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Abstract: Satellite-derived spectral indices such as the relativized burn ratio (RBR) allow fire severity
maps to be produced in a relatively straightforward manner across multiple fires and broad spatial
extents. These indices often have strong relationships with field-based measurements of fire severity,
thereby justifying their widespread use in management and science. However, satellite-derived
spectral indices have been criticized because their non-standardized units render them difficult
to interpret relative to on-the-ground fire effects. In this study, we built a Random Forest model
describing a field-based measure of fire severity, the composite burn index (CBI), as a function of
multiple spectral indices, a variable representing spatial variability in climate, and latitude. CBI data
primarily representing forested vegetation from 263 fires (8075 plots) across the United States and
Canada were used to build the model. Overall, the model performed well, with a cross-validated R2

of 0.72, though there was spatial variability in model performance. The model we produced allows
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for the direct mapping of CBI, which is more interpretable compared to spectral indices. Moreover,
because the model and all spectral explanatory variables were produced in Google Earth Engine,
predicting and mapping of CBI can realistically be undertaken on hundreds to thousands of fires.
We provide all necessary code to execute the model and produce maps of CBI in Earth Engine. This
study and its products will be extremely useful to managers and scientists in North America who
wish to map fire effects over large landscapes or regions.

Keywords: burn severity; CBI; composite burn index; fire effects; fire severity; Google Earth Engine;
Random Forest

1. Introduction

Fire severity, defined here as fire-induced change to physical ecosystem components such as
vegetation and soil [1,2], is a critical fire regime component that influences landscape heterogeneity,
soil erosion, nutrient cycling, wildlife habitat, post-fire successional trajectories, and other ecological
factors [3–7]. Consequently, there is great interest in mapping fire severity patterns [8,9], opportunities
for which have greatly expanded with the availability of multi-spectral satellite imagery [10,11].
Satellite-derived spectral indices allow fire severity maps to be produced in a relatively straightforward
manner across multiple fires and broad spatial extents [12] and have proven to be an invaluable
resource for both the management and research communities. For example, satellite-derived indices
have been used to evaluate temporal and spatial trends in fire severity [13–16], identify key factors
driving fire severity patterns [17–19], and develop models to predict the potential ecological impacts of
fire prior to a fire occurring [20,21].

Over the last few decades, several satellite-derived spectral indices have been developed to
measure fire severity, including the delta normalized burn ratio (dNBR) [1], the relativized delta
normalized burn ratio (RdNBR) [22], and the relativized burn ratio (RBR) [23]. Generally, these spectral
indices are based on Landsat Thematic Mapper (TM) and Operational Land Imager (OLI) imagery,
although several studies have evaluated spectral metrics produced with other sensors such as SPOT,
AVIRIS, and Sentinel [24–26]. These indices quantify spectral differences between pre- and post-fire
imagery and often have strong relationships with field-based measures of fire severity [27,28]. Most
often, the spectral indices are justified as measures of fire severity through correlations with the
composite burn index (CBI), an aggregated, field-based measure of severity [1], although correlations
with specific ecological responses (e.g., canopy mortality, residual litter depth, crown charring) have
also been used for validation [29,30]. The robust relationship between spectral fire severity indices
and CBI provides strong support for their use in estimating fire effects across landscapes. However,
criticisms consistently directed towards spectral fire severity indices are that their non-standardized
units make them difficult to interpret in terms of on-the-ground fire effects [31–33] and the nonlinear
relationship between field and spectral measures of fire severity complicates interpretation [34].

In an effort to provide ecological context to non-standardized fire severity spectral indices, several
studies have categorized the indices into severity classes (e.g., low, moderate, and high severity) [29,35].
Although these thresholds are often based on observed relationships to field-based assessments of
severity [15,28], this is not always the case [see 32]. Another viable approach to give spectral indices
ecological meaning is to produce a statistical model in which a continuous field measurement of fire
severity is modeled as a function of a given spectral index [27,36–38]. This approach allows for the
direct mapping of fire effects (e.g., CBI, changes to canopy cover) [39–41], which is arguably more
interpretable than non-standardized spectral indices. The majority of these studies produce models
relating a given field-based measure of fire severity to a single spectral index e.g., [20,37].

A small but growing number of case studies suggest that fire effects can be better characterized
with machine learning models than by parametric regressions because they can easily incorporate
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multiple explanatory variables and their interactions [41–44]. The fundamental reasoning is that
different aspects of fire-induced change can be characterized by different indices, and furthermore,
machine learning techniques do not require a priori knowledge of variable interactions or functional
forms. Incorporating variables sensitive to differences in physiography across broad geographic
regions into machine learning models may also improve characterization of fire effects, as suggested
by limited evidence that the relationship between field measures of fire severity and spectral indices
may differ across biophysical gradients [23,33]. Consequently, models that incorporate diverse spectral
indices and biophysical covariates to describe fire effects have the potential to provide more meaningful
and accurate representations of fire severity, yet there have been no comprehensive studies across
broad biophysical gradients to evaluate the applicability of such models.

Google Earth Engine is a cloud-based satellite image catalog and computing environment that
allows users to conduct planetary scale geospatial analyses [45]. Earth Engine is becoming a widely
used tool for measuring and quantifying continental-to-global characteristics such as annual gross
primary production [46] and changes in the distribution of surface water [47] and land cover [48].
Earth Engine has also been used for mapping satellite-derived fire extent [49] and fire severity [50].
Machine learning models such as Random Forest regression and classification [51] are available in
Earth Engine, and as such, models can be built and executed within Earth Engine, including those
describing fire severity [44]. Given adequate field data, Earth Engine has the potential to predict and
map fire effects (e.g., CBI) at continental to global scales.

We have three specific objectives, the first of which is to build a Random Forest regression model
describing CBI (as a continuous variable) and evaluate several spectral, geographic, and climatic
variables for inclusion into the model. Second, we aim to evaluate how the interpretation of spectral
indices may vary over broad climatic or geographic gradients. Third, we intend to provide a framework
and distribute code that allows users to execute the Random Forest model in Earth Engine, thereby
enabling rapid production of mapped CBI predictions for fires that have occurred since 1984, with the
exception of fires without available pre- or post-fire imagery.

2. Materials and Methods

2.1. Composite Burn Index Field Data

The composite burn index (CBI) is a post-fire field-based measure of fire severity, usually collected
one year after fire [1]. Under the CBI protocol, over 20 individual factors are rated in each of five
vertically arranged strata, including (a) substrates, (b) herbs, low shrubs, and trees < 1 m in height,
(c) tall shrubs and trees 1–5 m in height, (d) intermediate trees (sub-canopy, pole-sized), and (e) big
trees (upper canopy, dominant or co-dominant). There are four or five factors in each strata that include
newly exposed soil/rock and duff consumption (stratum a), percent of vegetation that survived the fire
and percent black/brown foliage (strata b and c), and canopy mortality and char height (strata d and
e). Each factor is based on visual assessments and is rated from 0–3, with zero representing no fire
effects and three representing the largest degree of change. Typically, ratings are averaged for each
stratum and then across all strata to arrive at an overall CBI for an entire plot [1]. The CBI protocol is
sometimes modified to better reflect fire effects in certain ecosystems (e.g., boreal forest; [27]). Figure
S1 shows the standard CBI form and all factors measured in each strata.

We acquired CBI data for fires with readily available fire perimeters that primarily burned forest
vegetation (i.e., shrubland, grassland, and tundra fires were not evaluated) (Figure 1). To do so, we
obtained publicly distributed [52–54] and agency (e.g., US National Park Service and Parks Canada)
CBI datasets; we also requested CBI data from specific individuals who collected such data for specific
projects or uses e.g., [39]. Since we opportunistically acquired data collected by other institutions
and organizations, we acknowledge that some forest ecosystems may have disproportionately low or
high representation in our CBI dataset (Table S1). Nevertheless, the plot data spans broad climatic
and geographic gradients of the US and Canada, making our model applicable to a large proportion
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of North American forests. The majority of the plots, with the exception of the eastern US, can be
characterized as conifer forest, though some plots represent mixed forest (conifer and deciduous),
deciduous forest, and non-forest. Most plots in the eastern US represent broadleaf deciduous forest
with a lesser amount of conifer forest.

