study sites in northeast England. They also noted that improvements in prediction accuracy varied
with tree-size diversity indices. Niemie and Vauhkonen [33] tested a wide range of CHM-based
texture metrics and found that GLCM texture metrics were one of the texture metrics groups that
were moderately successful for predicting VOL, BA, and QMD in a southern boreal forest site in
Finland, especially when combined with density metrics derived from the ALS point data. They found,
however, that texture metrics predominantly described dominant canopy properties such as total VOL,
BA, and QMD, rather than the variability within these properties.

Garcia et al. [35] found that normalized intensity-related metrics provided more accurate
estimates of biomass and explained more of the variance in their biomass models in a mixed species
Mediterranean forest. Metrics that incorporated intensity at different height percentiles (which can be
viewed as a combination of height and intensity information) along with intensity-based measures of
canopy closure were selected in their overall and species-specific biomass models. Shang et al. [36]
compared the utility of height and intensity metrics for the prediction of size class specific stem
densities in the GLSL HFWR site. They found that intensity-based metrics and height percentiles had
high RF importance scores for the majority of the size classes and total stem density, indicating their
relevance in predicting stem diameter distributions. They contributed this to the fact that the variance
of intensity captured the permeability or layering of the canopy which enabled the differentiation
between high and low stem density stands. These and other studies [38,39] attributed the improvement
in prediction accuracy of forest attributes to the ability of intensity metrics to take into account the
amount of foliage, variation in foliage structure, and species composition, aspects that ALS-based
height metrics do not necessarily capture.

In our study, at the forest site level, the combination of ALS height-based, texture and intensity
metrics (HF and HFWR) or ALS height-based and intensity metrics (PRF) improved the RMSE and R2

of the BA, QMD and S predictions, whereas the addition of texture metrics in almost all sites and for
all FRI attributes improved the average bias. Like Ozdemir and Donoghue [31] we also found that
improvements in prediction accuracy, due to the added texture and intensity metrics, varied by FRI
attribute, e.g., improvements up to 6% RMSE were observed in S predictions, whereas improvements
in BA and QMD never exceeded 1.5% RMSE. For all three sites, RF models to predict S were always
the weakest models, which may explain why these models gained the most by having texture and
intensity metrics included in the predictor sets. Another indicator of the utility of texture and intensity
metrics in our FRI attribute predictions was the RF variable importance measure. For the prediction of
S, texture (GLCM dissimilarity (HFWR), GLCM entropy (PRF), GLCM correlation (HF)), and intensity
(ISD (PRF and HFWR)) metrics were highly ranked in terms of variable importance at all sites. For BA
predictions in HFWR, the ISD metric was the second most important metric when all ALS metrics
were incorporated in the predictor set. Another study in PRF also found that CHM-derived texture
and other metrics (Roughness, Ruggedness, and Variance) were often highly ranked in terms of RF
variable importance [52].

