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Abstract

Forest understory vegetation is an important characteristic of the forest. Predicting and map-

ping understory is a critical need for forest management and conservation planning, but it

has proved difficult with available methods to date. LiDAR has the potential to generate

remotely sensed forest understory structure data, but this potential has yet to be fully vali-

dated. Our objective was to examine the capacity of LiDAR point cloud data to predict forest

understory cover. We modeled ground-based observations of understory structure in three

vertical strata (0.5 m to < 1.5 m, 1.5 m to < 2.5 m, 2.5 m to < 3.5 m) as a function of a variety

of LiDAR metrics using both mixed-effects and Random Forest models. We compared four

understory LiDAR metrics designed to control for the spatial heterogeneity of sampling den-

sity. The four metrics were highly correlated and they all produced high values of variance

explained in mixed-effects models. The top-ranked model used a voxel-based understory

metric along with vertical stratum (Akaike weight = 1, explained variance = 87%, cross-vali-

dation error = 15.6%). We found evidence of occlusion of LiDAR pulses in the lowest stratum

but no evidence that the occlusion influenced the predictability of understory structure. The

Random Forest model results were consistent with those of the mixed-effects models, in

that all four understory LiDAR metrics were identified as important, along with vertical stra-

tum. The Random Forest model explained 74.4% of the variance, but had a lower cross-vali-

dation error of 12.9%. We conclude that the best approach to predict understory structure is

using the mixed-effects model with the voxel-based understory LiDAR metric along with ver-

tical stratum, because it yielded the highest explained variance with the fewest number of

variables. However, results show that other understory LiDAR metrics (fractional cover, nor-

malized cover and leaf area density) would still be effective in mixed-effects and Random

Forest modelling approaches.

Introduction

Understory vegetation is an important part of the forested ecosystem. It contributes greatly to

nutrient cycling [1, 2], wildlife habitat [3–5], fire behaviour [6–8], microclimate [2] and carbon
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accounting [9]. Understory vegetation communities are therefore often considered a good

indicator of forest ecological integrity [10, 11]. However, spatial predictions of understory

cover or density have been extremely difficult to generate using traditional variables such as

topography, overstory and soils [12]. Active remote-sensing technology such as LiDAR (light

detection and ranging) could be used to generate estimates to address this issue.

LiDAR provides an estimate of three-dimensional forest structure including estimates of

canopy structure, understory vegetation and terrain. LiDAR is a survey method that measures

the return time of a laser light pulse reflecting off solid objects such as the vegetation or the

ground. These laser returns generate a three-dimensional representation of the forest. This

capacity has conferred large advantages to forest managers, conservationists and researchers in

their attempts to manage the forest efficiently and sustainably. LiDAR can generate reliable,

robust estimates of many forest structure variables including canopy height and cover [13–15],

as well as basal area and tree density [13, 16] and has similar potential for understory structure.

Our objective in this paper is to evaluate the potential of LiDAR to generate predictions of

understory cover by comparing to field measures of understory. To achieve this objective, we

examine alternative LiDAR metrics that control for spatial heterogeneity of sampling density,

we compare regression and machine learning statistical approaches, and we examine the value

of multiple variables in our models.

A key challenge of working with LiDAR data is that there is a large amount of spatial het-

erogeneity in the sampling density over space that occurs in the normal course of generating

LiDAR point clouds. This spatial heterogeneity is due to variations in scan angle, flight height,

movement of the aircraft during data collection, the degree of overlapping flight lines, and

topography [17–20]. Thus, relative measures of vegetation density or cover, where the number

of returns in a vertical stratum are scaled relative to some measure of sampling density, should

provide better estimates of true understory vegetation cover. A variety of approaches have

been used to relativize these measures, for example, dividing the number of returns in a verti-

cal bin by the total number of returns in the column, or by the number of returns in the bin

and below the bin [21]. We examine four different understory structure metrics based on dif-

ferent approaches to control for sampling density.

We explored two statistical approaches for modelling understory vegetation structure as a

function of LiDAR data: machine learning and mixed effects regression models. Machine

learning, specifically Random Forest [22], has been used to model forest inventory variables

with a large suite of LiDAR derived predictors [23, 24]. Machine learning in this context strives

to produce the best prediction of the forest inventory variables. However, machine learning

does not produce an ecologically interpretable relationship per se, only estimates of variable

importance. Machine learning makes no assumptions about the structure of the data, is ideal

for predicting relationships that are non-linear, is insensitive to correlations among variables,

and interactions are automatically modeled [25]. However, machine learning is prone to bias

associated with incomplete ranges of conditions being sampled [25]. As an alternative, we

explored linear mixed-effects regression models. These models make assumptions of homosce-

dasticity and normality of errors which must be checked but can produce more parsimonious

and more interpretable models than machine learning in some instances. In Random Forest

models, large suites of variables are usually included to achieve the best predictive capacity. In

the regression models, it is more important to limit the number of variables included to avoid

overfitting and strong correlations between explanatory variables.