Figure 1. Locations of the 263 fires representing 8075 plots in the US and Canada used in our model
describing CBI.

Due to unique environmental settings or other phenomena, CBI data for several fires that burned
forest vegetation were excluded from our analysis. For example, we excluded CBI data for seven fires
in Georgia and Florida (US) because the spectral fire severity indices were affected by intermittent or
ephemeral wetlands; that is, standing water was likely present in the pre- or post-fire imagery. CBI data
for the Glacier Creek Fire (Alaska) were excluded since the pre-fire vegetation comprised beetle-killed
spruce trees [55], and were therefore considered non-forested prior to the fire. We excluded CBI data
from a handful of other fires (n = 5) whose CBI values were highly inconsistent with post-fire aerial
imagery, potentially reflecting problems with the coordinates. We also excluded CBI data from an
early season prescribed fire in Canada (Y-Camp). Lastly individual plots were removed if they were
duplicates or had obvious issues (e.g., located well outside of the fire perimeter with a non-zero CBI).

We also accounted for two issues with the CBI data pertaining to unburned plots (CBI = 0). First,
several fires had very few or no unburned field plots. Such plots are important for characterizing the
spectral values of unburned pixels (or those with minimal fire effects), to adequately model CBI, and
to better evaluate the models. Our goal was that the plot data for each fire comprised at least 5% of
plots represented by CBI ≤ 0.25. Consequently, for those fires with <5% of the plots with CBI ≤ 0.25,
we added ‘pseudo-plots’ representing CBI = 0. We produced pseudo-plots by randomly selecting
unburned pixels at a distance of 200 m outside of the fire perimeter and selected the appropriate
number of unburned pixels to obtain the 5% goal. Second, several CBI = 0 plots had very high spectral
fire severity values; this was not expected and likely due to errors in either the plot coordinates or the
CBI field data as entered. We removed CBI = 0 plots if the corresponding RBR value was greater than
the 95th percentile of randomly placed unburned pixels. Our final CBI dataset included 8075 plots
covering 263 fires that burned from 1994 to 2017. Table S1 lists all fires used in our study and the source
from which we obtained CBI data. For those fires that comprised multiple polygons (i.e., a complex),
we considered each polygon as an independent fire for the purpose of this study.
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2.2. Explanatory Variables: Spectral, Climatic, and Geographic Data

We evaluated several variables for inclusion in the model that can be characterized as spectral,
climatic, or geographic (i.e., coordinates) (Table 1). The spectral indices were derived from combinations
of various bands from Landsat TM and OLI sensors and have been previously evaluated as measures
of fire severity (Table 1, Table S2). We produced the spectral indices from Landsat imagery using
the Google Earth Engine cloud computing platform [45]. For each spectral variable, we used the
mean compositing approach described by Parks et al. [50] to produce pre- and post-fire image
composites. This approach selects all valid pixels (i.e., free of clouds, shadows, water, and snow) within
a pre-specified time window (i.e., ‘image season’, Table 2) for one year prior to fire for pre-fire imagery
and one year after fire for post-fire imagery. If valid pixels were unavailable during the corresponding
image seasons, we extended the time frame to include imagery from two years prior or post-fire, as
needed. All pixels meeting our criteria were stacked and averaged on a per-pixel basis. We did not
include a dNBR offset [1] as fire perimeter accuracies were variable in Canada, reducing our confidence
in offsets from unburned areas. Although most of the spectral variables rely on differences between pre-
and post-fire image composites, two are characterized by post-fire image composites only (Table 1).

Table 1. Variables evaluated for inclusion into the Random Forest model. Equations for the spectral
indices are provided in the Supplementary Materials (Table S2). Note we did not evaluate dNBR or
RdNBR because (1) RBR, dNBR and RdNBR were highly correlated (Pearson’s r = 0.99) (Table S3) and
(2) RBR performed marginally better than dNBR and RdNBR when validated with the CBI (Table S4).

Variable Type Variable Abbreviation Variable Description Citation

Spectral

RBR Relativized burn ratio [23]
dEVI Delta enhanced vegetation index [56]

dNDVI Delta normalized differenced vegetation index [57]
dNDMI Delta normalized differenced moisture index [58]
dMIRBI Delta mid-infrared bi-spectral index [59]

post.NBR Post-fire normalized burn ratio [1]
post.MIRBI Post-fire mid-infrared bi-spectral index [59]

Climatic
CWD Climatic water deficit [60,61]
AET Actual evapotranspiration [60,61]

Geographic Lat Latitude (rounded to the nearest degree) NA
Lon Longitude (rounded to the nearest degree) NA

Climatic gradients are characterized by two variables representing the climatic water balance [60],
actual evapotranspiration (AET) and the climatic water deficit (CWD). Both AET and CWD were
obtained from the TerraClimate dataset [61] (resolution = 4 km) and represent climatic normals
spanning 1981–2010. These variables are generally considered strong controls on the distribution of
vegetation types [62,63]. Geographic coordinates are simply represented by latitude and longitude,
rounded to the nearest degree.

Table 2. Image season (pre- and post-fire) for different regions.

Image Season Region Calendar Dates Day of Year

Canada (all) and Alaska (US) May 20–August 31 140–243
Arizona, New Mexico (US) April 1–June 30 91–181

California, Idaho, Montana, Oregon, S. Dakota, Utah, Washington,
Wyoming (US) June 1–September 15 152–258

Florida, Kentucky, Missouri, N. Carolina, Tennessee, Virginia (US) May 1–July 31 121–212

2.3. Random Forest Model

Within Earth Engine, we built and evaluated a Random Forest model describing CBI as a function
of multiple variables. Our goal was to produce a parsimonious model with a reduced set of variables,
with each variable contributing to the prediction of CBI. To do so, we followed the cross-validated
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stepwise procedure described by Parks et al. [21]. Specifically, we built an initial model with all
explanatory variables (Table 1) using a five-fold cross-validation in which data from 80% of the fires
were used to build the model; CBI values were predicted for the plots representing the remaining 20%
of the fires. This resulted in CBI predictions for all plots in which the plot itself was not included in
the model. We then calculated the coefficient of determination (i.e., the R2 of a linear model between
observed vs. predicted CBI) for all plots.

Next, we built subsequent Random Forest models in which each variable was iteratively removed;
each of these models was validated using the identical five-fold cross-validation. If the cross-validated
R2 did not decrease by at least 0.005 when any given variable was removed (in some cases, the
R2 increased), it indicated that the variable did not contribute any unique information. As such,
any individual variable that resulted in <0.005 decrease in R2 when excluded from the model was
permanently removed from consideration. This process was repeated (i.e., variables were removed)
until all remaining variables resulted in a decrease in R2 of at least 0.005 when removed from the model.
This procedure resulted in a parsimonious model in which each variable provides a non-negligible
contribution. We report the cross-validated R2, root mean square error (RMSE), and the mean absolute
error (MAE) of the final model for observed vs. predicted CBI. All predictions were produced using the
test datasets from the five-fold cross validation, such that predictions were produced for independent
data not used to build the models. We also report these validation statistics for various geopolitical
and ecological regions, thereby providing an indication of the spatial variability in model skill.

We initially used the default Earth Engine Random Forest parameters, except for the number of
trees, which we set to 500. However, initial explorations showed these Random Forest parameters
overfit the relationship between CBI and the explanatory variables (Figure 2). We reduced overfitting
by manipulating the minLeafPopulation parameter, which is the minimum size of a terminal node
(default = 1). We set the minLeafPopulation parameter equal to:

minLea f Population =
(num.recs/75)

num.vars
(1)

where num.recs is the number of data samples and num.vars is the number of variables in the model.
This equation was based on explorations using a 5-fold cross-validation; this approach substantially
reduced overfitting (Figure 2).

