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Abstract: Recent advances in remote sensing technology provide sufficient spatial detail to achieve
species-level classification over large vegetative ecosystems. In deciduous-dominated forests, however,
as tree species diversity and forest structural diversity increase, the frequency of spectral overlap
between species also increases and our ability to classify tree species significantly decreases. This study
proposes an operational workflow of individual tree-based species classification for a temperate,
mixed deciduous forest using three-seasonal WorldView images, involving three steps of individual
tree crown (ITC) delineation, non-forest gap elimination, and object-based classification. The process
of species classification started with ITC delineation using the spectral angle segmentation algorithm,
followed by object-based random forest classifications. A total of 672 trees was located along
three triangular transects for training and validation. For single-season images, the late-spring,
mid-summer, and early-fall images achieve the overall accuracies of 0.46, 0.42, and 0.35, respectively.
Combining the spectral information of the early-spring, mid-summer, and early-fall images increases
the overall accuracy of classification to 0.79. However, further adding the late-fall image to separate
deciduous and coniferous trees as an extra step was not successful. Compared to traditional four-band
(Blue, Green, Red, Near-Infrared) images, the four additional bands of WorldView images (i.e.,
Coastal, Yellow, Red Edge, and Near-Infrared2) contribute to the species classification greatly (OA:
0.79 vs. 0.53). This study gains insights into the contribution of the additional spectral bands and
multi-seasonal images to distinguishing species with seemingly high degrees of spectral overlap.

Keywords: individual tree; species classification; deciduous-dominated; multi-seasonal; high spatial
resolution; WorldView Images

1. Introduction

As forest inventory development evolves from stand-level, polygon-based attribute interpretation
and classification towards a more individual tree-based, raster type product, the need for developing
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automated individual-tree segmentation and classification tools is paramount. While other remote
sensing products like LiDAR can help with structural attributes (i.e., height, volumes, and densities)
of forest inventories, individual tree species remains one of the most important forest attributes for
tactical forest management [1–3]. Accurate information on the species identity of individual trees,
or groups of trees, is critical for sustainable forest practices from both the economic and ecological
perspectives [4]. Knowing what species are present is important in determining which forest products
can be recovered from a given stand. Knowing how those trees are distributed within a stand can inform
forest managers about the type of management to employ, which can in turn have significant impacts
on profitability [2]. Beyond the economic considerations, tree species maps provide information about
tree species diversity [4]. Whether the goal is to manage the forest for economic gain, biodiversity
needs, or both, the ability to automatically classify individual tree species in a forest ecosystem is
extremely valuable.

In very high spatial resolution images, a tree crown may contain many pixels with similar spectral
features. Because of the increasing availability of low cost high spatial resolution optical imagery,
individual tree crown (ITC) analysis has become increasingly feasible for tree species classification
studies and forest management [5,6], and many ITC algorithms have been developed. As reviewed
by Ke and Quackenbush [7], most of the algorithms for ITC delineation can be categorized into three
main methods: (1) valley following methods delineating tree crowns by following local minima in the
shaded regions between crowns; (2) region growing methods first identifying local maxima and then
expanding the corresponding polygon to the crown boundary; (3) watershed segmentation methods
viewing pixel values as the topographic relief and finding the lines that run along the tops of ridges.
The entire image can be divided into a series of catchments (i.e., ITCs) as influential zones for each
local minimum. Compared to the other two methods, watershed segmentation is more sensitive to the
edge information of the tree crown [8]. Under this context, watershed segmentation is believed to have
the capacity to detect indistinct edges of deciduous crowns [1,7] and has therefore been increasingly
used to delineate deciduous species [8–10].

To map tree species from ITCs, many studies have demonstrated that species-specific differences
in crown structure can be effectively captured using the average pixel values within an ITC, despite
within-crown spectral variation. For example, for a conical coniferous crown, the sunlit pixels usually
appear at the region exposed to the sun while the other pixels appear relatively dark. For a large and
flat deciduous crown, huge within-crown brightness variation is usually attributed to the non-conical
crown shape [7]. In addition to the average pixel value, ITC analysis also commonly employs
information on texture, contextual, shape/geometric features for species classification [11,12]. As a
result, higher accuracies have almost always been reported when comparing individual tree-based
species classification to traditional pixel-based classification [13–17]. However, the accuracy of
individual tree-based species classification depends strongly upon 1) the quality of automated ITC
delineation (i.e., the goodness-of-fit between segmented and real ITCs) which, despite its rapid
development, still requires further research, particularly in deciduous stands [8,18,19]; and (2) the
selection of appropriate features for classifying ITCs into different species. Random Forest (RF) as
a powerful machine learning classification tool was found to be able to identify the best performing
features and build a robust classification tree quickly [16,20]. Compared to traditional classifiers
(e.g., maximum likelihood classifier), RF as a non-parametric classifier is widely used in the forestry
community [21–23].