Occlusion has been discussed in the literature as a possible issue limiting LiDAR effective-

ness for prediction of understory structure [26, 27], but more recent studies have shown that

the potential occlusion may not interfere with generating predictions. Latifi et al. [23] demon-

strated that artificially reducing the density of the LiDAR point cloud did not have an
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appreciable effect on variance explained in models predicting understory structure. In another

study, prediction errors of understory vegetation cover were not related with canopy cover

[28]. However, forest type in some instances can influence the predictive accuracy of models

[29]. In both of our modelling approaches, we included additional variables beyond the under-

story LiDAR metrics that may influence the amount of occlusion of the laser pulse, namely,

the amount of overstory, the forest type, and the vertical stratum. All three of these variables

could reflect the amount of vegetation in the area above the vertical stratum of interest.

Our primary objective is to quantify the capacity of LiDAR to estimate understory struc-

ture. To achieve this, 1; we compare the effectiveness of four possible understory LiDAR met-

rics for predicting understory cover that control for sampling density, 2; we examine the

influence of potentially important additional explanatory variables on the model which will

inform us about the importance of occlusion, and 3; we compare the mixed effects vs Random

Forest approach for generating predictions. Our aim is to generate robust and effective predic-

tions of understory cover that could inform forest management and conservation.

Methods

Study area

This project was conducted in the Petawawa Research Forest. Permission to conduct the study

at the Petawawa Research Forest was granted by Natural Resources Canada. The research for-

est covers 9,945 hectares in the Great Lakes-St. Lawrence forest region (45˚ 58’ 46.74” N, 77˚

30’ 22.11” W), Ontario, Canada. The study area is on the Southern end of the Precambrian

Shield, on bedrock of granites and gneisses. Forest composition features White Pine (Pinus
strobus Linnaeus), Red Pine (Pinus resinosa Aiton), Red Oak (Quercus rubra Linnaeus), Yellow

Birch (Betula alleghaniensis Britton), Sugar Maple (Acer saccharum Marshall), and Red Maple

(Acer rubrum Linnaeus) as dominant species, often in uneven-aged forests. Presently, the Peta-

wawa Research Forest is dominated by healthy but mature and overmature overstory (80–140

years) coupled primarily with low-quality regeneration and understories. For the purpose of

the current study, we classified the forest into four types (TYPE) to explore the influence of

forest type on the consistency of the relationship between understory vegetation structure

measured in the field and LIDAR metrics. The four classes of forest type (TYPE) are Pine, Red

Oak, Mixedwood without Pine, and Mixedwood with Pine. These four classes account for

approximately 71% of the landbase of the research forest.

Field data collection

Within the Petawawa Research Forest, plots were selected from a 25 m-resolution rasterized

LiDAR database and Forest Resource Inventory data based on aerial photo interpretation.

Potential plots were selected based on a stratification by forest type, overstory density, and

understory density. Initial overstory was measured as the relative number of LiDAR laser pulse

returns in overstory (> 4 m), and understory density as the relative number of LiDAR laser

pulse returns 4 m or lower. We divided the full range of overstory values into 10 equal bins,

and the full range of understory values into 10 equal bins. For each combination of understory

by overstory bin we selected five potential plots for each of four forest types, for a total of 2000

plots, 500 in each 10 by 10 matrix, with one matrix per each forest type. This is a rough stratifi-

cation but helped to fill the statistical space to ensure optimal conditions for model construc-

tion. We sampled 437 plots out of the possible 2000, trying to select 1–5 plots from all cells in

the matrix. We acknowledge that this stratification would not be effective if the relative num-

ber of LiDAR pulse returns was unrelated to actual understory vegetation cover. However, it
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was the most intuitive method to ensure that all overstory and understory conditions in our

study area were represented in the sample.

We collected vegetation data on 250 plots in 2015 and on an additional 187 plots in 2016.