Initial explorations also indicated that the final model was biased, in that CBI was overpredicted
at low CBI values and underpredicted at high CBI values (Figure 3). This is because the model fits the
mean response, and data extremes rarely represent the mean response. The bounded nature of the
CBI (range: 0–3) also plays a role. Biased predictions may complicate interpretations of mapped CBI
predictions, particularly when defining classes such as low- and high-severity e.g., [17,64]. For the
purpose of mapping predicted CBI, we bias corrected the CBI predictions as follows:

CBIbc =

{
((CBIpred − 1.5) × 1.3) + 1.5, CBIpred ≤ 1.5
((CBIpred − 1.5) × 1.175) + 1.5, CBIpred > 1.5

}
(2)

where CBIbc is the bias-corrected CBI prediction and CBIpred is the predicted CBI from the Random
Forest model. The initial subtraction of 1.5 centers predicted CBI at zero, the 1.3 and 1.175 multipliers
provide the bias correction, and the final 1.5 addition re-centers the predictions at 1.5. When CBIbc
resulted in predictions less than zero or greater than three, they were truncated to zero and three,
respectively. We defined the parameters for this bias correction by comparing histograms of the
observed CBI vs. CBIbc (Figure S2). The bias-corrected CBI better characterizes the low and high end of
the CBI gradient (Figure 3). Note that all results shown in the main body of this paper do not use the
bias-corrected CBI, with the exception of the mapped predictions.
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Figure 2. Fitted relationship of a Random Forest model describing CBI as a function of RBR using the
default parameter of minLeafPopulation = 1 (a). Fitted relationship of a Random Forest model using
equation 1 to define minLeafPopulation (b). To reduce overfitting, equation 1 was used to define
minLeafPopulation in all models.

2.4. Model Implementation in Earth Engine

We designed the procedure to run entirely within Google Earth Engine [45]. This includes
the production of all spectral explanatory variables, executing the model, and producing mapped
CBI predictions. We provide all code and a sample fire history shapefile to produce mapped CBI
predictions for 10 sample fires. The code produces two CBI predictions for each fire, one without
the bias correction and one with the bias correction. Interested users can easily modify the code to
produce mapped CBI predictions for nearly all fires that have burned since 1984 in North American
forests, with the exception of fires without available pre- or post-fire imagery. The code is available
here: https://tinyurl.com/CBImodel.

Figure 3. Fitted splines of the residuals (predicted CBI – observed CBI) represent bias in model
predictions. The native model overpredicts at low CBI values and underpredicts at high CBI values
(dashed red line). We applied a bias correction to address this issue (Eqn. 1). This bias correction only
applies to mapped CBI predictions (Figure 9), though the code distributed with this paper produces
predictions with and without the bias correction. Except for Figure 9, all tables and figures refer to the
predictions without bias correction.

2.5. Evaluating the Potential for Spatial Variability in the Relationship between CBI and Spectral Indices

Lastly, we aimed to illustrate how variability in geography and climate influences interpretation
of spectral fire severity indices. To do so, we produced two generalized additive models (GAMs),
one as a function of RBR and latitude and the other as a function of RBR and CWD. Latitude and

https://tinyurl.com/CBImodel
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CWD were chosen because the final Random Forest model (after the cross-validated variable selection
procedure) included these non-spectral variables (see Results). Using each model, we then produced
plots holding CBI constant at incremental values (e.g., 1.25 and 2.25) while varying RBR and latitude
and RBR and CWD.

3. Results

The Random Forest model describing CBI as a continuous variable performed well across North
America (Figure 4; Table 3). The cross-validated R2, RMSE, and MAE were 0.72, 0.47, and 0.37,
respectively. The spectral variables, particularly the RBR, provided the largest contribution to the
models (Table 3 and Table S4). The cross-validated stepwise procedure we used for variable selection
resulted in a parsimonious Random Forest model describing CBI as a function of RBR, dMIRBI, dNDVI,
post.MIRBI, CWD, and latitude. Some spectral variables (i.e., dEVI, dNDMI, post.NBR), AET, and
longitude were excluded as a result of the cross-validated model selection procedure.

Table 3. Cross-validated model skill (observed vs. predicted CBI) for Random Forest regression models
describing CBI as a continuous variable. Table S4 shows the results for single variable models for each
spectral variable.

Variable Group R2 RMSE MAE

RBR only 0.68 0.51 0.40
Full model (all selected variables) 0.72 0.47 0.37

Figure 4. Observed vs. predicted CBI for the full Random Forest model. 1:1 line shown in red.

Spatial variability in model skill was evident (Figures 5–7; Tables 4–6). For example, CBI was
modeled well (e.g., high R2, low RMSE, and low MAE) in Arizona, California, New Mexico, and
Alberta (Figure 5; Table 4), but our model was weaker in states such as Virginia and Alaska. Although
model skill for some geopolitical units was fairly poor, small sample sizes make the validation statistics
uncertain (e.g., Arkansas and North Carolina). Also, the CBI data in some geopolitical units only
captured a fairly small portion of the possible CBI range, adding to the uncertainty in model skill. For
example, the CBI data for Missouri spanned from 0.10 to 1.65, thereby omitting about half of the range in
CBI. Issues of low sample size and inadequate sampling of the CBI gradient were mostly evident in the
southeastern US. When all cross-validated CBI predictions were compared with observed CBI within
broad geopolitical units, our model performed best in the southwestern US and Canada (Figure 6;
Table 5) and rather poorly in the SE US. In relation to ecoregions [65], the model performed best in
North American Deserts, Northern Forests, and Temperate Sierras (Figure 7; Table 6). Assessments of
model skill for the bias-corrected version are provided in the Supplementary Materials (Figures S3–S5,
Tables S5–S7). The relationship between CBI and RBR varied along geographic and climatic gradients
in North America. Specifically, the RBR representing specific CBI values (e.g., the threshold between
low/moderate severity [CBI = 1.25] and moderate/high severity [CBI = 2.25]) increased with latitude
and decreased with climatic water deficit (CWD) (Figure 8).
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Table 4. Cross-validated model skill (observed vs. predicted CBI) for states, provinces, and territories
in our study.

State/Province/
Territory Country Number of Fires Number of Plots R2 RMSE MAE

Alaska US 19 725 0.62 0.52 0.38
Arizona US 32 977 0.82 0.40 0.32

Arkansas US 1 14 0.11 0.31 0.24
California US 62 1889 0.73 0.45 0.35
Colorado US 2 31 0.75 0.56 0.40
Florida US 7 232 0.01 0.53 0.44
Idaho US 3 115 0.68 0.44 0.34

Kentucky US 4 17 0.08 0.69 0.51
Missouri US 4 55 0.03 0.43 0.38
Montana US 20 565 0.73 0.44 0.35

New Mexico US 5 192 0.79 0.44 0.34
North Carolina US 1 4 0.00 0.57 0.47

Oregon US 6 141 0.78 0.43 0.35
South Dakota US 4 174 0.60 0.57 0.43

Tennessee US 10 131 0.80 0.37 0.29
Utah US 8 145 0.76 0.49 0.37

Virginia US 9 170 0.54 0.48 0.39
Washington US 13 538 0.65 0.52 0.42
Wyoming US 22 671 0.67 0.53 0.43

Alberta Canada 8 574 0.77 0.51 0.40
British Columbia Canada 5 210 0.69 0.49 0.38

Manitoba Canada 2 82 0.85 0.44 0.35
Northwest Territories Canada 7 230 0.84 0.42 0.32

Québec Canada 6 114 0.69 0.43 0.35
Saskatchewan Canada 3 42 0.83 0.52 0.43

Yukon Canada 1 37 0.86 0.64 0.56

Figure 5. Observed vs. predicted CBI for the Random Forest model for each state, province, and
territory. 1:1 line shown in red. North Carolina not shown due to the low sample size (n = 4).
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Table 5. Cross-validated model skill (observed vs. predicted) for large geopolitical regions in our study.
NW US: Idaho, Montana, Oregon, South Dakota, Washington, Wyoming (Alaska excluded here but
shown in Table 4); SE US: Arkansas, Florida, Kentucky, Missouri, North Carolina, Tennessee, Virginia;
SW US: Arizona, California, Colorado, New Mexico, Utah.