Differences in prediction accuracy improvements among the three sites were also observed,
with greater changes being observed more frequently in the GLSL (i.e., HFWR and PRF) sites than
in the boreal site (i.e., HF). For example, the %RMSE of the S predictions improved by 3.4% in PRF
and 6% in HFWR, whereas S predictions in HF improved by 1.7% when texture and intensity metrics
were included in the predictor set. Similar to Hollaus et al. [43] and Bouvier et al. [16], we observed
better R2 values in the boreal, conifer dominated, forest site for all three FRI attributes than in the
broadleaved dominated (HFWR) and more mixed (PRF) GLSL forest sites. One reason for observing
better predictive accuracies in both HF and HFWR, compared to the PRF, may be attributed to sample
size and sample plot size at each of the forest sites. With 387 sampling plots, HF had the largest number
of plots, followed by HFWR with 185, and 84 for PRF. In terms of plot size, HFWR had the largest plot
size (2500 m2), followed by PRF (1000 m2) and then HF (400 m2). Shang et al. [73] found that sample
plot size had a stronger impact on model performance than the number of plots in their diameter
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distribution predictions in HFWR. However, Fassnacht et al. [74] found that when a combination of
increased plot sizes and reduced number of plots was used, the prediction accuracy benefits of the
increased plot size decreased. They attributed this mostly to the decreased model performance of
a model calibrated with lower sample sizes. In our study, the 84 sample plots in PRF were unable
to cover the full range of stand conditions found in PRF; hence, QMD and S prediction accuracies,
in particular, were substantially lower compared to prediction accuracies observed in HFWR and HF.
A comparison of prediction accuracies with a previous study in PRF [52], which included 223 field
plots (plot size of 625 m2), is inconclusive in terms of attributing the decreased prediction accuracy in
PRF to the number of sampling plots only. QMD prediction accuracies showed a %RMSE difference
of 7% between their predicted QMD % RMSE (17%) and the %RMSE (25%) found in this study.
However, in terms of BA predictions, the %RMSE found in this study (22% RMSE) was better than
in theirs (25% RMSE). Differences in ALS sensor, wavelength of the ALS sensors, and ALS-based
predictor variable sets used in both studies may also contribute to the differences between these studies.
In addition, this study used existing field datasets to calibrate the FRI attribute models and hence
some field datasets may have fitted the purpose of this study better than others. For example, in HF,
the field data were initially collected to support an OLS modeling approach to predict FRI attributes,
and purposely sampled all forest types present in HF. In HFWR, the field data collection focused
on upland ecosites, which comprises 90% of the HFWR landscape. Some lowland and less common
ecosite types were not represented in their sampling design, explaining the lack of lowland conifer
data for this forest site. In PRF, the stratified sampling scheme was based on a principal component
analysis of a large set of ALS metrics with the intent to capture a wide range of forest structural
conditions and hence did not explicitly focus on sampling all forest types [52]. In addition, only a
subset of these plots were remeasured for the 2016 ALS acquisition and used in the analysis presented
here. Lastly, since relationships between stand structure and forest attributes are species-dependent,
many studies have found that model prediction accuracy decreases in multi- or mixed-species forest
stands [2,8,16,75]. However, lower prediction accuracies have also been observed in stands with poorer
growth conditions [17] and in forest stands that are more heavily influenced by forest management
practices [42]. Among our three sites, structural complexity and species composition were expected
to be less variable for the boreal forest site, i.e., HF is largely dominated by conifers (70% versus 30%
mixed and intolerant hardwoods) [13], and more complex for the temperate forest sites. In HFWR,
however, species composition was fairly homogenous, i.e., the dominant species in almost all plots is
sugar maple [45]. Hence prediction accuracies in both HF and HFWR were better than in PRF, which
was the most complex forest site in terms of species composition and structure.

An aspect that negatively affected prediction accuracy at all three sites and across all forest types
may be attributed to the modeling approach we chose to use in this study. Despite RF’s advantages for
wall-to-wall mapping of predicted FRI attributes, the RF approach is also known to underestimate
high predicted values and overestimate low predicted values and is not able to extrapolate beyond the
range of the training data [25]. This bias is exacerbated when sample size is small [76]. Fundamentally,
RF is a nearest neighbor method where observations are predicted using the averages of response
values of neighboring observations [77]. Especially in small datasets, data points in the tails of the
response variable distribution may differ substantially from its nearest neighbors, which causes the
predictions of these data points to move towards the center of the training data, i.e., large response
values are underestimated and small values overestimated [76,77]. In our study, this bias was observed
in all three sites (Figure 3), but especially in PRF, and also over all forest types . RF bias correction
strategies that could potentially improve RF predictions have—as of yet—not been well-studied [76],
nor have they been implemented in many of the available RF software packages. Hence, no bias
correction of the FRI attribute predictions was performed in this study. However, from an operational
forest management perspective, knowledge of the proportion of the landscape that is affected by this
bias and the location of the forest stands that are impacted by this bias is important. Coulston et al. [78]
proposed a Monte Carlo approach to quantify prediction uncertainty within RF regression models.
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Maps of such estimates of the RF prediction uncertainty, in addition to the FRI attribute prediction
surfaces for each forest sites could subsequently be used to address this.

The %RMSE observed in this study were comparable to other studies that modeled similar
FRI attributes at the same forest sites [10,13,44,45,52]. These prediction accuracies were calculated
at the plot level (or pixel level once wall-to-wall prediction surfaces of the FRI attributes are
generated). For operational forest management, however, prediction accuracies at the stand level, i.e.,
encompassing several pixels, are more relevant and may very well be lower. Næsset [2,79] found in
their two-phase modeling approach of FRI attributes that the standard deviation between predicted
and observed plot values were substantially larger than the standard deviations in the same attributes
for entire forest stands. At the plot level, FRI attribute predictions can be highly variable, however,
once plot estimates are averaged over a stand (encompassing several pixels) the variability is reduced
and prediction accuracy improves [79–81]. However, Iqbal et al. [81] showed that %Bias increased
when prediction accuracies were calculated at the stand level, possibly because at the stand level
those errors are more likely to accumulate. For this study we did not have stand level validation data
available for all three sites and hence could not test this for our forest sites or test the existence of
variability among sites.