Plots were selected in the field from the list of preselected plots based on accessibility and con-

formity with classified forest type, understory, and overstory. At each plot centre, we used an

SX Blue II GPS to generate a sub-meter accurate location through averaging a minimum num-

ber of 300 points (Geneq Inc., Montreal, Canada). Our field data collection attempted to gen-

erate a field-based point cloud to match the LiDAR based point cloud. We measured forest

structure on ground-based plots in nine vertical strata (0–0.5 m, 0.5–1 m, 1–1.5 m, 1.5–2 m,

2–2.5 m, 2.5–3 m, 3–3.5 m, 3.5–4.0 m,> 4 m). From the centre point we created eight radial

transects (12 m in length each) starting in a north direction and moving clockwise by 45

degrees for each additional transect. Along each transect, data were collected at each meter for

a total of 97 sample locations in each plot, including the centre point (Fig 1). To sample the

vegetation structure, observers recorded the presence or absence of vegetation within a radius

of 15 cm for each of the nine vertical strata. Thus, there were 97 sampling points x 9 strata = 873

presence/absence points collected in each 12 m radius plot volume. The original vertical strata

were later grouped into three strata (S1 = 0.5–1.5 m, S2 = 1.5–2.5 m, S3 = 2.5–3.5 m). We

excluded points below 0.5 as they are difficult to distinguish from ground points. We excluded

points above 3.5 m as they were difficult to estimate from the ground. The total number of veg-

etation presences in each stratum (0–194) were recorded in the FIELD variable for subsequent

analysis. This field collection would represent a lower sampling density than the LiDAR data

which are at 6 pulses per square meter with up to 8 returns per pulse which resulted in 2.44

returns per m3 compared to the field data with 0.43 returns per m3. These data are not strictly

comparable since the field data represent presence and absence, whereas the LiDAR returns

represent only presence but give a general impression of relative sampling density.

LiDAR acquisition

Airborne LiDAR data were collected over the Petawawa Research Forest from August 17–20,

2012. The Riegl 680i sensor was carried aboard a Cessna 172 aircraft flown at an average alti-

tude of 750 m. Technical acquisition specifications are provided in Table 1. The data were col-

lected as a full-waveform and provided as a discrete point file (LAS 1.1) for use in this project.

Flight overlap was approximately fifty percent.

Data processing and LiDAR variables

We developed specific LiDAR understory cover metrics that are expected to capture the vege-

tation understory density directly. We identified four metrics for our analysis. Three of these

metrics are used in the literature: fractional cover (FRAC, modified from Wing et al. [28]), leaf

area density (LAD, [30]), and voxel cover (VOX1m, [31]). The fourth metric considered was

normalized cover (NORM), because it is an easily interpretable and easily calculated alterna-

tive. Fractional cover is calculated by summing the number of LiDAR vegetation returns for

each understory vertical stratum and dividing by the sum of understory and ground returns.

Leaf area density is calculated as the negative log of the number of returns in a vertical stratum

divided by all returns in and below the vertical bin and then divided by a constant. Normalized

cover is calculated by dividing all vegetation returns in the understory stratum divided by all

first returns. The voxel cover approach filters all returns by estimating presence/absence of

returns in each standard voxel (in our case 1 m3) in the vertical stratum. For example, a 2 m x

5 m x 5 m vegetation stratum that contains 50 1-m3 voxels would have a voxel cover value

between 0 and 50, equal to the number of voxels that contain vegetation. Sampling density is
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extremely heterogeneous due to different factors such as flight line overlap and the pitch and

yaw of the plane. The LiDAR metrics provide four alternative ways to scale the number of

returns in a vertical bin by sampling density. In addition to these four specific LiDAR

Fig 1. Sampling design for field observations of vegetation structure (FIELD). Measurements around each point on the transects and vertical strata were within a 15

cm-radius (r).

https://doi.org/10.1371/journal.pone.0220096.g001

Table 1. Airborne LiDAR acquisition specifications.

Parameter Value

Pulse repetition rate 150 Khz

Frequency 76.67 Hz

Scan Angle ± 20 Degrees

FOV 40 Degrees

Line spacing: Cross track 0.6 m

Line spacing: Along track 0.6 m

Line spacing between flight lines 250 m

Laser footprint min: 0.38 m

Laser footprint max 0.42 m

Average point density: All Returns ~ 15 pts/m2

Average point density: Last Returns ~ 6 pts/m2

https://doi.org/10.1371/journal.pone.0220096.t001
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understory cover metrics, we calculated a suite of standard LiDAR point cloud metrics such as

canopy cover and canopy height (S1 Table).