Region Number of Fires Number of Plots R2 RMSE MAE

NW US 67 2204 0.68 0.50 0.39
SE US 36 623 0.48 0.48 0.39
SW US 109 3234 0.77 0.44 0.34
Canada 32 1289 0.75 0.48 0.38

Figure 6. Observed vs. predicted CBI for the Random Forest model for large geopolitical regions.
1:1 line shown in red. NW US: Idaho, Oregon, Montana, South Dakota, Washington, Wyoming;
SE US: Arkansas, Florida, Kentucky, Missouri, North Carolina, Tennessee, Virginia; SW US: Arizona,
California, Colorado, New Mexico, Utah.

Table 6. Cross-validated model skill (observed vs. predicted CBI) for ecoregions (see Figure 1) in
our study.

Ecoregion Number of Fires Number of Plots R2 RMSE MAE

Eastern Temperate Forests 36 623 0.48 0.48 0.39
Marine West Coast Forests 2 67 0.37 0.89 0.64
Mediterranean California 4 113 0.66 0.54 0.45
North American Deserts 28 565 0.81 0.44 0.35

Northern Forests 11 238 0.76 0.45 0.37
NW Forested Mountains 144 4882 0.72 0.48 0.38

Taiga 26 909 0.73 0.46 0.35
Temperate Sierras 26 678 0.82 0.41 0.31
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Figure 7. Observed vs. predicted CBI for the Random Forest model for ecoregions. 1:1 line shown
in red.

Figure 8. Satellite-derived fire severity values (in this case, RBR) associated with specific composite
burn index (CBI) values increase with latitude (a) and decrease with climatic water deficit (b). This
indicates that spectral fire severity indices such as the relativized burn ratio have slightly different
meanings across geographic and climatic gradients. For example, at southern latitudes, a given RBR
value corresponds to lower CBI compared to northern latitudes, and in regions that are less moisture
limited (low CWD), a given RBR value corresponds to higher CBI compared to moisture limited regions
with high CWD.

4. Discussion

Describing fire effects with satellite imagery is an active area of research across the globe [40,66,67].
Most of this research, however, has focused on describing fire severity with one spectral index
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(e.g., dNBR). The focus on a single spectral index has two important consequences. First, the de
facto strategy when producing fire severity maps is to show the non-standardized index [12]; these
non-standardized indices are difficult to interpret in terms of on-the-ground fire effects [36,39]. Second,
there is often a failure to recognize that multiple spectral indices or other bioclimatic variables may
improve models describing fire severity [33,44]. In this study, we address both limitations by a) directly
modelling and mapping CBI, and b) including multiple variables into our models, thereby better
describing CBI across forested landscapes in the US and Canada. Consequently, our study provides an
essential refinement to mapping fire severity (as it relates to ecological impacts) across North America.
Also, because we distribute code that allows users to produce mapped CBI predictions within Google
Earth Engine, scientists and practitioners have the ability to map fire effects over hundreds to thousands
of fires (Figure 9).

Figure 9. Example of predicted CBI for select fires. Note that we do not have CBI data for all of these
fires, illustrating that CBI predictions can be produced for fires that have occurred since 1984, provided
pre- and post-fire TM and OLI imagery are available.
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Our study showed that interpretation of spectral fire severity indices varied to some degree over
bioclimatic gradients, in that RBR values corresponding to the thresholds between severity classes
vary by latitude and climate (Figure 8). A possible explanation is that latitude and climate are indirect
proxies for broad-scale forest type, and that interpretations of spectral indices may vary among forest
types e.g., [39]. Nevertheless, our findings agree with those of Harvey et al. [33], who found that
identical spectral values across latitudes corresponded with different field-measured fire effects. This
finding suggests that evaluations of spectral fire severity across broad region [17,21,68] could be slightly
misinterpreted without implicitly accounting for biophysical factors that influence interpretation of
spectral indices. The changing interpretation between field-based fire effects and spectral indices
provides ample rationale that biophysical variables should be explicitly evaluated for inclusion into
models describing fire severity across broad spatial domains, as we did in this study.

The relativized burn ratio (RBR) was clearly the most important variable that we evaluated in our
models (Table S4). Although we did not evaluate dNBR and RdNBR for inclusion into the model due
to their very high correlation with RBR (Table S3), either would likely have been the most important
variable were they used instead of RBR. The addition of other spectral variables (dMIRBI, dNDVI,
post.MIRBI), CWD, and latitude provided a modest improvement compared to the model based
only on RBR; the full model improved the cross-validated R2 by 0.04. Although we were somewhat
surprised that the improvement of the full (multi-variable) model was not greater, it could be that
including additional variables results in model improvement in specific CBI ranges (e.g., low severity),
as previously demonstrated [44]. Nevertheless, our study illustrates the utility of using multiple
variables to model fire effects and supports the findings of several case studies to this effect [41–44].

Many studies have demonstrated that the relationship between field-based fire effects and spectral
fire severity indices varies across fires and vegetation types [55,69,70]. This has led to questions as
to whether or not fire severity indices, or more specifically, the functional relationships between fire
effects and a spectral index, are ‘transferable’ across fires and geography [71]. Although such models
may indeed be transferable to some degree [72], it is generally the case that model skill decreases
when multiple fires are evaluated simultaneously due to variable functional relationships (among
individual fires) between field-measured fire effects and spectral indices [23,39]. We posit that our
model describing and mapping CBI increases model transferability among fires and regions. Indeed,
our model performed well across North America (cross-validated R2 = 0.72 for all 8075 plots) even
though our study area spanned a broad gradient of the biophysical environment. This is an important
outcome of our study given that it is unrealistic to collect field data on all fires and build individual
models for each. This said, our models do not perform well everywhere (e.g., SE US; see Tables 4–6),
but this is generally due to poor relationships between field and spectral data in certain localities and
not a reflection of the model itself.

The main purpose of our study was to build a parsimonious model measuring (or estimating) fire
effects (i.e., fire severity). This is a nuanced but important difference from studies that aim to explain
fire effects e.g., [17]. The former aims to simply quantify the ecological impact of fire without regard to
the causes or drivers, whereas the latter is intended to identify factors that control fire severity such as
topography, weather, and pre-fire fuel [38,73–75]. Since our goal was to measure fire effects, we did
not include variables such as topography that potentially drive or explain fire effects. Studies that
explain fire effects can be particularly useful for identifying factors that can potentially be modified to
change fire severity outcomes (e.g., fuel reduction treatments) [76] or making predictions of expected
fire severity prior to a fire even occurring [20,21]. We suggest that our model that measures fire effects
(i.e., CBI) can be used by other researchers as a dependent variable in models that explain fire effects.
This would provide more ecological meaning and an improved interpretation when, for example,
evaluating drivers of fire severity or measuring reductions in fire severity from fuel treatments.

Although our models performed well in estimating field-measured CBI across broad North
American geographic and climatic gradients, there are some caveats to this approach and the resulting
model. First, this model should not be used to predict CBI outside of North America because (a) the
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geographic and climatic variables in other regions would be outside of the range used to build the
model and (b) it is not clear if the relationship between CBI and the explanatory variables are similar
on other continents. CBI data from other continents could be incorporated to produce a global model
or a model applicable to each continent. Second, because we purposefully omitted CBI data for those
fires whose pre-fire vegetation was primarily non-forest, the applicability of our models is limited to
forested ecosystems. Third, our model did not perform particularly well in the SE US (R2 < 0.5), an
issue not unique to our study [77]. The poor performance could be due to several factors, including
that most fires in the SE US in our CBI dataset were prescribed burns that may have occurred during
seasons or under conditions in which fires do not typically burn. The deciduous nature of much of SE
US forests could have also posed problems in terms of the spectral signatures of different phenological
states (leaf off vs. leaf on). Rapid post-fire regrowth in deciduous forests may also obscure spectral
fire severity assessments. Continued study into the proper timing of pre- and post-fire imagery for
describing fire severity in deciduous forests would be beneficial.