Uniform increases or decreases in prediction performances in BA, QMD, and S were not observed
when texture and intensity metrics were included in the predictor set. Instead, site level prediction
improvements arising due to texture and intensity metrics were observed due to improvements in
certain forest types but not in all, i.e., improvements varied by site and FRI attribute. If we focus on
the S predictions, as these predictions improved the most by the addition of texture and intensity
metrics, these metrics appeared to be most beneficial for forest types whose prediction performances
were lower initially, i.e., lowland conifers (from 56.2% to 46.3% RMSE) and tolerant hardwoods
(from 35.9% to 27.9% RMSE) in PRF, intolerant (from 28.8% to 17.3% RMSE) and tolerant hardwoods
(from 32.6% to 23.5% RMSE) in HFWR, and intolerant hardwoods (from 40.3% to 36.4% RMSE) and
mixedwoods (from 43.1% to 40% RMSE) in HF. The variability in prediction accuracy between forest
types and the variability in improvement in prediction accuracy within forest types when additional
ALS metrics are incorporated has been observed in other studies (e.g., [13,15,16,42]). Næsset [75],
Heurich and Thoma [42], and Kotivuori [17] have pointed out that the structural diversity between
forest types (in terms of tree species, crown shape and width, canopy cover and layering, etc.) have
considerable effects on the ALS-based metrics and hence on FRI attribute predictions. For example,
crown shape differences and the different properties of needles and leaves influence the penetration
of laser pulses into the canopy surface and hence influence the height distributions calculated from
the ALS data [44,76]. In addition, variation in crown width and number of trees, due to differences
in site quality, competition and silvicultural practices within different forest types, may greatly affect
the relationship between FRI attributes and ALS-based density metrics [75]. For example, many plots
classified as tolerant hardwoods (with larger tree crowns and lower stem densities) had lower values
for the ALS metrics D7-9 compared to upland and lowland conifer plots (with smaller tree crowns and
higher stem densities). It is no surprise that we noticed similar variability in relationships between
texture and intensity-based metrics and FRI attributes within the different forest sites and forest
types as well. Intensity-based metrics may be able to discriminate between tree species with different
leaf angle distributions/orientations, e.g., erectophile versus planophile leaf angle distributions in
aspens and maples, respectively. The relationships between ALS metrics and forest type specific FRI
attributes, especially for lowland conifers, upland conifers, intolerant hardwoods, and mixedwoods in
PRF, should be treated with caution because of the low sample sizes (i.e., <10 sample plots) within
these forest types. In addition, some ambiguity existed in the definition of forest types, especially for
mixedwoods and hardwoods forest types, which may have affected this relationship. Furthermore,
relationships between intensity metrics and the FRI attributes were influenced by the different ranges
in intensity values among the three ALS datasets which hampers the interpretation. In order to
properly compare and understand the relationship between FRI variables and the intensity metrics,
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a radiometric correction of the ALS intensity values is required [34]. Since the key input features,
such as the range between the sensor and individual returns, required for the radiometric correction
procedure were not available for two of our ALS datasets, radiometric correction was not performed.
Hence, more research is required to further our understanding of ALS intensity metrics in relation to
the FRI variables and their consistency over different forest sites and forest types and across different
sensors and acquisition conditions.