Analysis

We used linear mixed effects models to determine the capacity of our four main LiDAR under-

story cover metrics to predict understory cover recorded in the field (FIELD) in each of the

three vertical strata defined above (ST1, ST2, ST3), and to examine the influence of secondary

explanatory variables [32]. These secondary explanatory variables consisted of forest TYPE

(based on overstory composition), STRATUM (vertical 1 m strata, ST1-ST3), and OVER-

STORY (S1 Table). The OVERSTORY variable was a measure of LiDAR vegetation cover in

the vertical column above the stratum of interest calculated by classifying canopy cover (CC)

into three classes (low, medium, high). We treated the plot as a random effect to account for

multiple measurements in each plot. We formulated 16 candidate models consisting of LiDAR

variables, with the constraint of maintaining variance inflation factors (VIF) < 10 to avoid

issues of multicollinearity (Table 2). For each the four main LiDAR metric, we derived four

models: 1) a null model consisting only of the LiDAR metric, 2) a model with the LiDAR met-

ric, OVERSTORY and, their interaction, 3) a model with the LiDAR metric, TYPE, and their

interaction, and 4) a model with the LiDAR metric, STRATUM, and their interaction. We

ranked all mixed effects models based on Akaike’s information criterion (AIC, [33, 34]) and

calculated the R2 values. We also computed the symmetric mean absolute percentage error

(SMAPE), based on 10-fold cross-validation [35], for the top-ranked models, and calculated

SMAPE values for each of the 3 vertical strata separately. Parameters of the mixed effects mod-

els were estimated by maximum likelihood in R with the nlme package [23, 32, 36].

We used Random Forest with the same FIELD response variable as in the mixed-effects

models described above. Because Random Forests are non-parametric and do not yield a log-

likelihood, we ran a stepwise procedure with 341 LiDAR derived variables (which includes

overstory estimates) (S1 Table), plus secondary variables forest TYPE (from Forest Resource

Inventory), and STRATUM. We used mean decrease in accuracy to rank variable importance

[37]. At each iteration, we removed the 20% least influential variables and compared the

explained variance. Models were built using the randomForest package in R [37]. We exam-

ined the importance of variables in the suite of random forest models. Similar to the mixed

effects models above, we quantified model performance with the percent variance explained

and SMAPE based on 10-fold cross-validation. Finally, we compared the prediction perfor-

mance of the mixed effects and Random Forest approaches.

Results

Relationship among LiDAR metrics

The FIELD measure of understory cover was strongly correlated with all of the four main

LiDAR metrics we investigated (Fig 2A–2D). However, the FRAC and VOX1m metrics were

slightly more linearly correlated than the other metrics to the FIELD measure (Fig 2A–2D).

Nonetheless, the four understory vegetation metrics were all highly correlated with one

another (Table 3).

Mixed-effects models

The model consisting of the voxel-based cover estimate (VOX1m) with STRATUM and their

interaction was the most parsimonious among all sixteen models considered (Table 4). This

model had all the support (Akaike weight = 1, Table 4, Fig 3A). This model also had the highest
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conditional R2 (along with the FRAC + STRATUM + interaction model, although all sixteen

models had high R2 values (0.71–0.87). For each of the four LiDAR metrics we considered, we

observed the same pattern: the addition of STRATUM and the interaction to the null models

resulted in consistently better model performance in terms of delta AIC and R2. The addition

of OVERSTORY or TYPE resulted in much less model improvement than the addition of

STRATUM. The model with the most support did not include forest type or overstory, which

is important since forest type was derived from forest inventory data and cannot be extracted

from LiDAR point clouds.

The four LiDAR metrics had positive slopes in all of the mixed effects models (Fig 4,

Table 5, for example). In our best model, the intercept of the lowest STRATUM was higher

than in the upper strata (Fig 4). Although the model included the interaction between STRA-

TUM and voxel cover, there was no evidence of different slopes of LiDAR among strata (Fig 4,

Table 5). Symmetric mean absolute percentage (SMAPE) errors for the top-ranked mixed

effects model was 0.156, but these values varied when investigating each stratum separately

(Table 6). The SMAPE value was lowest for the lowest strata (0.107) and greatest for the high-

est strata (0.190) suggesting no evidence of occlusion. There were 437 observations for each

stratum.

Random forest models

We examined the percent variance explained and the number of variables included to choose a

final Random Forest model. The base model with all 341 LiDAR-derived variables, forest

TYPE, and STRATUM explained 74.8% of the variance, but the final model with only 59 pre-

dictors had a very similar variance explained (74.4%) (Fig 3B, Table 7, S2 Table). The 10-fold

cross-validation on this reduced model showed an overall mean error rate of 0.129 (Table 6).