It is worth noting that the CBI itself has been criticized as an imperfect measure of fire severity [34].
For example, the CBI is a post-fire assessment in which pre-fire vegetation conditions are unknown but
must be estimated [78]. The CBI is also qualitative in that each factor is visually estimated and not
measured per se [79]. Furthermore, the CBI aggregates several diverse fire effects into a single index,
thereby obscuring specific factors of interest [31]. Lastly, in some forest ecosystems, particular factors
may be more important in describing fire severity (e.g., organic matter consumption in boreal forests),
even though they are given equal weight in the CBI [80]. Nevertheless, because the CBI protocol is fairly
rapid to implement (~30 min/plot) [1], two field crews can collect 50+ plots in a week (depending on
transportation and hiking time), thereby enabling fairly rapid and inexpensive collection of field data
that can be correlated with spectral indices or used to build models such as that described in this study.
In spite of the criticisms levied towards the CBI, the consistently strong correlations between CBI and
spectral indices reported in the literature are a testament to its utility in fire studies e.g., [23,25,27,38].

5. Conclusions

This study introduces a publicly available model with spectral, climatic, and geographic
explanatory variables that produces gridded estimates (i.e., maps) of the composite burn index
(CBI), a frequently used, field-based measure of fire severity. The ability to map across a broad
geographic range was achieved through the opportunistic compilation of field-based CBI collected
previously for a range of studies. The model developed in our study used data from 263 fires
and covered broad gradients in the geography and climate of North America to describe the CBI.
Maps of CBI produced with this model are more interpretable in terms of on-the-ground fire effects
compared to non-standardized spectral indices. Since our model and the resulting maps give ecological
meaning to spectral indices, they will provide managers a better understanding of fire effects. The
robust relationships and the fairly high model skill in most regions suggest the resulting CBI maps
will be particularly beneficial in remote regions where it is expensive and difficult to acquire field
measures of severity (e.g., Alaska and the majority of Canada). This said, additional CBI plot data
in underrepresented areas of the continent would likely improve model skill. The full Random
Forest model provided a moderate improvement in model skill compared to the RBR-only model.
This is because the interpretation of fire severity indices varies geographically [33] and, furthermore,
different spectral indices complement and enhance assessments compared to use of one spectral
variable alone [44]. More importantly, because we provide code to fully execute the model in Google
Earth Engine, we provide managers and researchers with a tool to evaluate fire effects to support
management decisions and advance ecological understanding at regional, national, and continental
scales of North America. Gridded maps representing estimated CBI offers the potential to assess fire
effects that may be applied to a range of user-specified natural resource applications.



Remote Sens. 2019, 11, 1735 15 of 19

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/11/14/1735/s1,
Table S1: List of fires with CBI data used in this study, Table S2: Equations for spectral indices used in CBI model
prediction, Table S3: Pearson’s correlation among the variables we evaluated, Table S4: Cross-validated model
skill for Random Forest models describing CBI with each spectral variable, Table S5: Cross-validated model skill
(observed vs. predicted CBI [bias-corrected]) for states, provinces, and territories, Table S6: Cross-validated model
skill (observed vs. predicted [bias-corrected]) for large geopolitical regions, Table S7: Cross-validated model skill
(observed vs. predicted CBI [bias-corrected]) for ecoregions, Figure S1: Composite burn index (CBI) field sheet,
Figure S2: Histograms show the distribution of observed CBI, predicted CBI, and bias-corrected CBI, Figure S3:
Observed vs. predicted CBI (bias-corrected) for the Random Forest model for each state, province, and territory,
Figure S4: Observed vs. predicted CBI (bias-corrected) for the multi-variable Random Forest model for large
geopolitical regions, Figure S5: Observed vs. predicted CBI (bias-corrected) for the multi-variable Random Forest
model for ecoregions.

Author Contributions: Conceptualization, S.A.P., L.M.H., L.C., E.W., M.-A.P. and R.A.L.; formal analysis, S.A.P.;
methodology, S.A.P., L.M.H., M.J.K. and L.C.; resources, E.W., J.B., J.-F.B., J.B., Y.B., A.C.C., A.C., R.J.H., J.P., L.B.S.,
C.S., R.J.S. and N.S.; software, L.M.H., M.J.K. and L.C.; writing—original draft, S.A.P.; writing—review & editing,
L.M.H., M.J.K., L.C., E.W., M.-A.P., R.A.L., J.B., J.-F.B., J.B., Y.B., A.C.C., A.C., R.J.H., J.P., L.B.S., C.S., R.J.S. and N.S.

Funding: This research was partially funded by an agreement between the US Geological Survey and US
Forest Service.

Acknowledgments: We are grateful to Diane Abendroth, Wendy Bunn, Lane Gibbons, MaryBeth Keifer, Andrew
Ruth, and Dan Swanson for assistance in accessing US National Park Service CBI datasets. We also thank the
numerous field personnel who assisted in collecting the CBI data. We thank two anonymous reviewers and
Jessica Walker whose feedback substantially improved this manuscript. Any use of trade names is for descriptive
purposes only and does not imply endorsement by the US Government.

Conflicts of Interest: The authors declare no conflict of interest.

Code Availability: We provide all code and a sample fire history shapefile to produce mapped CBI predictions
for 10 sample fires. The code produces two CBI predictions for each fire, one without the bias correction and one
with the bias correction. Interested users can easily modify the code to produce mapped CBI predictions for any
fire that has burned since 1984 in North American forests, given available pre- and post-fire imagery. The code is
available here: https://tinyurl.com/CBImodel.

References

1. Key, C.H.; Benson, N.C. Landscape Assessment (LA). In FIREMON: Fire Effects Monitoring and Inventory
System; Gen. Tech. Rep. RMRS-GTR-164-CD; U.S. Department of Agriculture, Forest Service, Rocky
Mountain Research Station: Fort Collins, CO, USA, 2006.

2. Keeley, J.E. Fire intensity, fire severity and burn severity: a brief review and suggested usage. Int. J. Wildl.
Fire 2009, 18, 116–126. [CrossRef]

3. Turner, M.G. Disturbance and landscape dynamics in a changing world. Ecology 2010, 91, 2833–2849.
[CrossRef] [PubMed]

4. McKenzie, D.; Miller, C.; Falk, D.A. The Landscape Ecology of Fire; Springer Science & Business Media:
Dordrecht, The Netherlands, 2011.

5. Benavides-Solorio, J.; MacDonald, L.H. Post-fire runoff and erosion from simulated rainfall on small plots,
Colorado Front Range. Hydrol. Process. 2001, 15, 2931–2952. [CrossRef]

6. Spigel, K.M.; Robichaud, P.R. First-year post-fire erosion rates in Bitterroot National Forest, Montana.
Hydrol. Process. 2007, 21, 998–1005. [CrossRef]

7. Boucher, J.; Hébert, C.; Ibarzabal, J.; Bauce, É. High conservation value forests for burn-associated saproxylic
beetles: an approach for developing sustainable post-fire salvage logging in boreal forest. Insect Conserv.
Divers. 2016, 9, 402–415. [CrossRef]

8. Parson, A.; Robichaud, P.R.; Lewis, S.A.; Napper, C.; Clark, J.T. Field Guide for Mapping Post-Fire Soil Burn
Severity; Gen. Tech. Rep. RMRS-GTR-243; U.S. Department of Agriculture, Forest Service, Rocky Mountain
Research Station: Fort Collins, CO, USA, 2010; Volume 243, 49p.