Conifer FRI attribute predictions in HF (i.e., boreal) were consistently better, i.e., lower %RMSE,
lower %Bias, and higher R2 than in mixedwoods and intolerant hardwoods. For example, jack pine
predictions consistently had the best R2 values over all three FRI attributes and mixedwood predictions
consistently the worst. This is in line with previous findings [2,41,44,75]. For example, Pitt et al. [44]
observed that the quality of FRI attribute predictions varied with forest type and that the largest errors
were observed in boreal mixedwoods in HF, regardless of which prediction method used. Contrary to
the findings in the boreal zone, Spriggs et al. [45] found that in HFWR, prediction accuracy was better
for broadleaved species and postulated that estimation models were most suited to the dominant
forest type of a site. In the GLSL forest sites, we did not observe either of these trends consistently
over the three FRI attributes and two sites. When we compared Spriggs et al. [45] conifer class to
our upland conifer forest type and their broadleaved class to our tolerant hardwood forest type,
our BA prediction accuracies at the forest type level were similar, i.e., BA RMSEconifer = 7.39 versus
8.26 m2/ha, RMSEbroadleaved = 5.93 versus 4.72 m2/ha. Hence, in both studies, broadleaved stands
had lower RMSEs. However, S predictions between the two studies did not demonstrate this trend
as clearly. At the forest type level, Spriggs et al. [45] reported an RMSE of 268 stems/ha in conifer
stands versus 156 stems/ha in broadleaved stands whereas in this study the difference was much
smaller, i.e., 157 and 151 stems/ha, respectively. Also, in terms of R2, upland conifers performed better
than tolerant hardwoods in our study. Spriggs et al. [45] did not include this as one of their accuracy
measures. Differences in the prediction modeling approach and how the field data were split in conifer
versus broadleaved versus our four forest types may explain the differences in S prediction accuracies
found between the two studies.

Zolkos et al. [15] attributed the variability within and between forest types, in part, to the fact that
it is possible to have similar forest stand structures yielding different BA, QMD, and S values, while
Heurich and Thoma [42] pointed out that silvicultural treatment within forest types affected prediction
accuracies. In our study we noticed this within the pine forest types in PRF. Pine forests were extremely
diverse as it incorporated pine plantations, stands that have undergone partial harvesting (uniform
shelterwood regeneration cuts) and natural unmanaged red pine/white pine stands. For example,
Figure 7 shows that within this forest type in PRF, different BA–QMD, BA–S, and QMD–S relationships
were observed than for the other forest types across the three sites. For example, the high QMD
variance at low BA values is explained by pine plantations having low QMD and seed tree stands
having high QMDs. Similarly, many of the normalized height-based ALS metrics had difficulties
distinguishing between pine plantations and stands with residual trees remaining after a partial harvest
even though these two stand types yield very different QMD and S values, i.e., pine plantations had
lower QMDs and higher stem densities compared to partially harvested stands. Some of the texture
and intensity-based metrics seemed to better separate plantations, silviculturally-treated, and natural
stands; however, the red pine/white pine QMD and S predictions for PRF displayed high %RMSEs
and only small changes in prediction accuracy were observed when texture and intensity metrics were
included in the predictor sets. To investigate the prediction accuracy in the red pine/white pine forest
type in PRF further, we recalculated %RMSE and %Bias when sample plots were split into natural
unmanaged and silviculturally-treated plots (plantations and partial harvested stands). Both %RMSE
and %Bias were substantially larger in silvicultural treated plots than in natural unmanaged plots
for all three FRI attributes, i.e., %RMSEs for natural and silviculturally-treated plots were 19.1%
and 29.3% (BA), 13.8% and 42.2% (QMD), and 32.2% and 71.6% (S), respectively and %Bias were
−3% and −6% (BA), 1% and −15% (QMD), and 3% and −9% (S), respectively. Prediction accuracies
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for unmanaged natural plots were closer to the ones found for the tolerant hardwood forest type,
whereas the silviculturally-treated plots together with lowland conifers had the lowest prediction
accuracies. Woods et al. [10] observed the effect of stand spacing and silvicultural treatments on the
prediction accuracies of ALS-based models of FRI attributes for multiple forest sites throughout central
Ontario. Similarly, Heurich and Thoma [42] found that selective harvesting in coniferous stands had
a negative influence on the prediction accuracies of FRI attributes in the Bavarian Forest National
Park in Germany. These studies may indicate that “standard” ALS-based metrics used to predict FRI
attributes are not able to sufficiently characterize silviculturally-treated stand conditions. Ayrey and
Hayes [82] demonstrated that conditional neural networks (CNN), which use 3D volumetric pixels or
voxels derived from the ALS point cloud rather than a set of traditional ALS-based metrics as model
input, outperformed RF and linear mixed models for some of their above ground biomass, tree count,
and percent conifer predictions. They indicated that some of the features that the CNN uses to make
predictions relate to edges, surfaces and possibly branches within the voxelized point cloud, features
that ABA- ALS-based metrics do not capture [82]. Their study, however, predicted these attributes
over several sites and did not focus on differences in prediction accuracies among different forest types
or stand conditions within these sites.
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In this study, we have quantified the variability in FRI prediction accuracy between three Ontario
forest sites and between the forest types within these sites. However, we acknowledge that additional
research is needed to get better insights into the relationships between prediction error and forest types
especially in the more complex GLSL.