Some variables appeared more often than others among the 18 Random Forest models con-

sidered. These variables consisted of STRATUM, GAP (the inverse of LAD), and LAD. In

addition, most or all of the LiDAR understory vegetation cover metrics (VOX1m, FRAC,

Table 2. Mixed effects model explaining understory cover recorded in the field (FIELD): TYPE = forest type based on overstory composition, STRATUM = vertical

1 m strata, ST1-ST3, and OVERSTORY = a measure of LiDAR vegetation cover in the vertical column above the stratum of interest calculated by classifying canopy

cover (CC) into three classes (low, medium, high), see S1 Table. The plot was treated as a random effect in each model.

Model Name Model fixed effects structure Biological interpretation

FRAC null FRAC Relationship between FRAC and FIELD is constant

FRAC � STRATUM FRAC + STRATUM + FRAC�STRATUM Relationship between FRAC and FIELD differs among STRATUM

FRAC � OVERSTORY FRAC + OVERSTORY + FRAC�OVERSTORY Relationship between FRAC and FIELD differs among OVERSTORY

FRAC � TYPE FRAC + TYPE + FRAC�TYPE Relationship between FRAC and FIELD differs among TYPE

NORM null NORM Relationship between NORM and FIELD is constant

NORM � STRATUM NORM + STRATUM + NORM�STRATUM Relationship between NORM and FIELD differs among STRATUM

NORM � OVERSTORY NORM + OVERSTORY + FRAC�OVERSTORY Relationship between NORM and FIELD differs among OVERSTORY

NORM � TYPE NORM + TYPE + FRAC�TYPE Relationship between NORM and FIELD differs among TYPE

VOX1m null VOX1m Relationship between VOX1m and FIELD is constant

VOX1m � STRATUM VOX1m +STRATUM + VOX1m�STRATUM Relationship between VOX1m and FIELD differs among STRATUM

VOX1m � OVERSTORY VOX1m + OVERSTORY + VOX1m�OVERSTORY Relationship between VOX1m and FIELD differs among OVERSTORY

VOX1m � TYPE VOX1m + TYPE + VOX1m�TYPE Relationship between VOX1m and FIELD differs among TYPE

LAD (null) LAD Relationship between LAD and FIELD is constant

LAD � STRATUM LAD + STRATUM + LAD�STRATUM Relationship between LAD and FIELD differs among STRATUM

LAD � OVERSTORY LAD + OVERSTORY + LAD�OVERSTORY Relationship between LAD and FIELD differs among OVERSTORY

LAD � TYPE LAD + TYPE + LAD�TYPE Relationship between LAD and FIELD differs among TYPE

https://doi.org/10.1371/journal.pone.0220096.t002
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NORM) were represented in the top 10 variables of most of the 18 potential models (S3 Table).

Crown closure (CC), an estimate of overstory, was also often among the top 10 most important

variables within the models considered. Forest TYPE never occurred among the top 10 vari-

ables (S3 Table).

Fig 2. Scatterplot of FIELD (measured density) against the LiDAR metrics, a) fractional cover (FRAC), b) normalized cover (NORM), c) leaf area density (LAD),

and d) voxel cover (VOX1m), including Pearson product-moment correlation coefficients.

https://doi.org/10.1371/journal.pone.0220096.g002

Table 3. Pearson product-moment correlations between pairs of understory cover LiDAR metrics included in

analysis (n = 1310).

Correlation r Lower 95% CL Upper 95% CL

FRAC vs NORM 0.77 0.751 0.794

FRAC vs VOX1m 0.84 0.819 0.852

FRAC vs LAD 0.77 0.744 0.789

NORM vs LAD 0.81 0.79 0.827

NORM vs VOX1m 0.92 0.911 0.927

VOX1m vs LAD 0.79 0.767 0.808

https://doi.org/10.1371/journal.pone.0220096.t003
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Discussion

In this study, our primary objective was to quantify the capacity of LiDAR to estimate under-

story structure so that it can be predicted across a landscape. To address this objective, first we

compared the effectiveness of four possible understory LiDAR metrics (fractional cover, leaf

area density, voxel cover, and normalized cover) for predicting understory cover. Each of these

metrics used some measure of the number or presence of LiDAR returns in an understory ver-

tical stratum and standardized these measures with an estimate of sampling density. All four

LiDAR metrics were effective at predicting the amount of structure in an understory stratum,

probably because they are all highly correlated direct measures of the density of understory

vegetation. The best metric based on mixed effects modelling, however, was the voxel-based

cover estimate (VOX1m) with the addition of STRATUM with a conditional R2 of 0.87. The

voxel-based approach is relatively easy to calculate and provides a direct measure of the

amount of understory structure.