9. Morgan, P.; Hudak, A.T.; Wells, A.; Parks, S.A.; Baggett, L.S.; Bright, B.C.; Green, P. Multidecadal trends in
area burned with high severity in the Selway-Bitterroot Wilderness Area 1880-2012. Int. J. Wildl. Fire 2017,
26, 930–943. [CrossRef]

10. Miller, J.D.; Yool, S.R. Mapping forest post-fire canopy consumption in several overstory types using
multi-temporal Landsat TM and ETM data. Remote Sens. Environ. 2002, 82, 481–496. [CrossRef]

http://www.mdpi.com/2072-4292/11/14/1735/s1
https://tinyurl.com/CBImodel
http://dx.doi.org/10.1071/WF07049
http://dx.doi.org/10.1890/10-0097.1
http://www.ncbi.nlm.nih.gov/pubmed/21058545
http://dx.doi.org/10.1002/hyp.383
http://dx.doi.org/10.1002/hyp.6295
http://dx.doi.org/10.1111/icad.12175
http://dx.doi.org/10.1071/WF17023
http://dx.doi.org/10.1016/S0034-4257(02)00071-8


Remote Sens. 2019, 11, 1735 16 of 19

11. White, J.D.; Ryan, K.C.; Key, C.C.; Running, S.W. Remote Sensing of Forest Fire Severity and Vegetation
Recovery. Int. J. Wildl. Fire 1996, 6, 125–136. [CrossRef]

12. Eidenshink, J.C.; Schwind, B.; Brewer, K.; Zhu, Z.-L.; Quayle, B.; Howard, S.M. A project for monitoring
trends in burn severity. Fire Ecol. 2007, 3, 3–21. [CrossRef]

13. Miller, J.D.; Safford, H.D.; Crimmins, M.; Thode, A.E. Quantitative evidence for increasing forest fire severity
in the Sierra Nevada and southern Cascade Mountains, California and Nevada, USA. Ecosystems 2009, 12,
16–32. [CrossRef]

14. Whitman, E.; Batllori, E.; Parisien, M.-A.; Miller, C.; Coop, J.D.; Krawchuk, M.A.; Chong, G.W.; Haire, S.L.
The climate space of fire regimes in north-western North America. J. Biogeogr. 2015, 42, 1736–1749. [CrossRef]

15. Reilly, M.J.; Dunn, C.J.; Meigs, G.W.; Spies, T.A.; Kennedy, R.E.; Bailey, J.D.; Briggs, K. Contemporary patterns
of fire extent and severity in forests of the Pacific Northwest, USA (1985–2010). Ecosphere 2017, 8, e01695.
[CrossRef]

16. Stevens, J.T.; Collins, B.M.; Miller, J.D.; North, M.P.; Stephens, S.L. Changing spatial patterns of stand-replacing
fire in California conifer forests. For. Ecol. Manag. 2017, 406, 28–36. [CrossRef]

17. Dillon, G.K.; Holden, Z.A.; Morgan, P.; Crimmins, M.A.; Heyerdahl, E.K.; Luce, C.H. Both topography and
climate affected forest and woodland burn severity in two regions of the western US, 1984 to 2006. Ecosphere
2011, 2, art130. [CrossRef]

18. Cansler, C.A.; McKenzie, D. Climate, fire size, and biophysical setting control fire severity and spatial pattern
in the northern Cascade Range, USA. Ecol. Appl. 2014, 24, 1037–1056. [CrossRef] [PubMed]

19. Fang, L.; Yang, J.; Zu, J.; Li, G.; Zhang, J. Quantifying influences and relative importance of fire weather,
topography, and vegetation on fire size and fire severity in a Chinese boreal forest landscape. For. Ecol. Manag.
2015, 356, 2–12. [CrossRef]

20. Holden, Z.A.; Morgan, P.; Evans, J.S. A predictive model of burn severity based on 20-year satellite-inferred
burn severity data in a large southwestern US wilderness area. For. Ecol. Manag. 2009, 258, 2399–2406.
[CrossRef]

21. Parks, S.A.; Holsinger, L.M.; Panunto, M.H.; Jolly, W.M.; Dobrowski, S.Z.; Dillon, G.K. High-severity fire:
evaluating its key drivers and mapping its probability across western US forests. Environ. Res. Lett. 2018, 13,
044037. [CrossRef]

22. Miller, J.D.; Thode, A.E. Quantifying burn severity in a heterogeneous landscape with a relative version of
the delta Normalized Burn Ratio (dNBR). Remote Sens. Environ. 2007, 109, 66–80. [CrossRef]

23. Parks, S.A.; Dillon, G.K.; Miller, C. A new metric for quantifying burn severity: the relativized burn ratio.
Remote Sens. 2014, 6, 1827–1844. [CrossRef]

24. Fernández-Manso, A.; Fernández-Manso, O.; Quintano, C. SENTINEL-2A red-edge spectral indices suitability
for discriminating burn severity. Int. J. Appl. Earth Obs. Geoinf. 2016, 50, 170–175. [CrossRef]

25. Van Wagtendonk, J.W.; Root, R.R.; Key, C.H. Comparison of AVIRIS and Landsat ETM+ detection capabilities
for burn severity. Remote Sens. Environ. 2004, 92, 397–408. [CrossRef]

26. Chafer, C.J.; Noonan, M.; Macnaught, E. The post-fire measurement of fire severity and intensity in the
Christmas 2001 Sydney wildfires. Int. J. Wildl. Fire 2004, 13, 227–240. [CrossRef]

27. Whitman, E.; Parisien, M.-A.; Thompson, D.K.; Hall, R.J.; Skakun, R.S.; Flannigan, M.D. Variability and
drivers of burn severity in the northwestern Canadian boreal forest. Ecosphere 2018, 9. [CrossRef]

28. Miller, J.D.; Knapp, E.E.; Key, C.H.; Skinner, C.N.; Isbell, C.J.; Creasy, R.M.; Sherlock, J.W. Calibration and
validation of the relative differenced Normalized Burn Ratio (RdNBR) to three measures of fire severity
in the Sierra Nevada and Klamath Mountains, California, USA. Remote Sens. Environ. 2009, 113, 645–656.
[CrossRef]

29. Lentile, L.B.; Morgan, P.; Hudak, A.T.; Bobbitt, M.J.; Lewis, S.A.; Smith, A.; Robichaud, P. Post-fire burn
severity and vegetation response following eight large wildfires across the western United States. Fire Ecol.
2007, 3, 91–108. [CrossRef]

30. Hudak, A.T.; Morgan, P.; Bobbitt, M.J.; Smith, A.M.S.; Lewis, S.A.; Lentile, L.B.; Robichaud, P.R.; Clark, J.T.;
McKinley, R.A. The relationship of multispectral satellite imagery to immediate fire effects. Fire Ecol. 2007, 3,
64–90. [CrossRef]

31. Morgan, P.; Keane, R.E.; Dillon, G.K.; Jain, T.B.; Hudak, A.T.; Karau, E.C.; Sikkink, P.G.; Holden, Z.A.;
Strand, E.K. Challenges of assessing fire and burn severity using field measures, remote sensing and
modelling. Int. J. Wildl. Fire 2014, 23, 1045–1060. [CrossRef]

http://dx.doi.org/10.1071/WF9960125
http://dx.doi.org/10.4996/fireecology.0301003
http://dx.doi.org/10.1007/s10021-008-9201-9
http://dx.doi.org/10.1111/jbi.12533
http://dx.doi.org/10.1002/ecs2.1695
http://dx.doi.org/10.1016/j.foreco.2017.08.051
http://dx.doi.org/10.1890/ES11-00271.1
http://dx.doi.org/10.1890/13-1077.1
http://www.ncbi.nlm.nih.gov/pubmed/25154095
http://dx.doi.org/10.1016/j.foreco.2015.01.011
http://dx.doi.org/10.1016/j.foreco.2009.08.017
http://dx.doi.org/10.1088/1748-9326/aab791
http://dx.doi.org/10.1016/j.rse.2006.12.006
http://dx.doi.org/10.3390/rs6031827
http://dx.doi.org/10.1016/j.jag.2016.03.005
http://dx.doi.org/10.1016/j.rse.2003.12.015
http://dx.doi.org/10.1071/WF03041
http://dx.doi.org/10.1002/ecs2.2128
http://dx.doi.org/10.1016/j.rse.2008.11.009
http://dx.doi.org/10.4996/fireecology.0301091
http://dx.doi.org/10.4996/fireecology.0301064
http://dx.doi.org/10.1071/WF13058