5. Conclusions

In this study we demonstrate that FRI attribute predictions for BA, QMD, and S over three
contrasting Ontario sites improves with the addition of texture and intensity-based ALS metrics
(i.e., over using height metrics alone). Although no significant differences between predictions were
detected using the nonparametric RMANOVA test at the site level, the nonparametric Kruskal–Wallis
test indicates that significant differences exist in prediction errors between the different forest types
(p < 0.01 to p ≤ 0.0001). Texture metrics seem more relevant for the boreal site but improvements were
relatively small, whereas intensity metrics improved predictions in the GLSL sites, especially in terms
of stem density. Since the intensity metrics used in this study were derived from raw ALS intensity
data, the impact of intensity normalization/radiometric correction on the model predictions requires
further research especially since multiple ALS sensors were used in this study. When we combine site
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and forest type level results, we demonstrate that improvements in site level predictions, due to the
addition of texture and intensity metrics to the ALS predictor set, are the result of changes in some but
not all forest types present at a site and that these changes are site and FRI attribute specific. Our study
found that boreal site prediction accuracies were most consistent among FRI attributes and forest
types, and conform to other studies performed in the boreal forest zone. Such patterns in prediction
accuracy among forest types and FRI attributes was not observed in the GLSL sites. Varied silvicultural
treatments for the pine forest types (i.e., pine plantations, silviculturally-treated stands, and natural
pine stands) in PRF created a varied set of forest structures over time. The impact of these treatments
was especially observed on QMD and S predictions in this forest type.
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Appendix A

Table A1. List of the set of ALS metrics used in this study.

ALS Metrics:
H-only Description ALS Metrics: Texture Description

HMAX Maximum (m) CHM-GLCM
homogeneity GLCM contrast texture metrics

HMEAN Mean (m) CHM-GLCM contrast GLCM contrast texture metrics

HSD Standard deviation (m) CHM-GLCM
dissimilarity GLCM contrast texture metrics

HCV Coefficient of variation (m) CHM-GLCM angular
second moment

GLCM orderliness texture
metrics

HSKEW Skewness CHM-GLCM entropy GLCM orderliness texture
metrics

HKURTOSIS Kurtosis CHM-GLCM mean GLCM descriptive statistics
texture metrics

P10–P90 Height percentiles (m) CHM-GLCM variance GLCM descriptive statistics
texture metrics

D1–D9
Cumulative percentage of returns in
the nth of 10 equally-spaced height

intervals (%)
CHM-GLCM correlation GLCM descriptive statistics

texture metrics

ALS metrics:
Intensity Description

DA Number of first returns/total
number of returns IMAX Maximum (ρ)

PF Percentage of returns reaching
2 m (%) IMEAN Mean (ρ)

VDR Vertical distribution ratio [83] ITOT Total
VCI Vertical complexity index [84] ISD Standard deviation (ρ)

LAD.CV Coefficient of variation of the LAD
profile (m2/m2) [16] ICV Coefficient of variation (ρ)

ISKEW Skewness
IKURTOSIS Kurtosis

IZP10-IZP90 Cumulative intensity at the nth
height percentile (ρ)
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Table A2. Forest type prediction error differences between the RF models (p-values of the prediction
error differences between forest types were acquired using the unpaired nonparametric Kruskal–Wallis
test, including Mann–Whitney U post hoc tests).

FRI FT PRF HAF HEF

BA

ALL **** **** ****
PIN ****
MW ** * **** ****
INT *** NS NS *** NS **** ****
CU **** * **** ** **** **** **** NS **** ****
CL * NS NS NS **** NS **** **** *

THW PIN MW INT CU THW MW INT PIN MW INT CU

QMD

ALL **** **** ****
PIN NS
MW **** *** **** *
INT *** ** NS **** **** NS *
CU * * **** *** **** NS **** NS * NS
CL ** ** NS NS ** **** **** * ****

THW PIN MW INT CU THW MW INT PIN MW INT CU

S

ALL ** **** ****
PIN *
MW **** ** * ****
INT ***** *** NS **** **** **** ****
CU NS NS * *** **** *** *** ** **** ****
CL NS NS NS NS NS **** **** **** *

THW PIN MW INT CU THW MW INT PIN MW INT CU
1 NS: p > 0.05; *: p ≤ 0.05, **: p ≤ 0.01; ***: p ≤ 0.001; ****: p ≤ 0.0001.
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