We anticipated that other variables could influence the predictions of understory. We iden-

tified three potentially important variables that might influence occlusion of understory struc-

ture: overstory, forest type and stratum. Increased overstory can reduce the ability of LiDAR to

predict understory structure due to occlusion [26, 27]. For LiDAR to detect the understory

structure, LiDAR pulses must reach and be reflected by understory vegetation. A greater vege-

tation interception above the area of interest will result in fewer pulses returning from the

understory. Both forest type and stratum will also influence the amount of vegetation in the

area above the area of interest and therefore potentially alter the relationship of field measured

and LiDAR measured understory.

Correlations between the three secondary explanatory variables (STRATUM, forest TYPE,

and OVERSTORY) made it impossible to include all variables in a single model. Our best sup-

ported model included STRATUM, where we found that the lowest stratum (ST1, 0.5–1.5 m)

had the highest intercept. This is consistent with occlusion in that we have more vegetation in

ST1 than ST2 (1.5–2.5 m) and ST3 (2.5–3.5 m) for a given value of VOX1m. This is consistent

Table 4. R2 and AIC values for sixteen candidate linear mixed-effects models. Note that marginal R2 denotes the percent variance explained by the fixed effects,

whereas the conditional R2 includes both fixed effects and random effects. Delta AIC is the difference between each model relative to the most parsimonious model and

Akaike weight indicates the percent support of a given model.

Model Marginal R2 Conditional R2 AIC Delta AIC Akaike weight

VOX1m � STRATUM 0.62 0.87 11868.87 0 1

FRAC � STRATUM 0.65 0.87 11901.00 32.13 0

LAD � STRATUM 0.56 0.82 11998.29 129.42 0

NORM � STRATUM 0.52 0.83 12099.16 230.29 0

VOX1m � OVERSTORY 0.60 0.82 12348.32 479.45 0

LAD � OVERSTORY 0.51 0.73 12384.88 516.01 0

VOX1m � TYPE 0.60 0.82 12384.88 516.01 0

VOX1m null 0.60 0.82 12385.78 516.91 0

LAD � TYPE 0.51 0.72 12396.42 527.55 0

LAD null 0.50 0.71 12407.11 538.24 0

NORM � OVERSTORY 0.53 0.75 12450.66 581.79 0

NORM � TYPE 0.51 0.75 12563.97 695.1 0

NORM null 0.49 0.75 12568.4 699.53 0

FRAC � OVERSTORY 0.58 0.77 12585.04 716.17 0

FRAC � TYPE 0.57 0.75 12613.19 744.32 0

FRAC null 0.56 0.75 12617.05 748.18 0

https://doi.org/10.1371/journal.pone.0220096.t004
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Fig 3. Predicted versus observed scatterplot. (a) Predictions of FIELD generated from mixed-effects model consisting of VOX1m

+ STRATUM + interaction, (b) Predictions of FIELD generated from Random Forest model with 59 explanatory variables.

https://doi.org/10.1371/journal.pone.0220096.g003
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with the idea that fewer laser pulses are reaching the lower stratum. The relationship between

the field observed structure and VOX1m did not vary with STRATUM. Surprisingly, we found

that the error in the predicted relationship was greatest in the highest STRATUM and lowest

in the lowest STRATUM suggesting that there was no reduction in predictability associated

with potential occlusion. These differences in prediction error suggest that the model can bet-

ter predict new observations in the low stratum than the high stratum. A potential explanation

for this result would be that the understory vegetation in the lower stratum is easier to estimate

Fig 4. Predictions of FIELD for each of three strata based on the mixed-effects model consisting of VOX1m + STRATUM + interaction. Dashed lines around solid

lines denote 95% confidence intervals around predictions.

https://doi.org/10.1371/journal.pone.0220096.g004
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on the ground and therefore there is less noise in the relationship between the field and the

LiDAR measures in the lower stratum. Either way, we conclude that our LiDAR sampling

intensity was sufficient in our forest system to capture the understory structure regardless of

the density of vegetation above the area of interest and the related potential for occlusion.