Remote Sens. 2019, 11, 1735 17 of 19

32. Kolden, C.A.; Smith, A.M.S.; Abatzoglou, J.T. Limitations and utilisation of Monitoring Trends in Burn
Severity products for assessing wildfire severity in the USA. Int. J. Wildl. Fire 2015, 24, 1023–1028. [CrossRef]

33. Harvey, B.J.; Andrus, R.A.; Anderson, S.C. Incorporating biophysical gradients and uncertainty into burn
severity maps in a temperate fire-prone forested region. Ecosphere 2019, in press. [CrossRef]

34. Lentile, L.B.; Smith, A.M.S.; Hudak, A.T.; Morgan, P.; Bobbitt, M.J.; Lewis, S.A.; Robichaud, P.R. Remote
sensing for prediction of 1-year post-fire ecosystem condition. Int. J. Wildl. Fire 2009, 18, 594–608. [CrossRef]

35. Collins, B.M.; Miller, J.D.; Thode, A.E.; Kelly, M.; van Wagtendonk, J.W.; Stephens, S.L. Interactions Among
Wildland Fires in a Long-Established Sierra Nevada Natural Fire Area. Ecosystems 2009, 12, 114–128.
[CrossRef]

36. De Santis, A.; Chuvieco, E. Burn severity estimation from remotely sensed data: Performance of simulation
versus empirical models. Remote Sens. Environ. 2007, 108, 422–435. [CrossRef]

37. Veraverbeke, S.; Lhermitte, S.; Verstraeten, W.W.; Goossens, R. Evaluation of pre/post-fire differenced spectral
indices for assessing burn severity in a Mediterranean environment with Landsat Thematic Mapper. Int. J.
Remote Sens. 2011, 32, 3521–3537. [CrossRef]

38. Wimberly, M.C.; Reilly, M.J. Assessment of fire severity and species diversity in the southern Appalachians
using Landsat TM and ETM+ imagery. Remote Sens. Environ. 2007, 108, 189–197. [CrossRef]

39. Hall, R.J.; Freeburn, J.T.; de Groot, W.J.; Pritchard, J.M.; Lynham, T.J.; Landry, R. Remote sensing of burn
severity: experience from western Canada boreal fires. Int. J. Wildl. Fire 2008, 17, 476–489. [CrossRef]

40. Boucher, J.; Beaudoin, A.; Hébert, C.; Guindon, L.; Bauce, É. Assessing the potential of the differenced
Normalized Burn Ratio (dNBR) for estimating burn severity in eastern Canadian boreal forests. Int. J.
Wildl. Fire 2017, 26, 32–45. [CrossRef]

41. Chen, X.; Vogelmann, J.E.; Rollins, M.; Ohlen, D.; Key, C.H.; Yang, L.; Huang, C.; Shi, H. Detecting post-fire
burn severity and vegetation recovery using multitemporal remote sensing spectral indices and field-collected
composite burn index data in a ponderosa pine forest AU - Chen, Xuexia. Int. J. Remote Sens. 2011, 32,
7905–7927. [CrossRef]

42. Hultquist, C.; Chen, G.; Zhao, K. A comparison of Gaussian process regression, random forests and support
vector regression for burn severity assessment in diseased forests. Remote Sens. Lett. 2014, 5, 723–732. [CrossRef]

43. Brewer, K.C.; Winne, C.J.; Redmond, R.L.; Opitz, D.W.; Mangrich, M.V. Classifying and Mapping Wildfire
Severity. Photogramm. Eng. Remote Sens. 2005, 71, 1311–1320. [CrossRef]

44. Collins, L.; Griffioen, P.; Newell, G.; Mellor, A. The utility of Random Forests for wildfire severity mapping.
Remote Sens. Environ. 2018, 216, 374–384. [CrossRef]

45. Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine:
Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [CrossRef]

46. Robinson, N.P.; Allred, B.W.; Smith, W.K.; Jones, M.O.; Moreno, A.; Erickson, T.A.; Naugle, D.E.; Running, S.W.
Terrestrial primary production for the conterminous United States derived from Landsat 30 m and MODIS
250 m. Remote Sens. Ecol. Conserv. 2018, 4, 264–280. [CrossRef]

47. Pekel, J.-F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its
long-term changes. Nature 2016, 540, 418. [CrossRef]

48. Midekisa, A.; Holl, F.; Savory, D.J.; Andrade-Pacheco, R.; Gething, P.W.; Bennett, A.; Sturrock, H.J.W.
Mapping land cover change over continental Africa using Landsat and Google Earth Engine cloud computing.
PLoS ONE 2017, 12, e0184926. [CrossRef] [PubMed]

49. Long, T.; Zhang, Z.; He, G.; Jiao, W.; Tang, C.; Wu, B.; Zhang, X.; Wang, G.; Yin, R. 30 m Resolution Global
Annual Burned Area Mapping Based on Landsat Images and Google Earth Engine. Remote Sens. 2019, 11,
489. [CrossRef]

50. Parks, S.A.; Holsinger, L.M.; Voss, M.A.; Loehman, R.A.; Robinson, N.P. Mean Composite Fire Severity
Metrics Computed with Google Earth Engine Offer Improved Accuracy and Expanded Mapping Potential.
Remote Sens. 2018, 10, 879. [CrossRef]

51. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
52. Key, C.H.; Benson, N.C.; Soileau, S. CBI Plot Data and Photos. Available online: https://archive.usgs.gov/

archive/sites/www.nrmsc.usgs.gov/science/fire/cbi/plotdata.html (accessed on 7 December 2018).
53. Sikkink, P.G.; Dillon, G.K.; Keane, R.E.; Morgan, P.; Karau, E.C.; Holden, Z.A.; Silverstein, R.P. Composite Burn

Index (CBI) Data and Field Photos Collected for the FIRESEV Project, Western United States; U.S. Forest Service:
Fort Collins, CO, USA, 2013.

http://dx.doi.org/10.1071/WF15082
http://dx.doi.org/10.1002/ecs2.2600
http://dx.doi.org/10.1071/WF07091
http://dx.doi.org/10.1007/s10021-008-9211-7
http://dx.doi.org/10.1016/j.rse.2006.11.022
http://dx.doi.org/10.1080/01431161003752430
http://dx.doi.org/10.1016/j.rse.2006.03.019
http://dx.doi.org/10.1071/WF08013
http://dx.doi.org/10.1071/WF15122
http://dx.doi.org/10.1080/01431161.2010.524678
http://dx.doi.org/10.1080/2150704X.2014.963733
http://dx.doi.org/10.14358/PERS.71.11.1311
http://dx.doi.org/10.1016/j.rse.2018.07.005
http://dx.doi.org/10.1016/j.rse.2017.06.031
http://dx.doi.org/10.1002/rse2.74
http://dx.doi.org/10.1038/nature20584
http://dx.doi.org/10.1371/journal.pone.0184926
http://www.ncbi.nlm.nih.gov/pubmed/28953943
http://dx.doi.org/10.3390/rs11050489
http://dx.doi.org/10.3390/rs10060879
http://dx.doi.org/10.1023/A:1010933404324
https://archive.usgs.gov/archive/sites/www.nrmsc.usgs.gov/science/fire/cbi/plotdata.html
https://archive.usgs.gov/archive/sites/www.nrmsc.usgs.gov/science/fire/cbi/plotdata.html


Remote Sens. 2019, 11, 1735 18 of 19

54. Picotte, J.J. Composite Burn Index (CBI) Data for the Conterminous US, Collected Between 1994 and 2018.
2019, in press.