There is some discrepancy in the literature on the effect of occlusion. Latifi et al. [29] found

that thinning LiDAR data by artificially reducing the sampling density did not impact the

effectiveness of models to predict understory. Their original data had a high point density of

30–40 points per m2 and a maximum of 11 returns. Data were thinned to two different levels

but Latifi et al. [29] do not report on the final point density after thinning. Our data are at

roughly 11.69 vegetation returns per m2, with about 0.55 vegetation returns per m3 in the 0.5–

4 m understory stratum. Obviously, the effectiveness of LiDAR to capture understory structure

will eventually be undermined by a sufficient reduction in sampling density, but this limit does

not seem to have been reached in the Petawawa research forest. Gonzalez-Ferreiro et al. [38]

showed that reducing pulse density from 8 pulses per m2 to 0.5 pulses per m2, did not decrease

model precision in estimating stand variables. Wing et al. [28] found no trends between under-

story vegetation cover prediction error and canopy cover, lending support to the idea that

under some natural overstory conditions and common LiDAR sampling densities, occlusion is

not an issue for predicting understory with LiDAR. In contrast, Ruiz et al. [19] reported an

effect of LiDAR sampling density on model R2 values but only at levels below around 5 points/

m2. It is unclear how this number translates into pulses reaching the understory. The lack of

influence of forest type on understory cover predictions enables predicting understory from

LiDAR alone without relying on traditional forest resource inventory data.

The comparisons of mixed effects and Random Forest models revealed some obvious align-

ment. All four of the LiDAR metrics considered (fractional cover, leaf area density, normalized

cover, and voxel cover) produced models with high R2 values. All four of these variables also

had very high variable importance in the Random Forest models. Voxel cover (VOX1m) was

the most important variable in the selected Random Forest Model. The stratum variable

appeared often in the top Random Forest models and was also important in the top-ranked

mixed-effects model (VOX1m � STRATUM). The Random Forest model had a high variance

Table 5. Estimates of the best supported mixed-effects model consisting of VOX1m + STRATUM + interaction and a random effect of plot.

Estimate Lower 95% CL Upper 95% CL

intercept 64.35 60.25 68.46

LIDAR 0.03 0.29 0.32

STRATUM.ST2 -21.94 -25.96 -17.98

STRATUM.ST3 -29.38 -33.48 -25.28

LIDAR�STRATUM.ST2 -0.016 -0.039 0.008

LIDAR�STRATUM.ST3 -0.010 -0.037 0.017

https://doi.org/10.1371/journal.pone.0220096.t005

Table 6. Ten-fold cross-validation results from top linear mixed-effects model and the selected Random Forest model, based on symmetric mean absolute percent-

age error (SMAPE). Note that average values of SMAPE are given for predictions of all STRATUM levels, but also for predictions specific to STRATUM levels.

Model SMAPE mean SMAPE sd (n = 10)

VOX1m � STRATUM predictions of all STRATUM levels 0.156 0.014

predictions of STRATUM 1 0.107 0.016

predictions of STRATUM 2 0.170 0.024

predictions of STRATUM 3 0.190 0.020

Random forest (59 predictors) 0.129 0.015

https://doi.org/10.1371/journal.pone.0220096.t006
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explained (75%), but not as high as the best mixed effects model that included the voxel-based

measure of cover (87%). Our selected Random Forest model had 59 explanatory variables,

whereas the best mixed effects model had two explanatory variables and their interaction, as

well as a random effect of plot. Other variables with high importance in the Random Forest

models included other direct measures of understory structure, and canopy closure (S2 Table),

which is expected to influence the amount of vegetation in the understory through light avail-

ability. The prediction error was slightly lower for the random forest model than for the mixed

effects model (12.9% vs 15.6%), albeit at the cost of including 59 explanatory variables com-

pared to 8 parameters estimated in the mixed effects model. Based on our results, generating

landscape-wide predictions using the mixed-effects model should be simpler and more effi-

cient than with the Random Forest model. For these reasons (12% higher explained variance,

fewer explanatory variables, and similar prediction error), we recommend the mixed effects

model for predicting understory vegetation structure with LiDAR, but we acknowledge that

the Random Forest model also generates robust predictions.

Direct evaluations of LiDAR metrics to capture understory cover are relatively rare. Studies

have shown good agreement between field and LiDAR measures of forest stand biomass [39],

but biomass is likely driven primarily by tree biomass rather than understory. Asner et al. [40]

explored structural transformation of rain forests due to invasive plants and used LiDAR to

estimate structural changes in the understory. However, Asner et al. [40] did not report quanti-

tative comparisons of field and LiDAR measures. Martinuzzi et al. [41] produced classification

accuracies of 83% in predicting the presence of shrubs, but not their abundance. Wing et al.