55. Murphy, K.A.; Reynolds, J.H.; Koltun, J.M. Evaluating the ability of the differenced Normalized Burn Ratio
(dNBR) to predict ecologically significant burn severity in Alaskan boreal forests. Int. J. Wildl. Fire 2008, 17,
490–499. [CrossRef]

56. Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric
and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213.
[CrossRef]

57. Pettorelli, N.; Vik, J.O.; Mysterud, A.; Gaillard, J.-M.; Tucker, C.J.; Stenseth, N.C. Using the satellite-derived
NDVI to assess ecological responses to environmental change. Trends Ecol. Evol. 2005, 20, 503–510. [CrossRef]
[PubMed]

58. McDonald, A.J.; Gemmell, F.M.; Lewis, P.E. Investigation of the utility of spectral vegetation indices for
determining information on coniferous forests. Remote Sens. Environ. 1998, 66, 250–272. [CrossRef]

59. McCarley, T.R.; Smith, A.M.S.; Kolden, C.A.; Kreitler, J. Evaluating the Mid-Infrared Bi-spectral Index for
improved assessment of low-severity fire effects in a conifer forest. Int. J. Wildl. Fire 2018, 27, 407–412.
[CrossRef]

60. Stephenson, N.L. Climatic control of vegetation distribution: the role of the water balance. Am. Nat. 1990,
135, 649–670. [CrossRef]

61. Abatzoglou, J.T.; Dobrowski, S.Z.; Parks, S.A.; Hegewisch, K.C. TerraClimate, a high-resolution global dataset
of monthly climate and climatic water balance from 1958-2015. Sci. Data 2018, 5. [CrossRef] [PubMed]

62. Lutz, J.A.; van Wagtendonk, J.W.; Franklin, J.F. Climatic water deficit, tree species ranges, and climate change
in Yosemite National Park. J. Biogeogr. 2010, 37, 936–950. [CrossRef]

63. Stephenson, N. Actual evapotranspiration and deficit: biologically meaningful correlates of vegetation
distribution across spatial scales. J. Biogeogr. 1998, 25, 855–870. [CrossRef]

64. Krawchuk, M.A.; Haire, S.L.; Coop, J.; Parisien, M.-A.; Whitman, E.; Chong, G.; Miller, C. Topographic and
fire weather controls of fire refugia in forested ecosystems of northwestern North America. Ecosphere 2016, 7,
e01632. [CrossRef]

65. Commission for Environmental Cooperation. CEC Ecological Regions of North America: Toward a Common
Perspective; CEC: Montreal, QC, Canada, 1997.

66. Ndalila, M.N.; Williamson, G.J.; Bowman, D.M.J.S. Geographic Patterns of Fire Severity Following an Extreme
Eucalyptus Forest Fire in Southern Australia: 2013 Forcett-Dunalley Fire. Fire 2018, 1, 40. [CrossRef]

67. Cardil, A.; Mola-Yudego, B.; Blázquez-Casado, Á.; González-Olabarria, J.R. Fire and burn severity assessment:
Calibration of Relative Differenced Normalized Burn Ratio (RdNBR) with field data. J. Environ. Manag. 2019,
235, 342–349. [CrossRef]

68. Harvey, B.J.; Donato, D.C.; Turner, M.G. Drivers and trends in landscape patterns of stand-replacing fire in
forests of the US Northern Rocky Mountains (1984–2010). Landsc. Ecol. 2016, 31, 2367–2383. [CrossRef]

69. Allen, J.L.; Sorbel, B. Assessing the differenced Normalized Burn Ratios ability to map burn severity in
the boreal forest and tundra ecosystems of Alaska’s national parks. Int. J. Wildl. Fire 2008, 17, 463–475.
[CrossRef]

70. Tran, B.N.; Tanase, M.A.; Bennett, L.T.; Aponte, C. Evaluation of Spectral Indices for Assessing Fire Severity
in Australian Temperate Forests. Remote Sens. 2018, 10, 1680. [CrossRef]

71. Cansler, C.A.; McKenzie, D. How robust are burn severity indices when applied in a new region? Evaluation
of alternate field-based and remote-sensing methods. Remote Sens. 2012, 4, 456–483. [CrossRef]

72. Soverel, N.O.; Coops, N.C.; Perrakis, D.D.B.; Daniels, L.D.; Gergel, S.E. The transferability of a dNBR-derived
model to predict burn severity across 10 wildland fires in western Canada. Int. J. Wildl. Fire 2011, 20, 518–531.
[CrossRef]

73. Keyser, A.; Westerling, A. Climate drives inter-annual variability in probability of high severity fire occurrence
in the western United States. Environ. Res. Lett. 2017, 12, 065003. [CrossRef]

74. Barrett, K.; McGuire, A.D.; Hoy, E.E.; Kasischke, E.S. Potential shifts in dominant forest cover in interior
Alaska driven by variations in fire severity. Ecol. Appl. 2011, 21, 2380–2396. [CrossRef]

75. Birch, D.S.; Morgan, P.; Kolden, C.A.; Abatzoglou, J.T.; Dillon, G.K.; Hudak, A.T.; Smith, A.M.S. Vegetation,
topography and daily weather influenced burn severity in central Idaho and western Montana forests.
Ecosphere 2015, 6, art17. [CrossRef]

http://dx.doi.org/10.1071/WF08050
http://dx.doi.org/10.1016/S0034-4257(02)00096-2
http://dx.doi.org/10.1016/j.tree.2005.05.011
http://www.ncbi.nlm.nih.gov/pubmed/16701427
http://dx.doi.org/10.1016/S0034-4257(98)00057-1
http://dx.doi.org/10.1071/WF17137
http://dx.doi.org/10.1086/285067
http://dx.doi.org/10.1038/sdata.2017.191
http://www.ncbi.nlm.nih.gov/pubmed/29313841
http://dx.doi.org/10.1111/j.1365-2699.2009.02268.x
http://dx.doi.org/10.1046/j.1365-2699.1998.00233.x
http://dx.doi.org/10.1002/ecs2.1632
http://dx.doi.org/10.3390/fire1030040
http://dx.doi.org/10.1016/j.jenvman.2019.01.077
http://dx.doi.org/10.1007/s10980-016-0408-4
http://dx.doi.org/10.1071/WF08034
http://dx.doi.org/10.3390/rs10111680
http://dx.doi.org/10.3390/rs4020456
http://dx.doi.org/10.1071/WF10081
http://dx.doi.org/10.1088/1748-9326/aa6b10
http://dx.doi.org/10.1890/10-0896.1
http://dx.doi.org/10.1890/ES14-00213.1


Remote Sens. 2019, 11, 1735 19 of 19

76. Stevens-Rumann, C.; Prichard, S.; Strand, E.; Morgan, P. Prior wildfires influence burn severity of subsequent
large fires. Can. J. For. Res. 2016, 46, 1375–1385. [CrossRef]

77. Picotte, J.J.; Robertson, K.M. Validation of remote sensing of burn severity in south-eastern US ecosystems.
Int. J. Wildl. Fire 2011, 20, 453–464. [CrossRef]

78. McCarley, T.R.; Kolden, C.A.; Vaillant, N.M.; Hudak, A.T.; Smith, A.M.S.; Wing, B.M.; Kellogg, B.S.;
Kreitler, J. Multi-temporal LiDAR and Landsat quantification of fire-induced changes to forest structure.
Remote Sens. Environ. 2017, 191, 419–432. [CrossRef]

79. Lentile, L.B.; Holden, Z.A.; Smith, A.M.S.; Falkowski, M.J.; Hudak, A.T.; Morgan, P.; Lewis, S.A.; Gessler, P.E.;
Benson, N.C. Remote sensing techniques to assess active fire characteristics and post-fire effects. Int. J.
Wildl. Fire 2006, 15, 319–345. [CrossRef]

80. Kasischke, E.S.; Turetsky, M.R.; Ottmar, R.D.; French, N.H.F.; Hoy, E.E.; Kane, E.S. Evaluation of the composite
burn index for assessing fire severity in Alaskan black spruce forests. Int. J. Wildl. Fire 2008, 17, 515–526.
[CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1139/cjfr-2016-0185
http://dx.doi.org/10.1071/WF10013
http://dx.doi.org/10.1016/j.rse.2016.12.022
http://dx.doi.org/10.1071/WF05097
http://dx.doi.org/10.1071/WF08002
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Composite Burn Index Field Data 
	Explanatory Variables: Spectral, Climatic, and Geographic Data 
	Random Forest Model 
	Model Implementation in Earth Engine 
	Evaluating the Potential for Spatial Variability in the Relationship between CBI and Spectral Indices 

	Results 
	Discussion 
	Conclusions 
	References