[28] compared understory vegetation cover and airborne LiDAR estimates with the addition

of a filter for intensity values in an interior ponderosa pine forest. Their models had R2 values

from 0.7 to 0.8 and accuracies of ± 22%. Our models achieved slightly higher R2 with slightly

lower error rates without the use of the intensity filter, suggesting that the latter filter may not

always be necessary to generate good estimates. As well, the intensity filter is affected by a

number of factors such as elevation and the nature of the object intercepted that are difficult to

Table 7. Random forest models: Mean squared residuals and percent variance explained.

Number of Predictors in model Mean Squared Residuals Percent variance Explained

341 (Base model) 484 74.8

276 485 74.7

223 485 74.8

180 484 74.7

145 476 75.2

116 486 74.7

93 481 75.0

74 492 74.3

59 490 74.4

47 513 73.3

37 508 73.5

29 531 72.4

22 553 71.2

17 528 72.5

13 558 70.9

10 580 69.8

7 569 70.4

5 632 67.1

https://doi.org/10.1371/journal.pone.0220096.t007
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normalize, so we prefer models that do not require intensity filters. Latifi et al. [29] also made a

direct comparison of ground-based vs LiDAR estimates of understory cover in temperate

mixed stands, and found strong relationships in the top canopy and the herbal layer with

lower predictive power in the intermediate stand layers. Their shrub layer regression model

had a relatively low R2 value of 37%. In a later study, Latifi et al. [23] showed an R2 of 80% for

the shrub layer based on thinned LiDAR point clouds and new analytical methods. Campbell

et al. [21] also compared field and LiDAR measures of understory directly in mixedwood for-

ests and generated an R2 of 0.44 based on a relative point density similar to metrics that we

used here.

It is unclear why there is so much variation in the ability of LiDAR to predict understory

structure but it suggests that we should be somewhat cautious in assuming that individual

LiDAR metrics are always capturing the understory structure. It is important to note that

some of the error in prediction in our models is likely the result of the lag between the LiDAR

acquisition (2012) and the field data acquisition (2016–2017). This lag is likely to result in the

most error in the youngest stands where changes in herb and shrub growth are likely to be

greatest but I in the analysis, most stands are mature forest. Likely with less lag between

LiDAR and ground-based measures we would have seen even better predictions. In addition,

the error associated with GPS locations can introduce error into the relationship between

ground-based and LiDAR estimates, although GPS technology is constantly improving. Our

GPS (SXblue), reports sub meter accuracy under ideal conditions, but discrepancy in geoposi-

tion probably accounts for some of the error in prediction.

Despite the limited work directly evaluating LiDAR measures of understory vegetation

structure, many studies have explored the use of LiDAR to capture wildlife habitat structure

some of which is related to understory [42–46] One of the most commonly reported relation-

ships is between vegetation structural diversity or understory density and wildlife diversity [5,

47–49]. In addition, vegetation understory structure explained bird species composition in a

number of studies [5, 50, 51]. Melin et al. [52] found that a LiDAR metric similar to fractional

cover to estimate shrub density below 5 m was a good predictor of grouse brood occurrence in

Finland, consistent with expectations based on known habitat preferences of the species. How-

ever, they did not test the assumption that the LiDAR metric effectively estimates vegetation

density below 5 m. All of these studies do however, provide indirect evidence for the effective-

ness of LiDAR estimates to predict understory cover or density.

Conclusions

Based on the highest variance explained, the fewer number of explanatory variables, and ease

of interpretation and application, we recommend using the mixed-effects model consisting of

voxel-based cover estimate, stratum, and their interaction to generate spatial estimates of

understory cover. Nonetheless, all four LiDAR metrics that we considered and both analytical

approaches (mixed effects models, Random Forests) produced predictions suitable for many

ecological and forest planning applications. This information could improve spatially-explicit

mapping of wildlife habitat, fire behaviour, or forest ecosystem dynamics. Measuring under-

story cover in situ is not difficult, but many applications require maps or spatial estimates of

attributes for forest management and conservation applications over large areas. LiDAR

remote sensing is the most efficient approach to generating these spatial estimates of forest

attributes. Our results fully support the indirect evidence provided from wildlife studies that

LiDAR can predict understory vegetation structure even in the presence of a mature tree can-

opy. With error percentages of around 15%, these spatial predictions will introduce some

uncertainty into predictions, which should be factored into decision-making. With increasing
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sampling density associated with better LiDAR technology, we anticipate that understory

cover models will become more reliable and generalizable across regions. In particular,

because the models are not dependent on any ecological relationships per se, because they use

direct measures of vegetation cover, we believe that under similar sampling densities the mod-

els should be generalizable. Additional testing of this approach in different forested ecosystems

would provide more confidence in the transferability of the models.
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