The recently launched satellites, such as WorldView-2 and Worldview-3, offer very high spatial
resolution and more spectral bands than traditional four-band (i.e., Blue, Green, Red, and Near-Infrared
(Near-IR) bands) imaging sensors. Both WorldView-2 and WorldView-3 have vegetation-tailored
spectral bands (i.e., Yellow and Red Edge), which are more sensitive to subtle differences in biochemistry
between plant species [24,25]. These bands have proven useful for separating tree species especially
when there is substantial spectral overlap in the traditional four bands [16,26,27]. In addition to
using more spectral bands for tree species identification, the use of seasonal time series imagery has
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also proven useful [28–31]. Key et al. [28] found that classification using four dates of four-band
aerial images yielded the best accuracy when identifying four deciduous species, including popular,
red oak, white oak, and maple. Hill et al. [29] indicated a springtime image acquired in late April
would best capture inter-species differences in the green-up phase, but image acquisition time was
not always optimum due to many logistical considerations. To overcome this limitation, the authors
demonstrated that a combination of early-spring, mid-summer, and late-fall images was able to achieve
better accuracy of six overstorey species classification than any single-seasonal image even though the
timing of image collection was suboptimal [29]. Pipkins et al. [30] utilized ten phenological seasons of
RapidEye images to identify seven coniferous and deciduous species and suggested that the first-spring,
full-spring, and early-summer images played most important roles in accuracy improvement due to
individual species differences in tree phenology. Their results were in agreement with the previous
studies, suggesting that a multi-seasonal approach to tree species classification has the potential to
achieve better species classification results.

Despite the promise of increased accuracy, acquiring multi-seasonal high spatial resolution images
is not usually possible and cost-effective over large areas. Consequently, few studies have assessed
individual tree species discrimination by utilizing multi-seasonal high spatial resolution images with
more than four traditional bands. In this study, we propose an operational workflow of individual
tree-based species classification using three-seasonal WorldView images, involving three steps - ITC
delineation, non-forest gap elimination, and object-based classification. In specific, we aim to answer
the following questions: (1) What level of classification accuracy can be achieved by individual images
or by a combination of multi-seasonal images? (2) How does each of the four new multispectral bands in
WorldView image (i.e., Coastal, Yellow, Red Edge, and Near-IR2) contribute to tree species classification;
and (3) How does the quality of ITC delineation impact the accuracy of species classification at the
individual tree level?

2. Study Area and Datasets

2.1. Study Area

The study was conducted in the Haliburton Forest and Wildlife Reserve (44◦55′N, 78◦50′W), a
privately-owned forest located at the Great Lakes–St. Lawrence region of Central Ontario, Canada
(Figure 1). The humid continental climate has a mean annual temperature of 5.0 ◦C with the range
between −9.9 in January and 18.7 in July. The frost-free period is between June 3 and September 16
(104 days) with the snow-free period typically between May and November. The seasonal average
precipitation is 1074 mm, with low monthly variation, and 280 mm as snow. (Environment Canada.
Retrieved May 15 2018, http://climate.weather.gc.ca/climate_normals/results_1981_2010_e.html?stnID=

5170&autofwd=1) Soils overlie granite–gneiss Precambrian Shield bedrock and are shallow (0.5–2 m
deep) and acidic (pH: 4.2–6.2), being classified as Dystric Brunisols with organic-rich surface horizons
and textures ranging from sandy loam to loamy sand. The topography consists of undulating hills and
partially exposed bedrock, interspersed with numerous small wetlands.

The forest is primarily composed of uneven-aged (i.e., a group of trees that differ significantly
in ages), mixed-deciduous stands dominated by various shade-tolerant hardwood species such as
sugar maple (Acer saccharum), red maple (Acer rubrum), American beech (Fagus grandifolia), yellow
birch (Betula alleghaniensis), and red oak (Quercus rubra), mixed with a few conifer species such as
Eastern hemlock (Tsuga canadense) and balsam fir (Abies balsamea) [32]. Foliage color and abundance
are highly seasonally variable (i.e., winter, spring, summer, and fall), with leaf senescence beginning in
September and peak fall color occurring early in October. (Algonquin Provincial Park, Retrieved May
15 2018, http://www.algonquinpark.on.ca/images/graph_fall_colour_history.jpg) In most deciduous
species, bud break and leaf expansion occur in late April and continue into early May with leaves being
fully formed by the first week of June in most years. This broad seasonal variation of canopy-level
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foliage spectra can potentially enhance inter-species separability for tree species identification due to
differences in tree phenology.
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Figure 1. Top: location of the study area in Haliburton Forest and Wildlife Reserve, Central Ontario,
Canada. Shaded region and three triangles (i.e., green, yellow, blue) depict the coverage of multi-seasonal
WorldView images and transects for field measurement, respectively. Bottom: the late spring image
with the three sites, road network, and ground control points for image geometric correction.

2.2. Multi-Seasonal WorldView-2 and WorldView-3 Images

The multi-seasonal WorldView-2 and WorldView-3 images used in this study were provided
by Creative Map Solutions (Firestone, Colorado). The images include late-spring (WorldView-3,
21 May, Image Off Nadir: 21.90), mid-summer (WorldView-3, 11 July, Image Off Nadir: 8.40), early-fall
(WorldView-2, 27 September, Image Off Nadir: 16.30), and late-fall (WorldView-2, 17 November,
Image Off Nadir: 17.30) scenes. All four images were collected in 2015, covering 100 km2 of the
entire forest, as shown by the shaded region in Figure 1. Each image includes a panchromatic band



Remote Sens. 2019, 11, 2078 5 of 23

(450–800 nm) with 0.5-m spatial resolution and eight multispectral bands (Coastal: 400–450 nm; Blue:
450–510 nm; Green: 510–580 nm; Yellow: 585–625 nm; Red: 630–690 nm; Red Edge: 705–745 nm;
Near-IR1: 770–895 nm; Near-IR2: 860–1040 nm) with 2-m spatial resolution. Compared to traditional
multispectral images, these images include four added multispectral bands (i.e., Coastal, Yellow, Red
Edge, and Near-IR2). To achieve higher spatial and spectral resolutions for individual tree-based
species classification, the panchromatic and multispectral bands were fused to the pan-sharpened
multispectral images with 0.5-m spatial resolution by the Gram–Schmidt procedure [33] implemented
in the ENVI software package. Note that the Gram–Schmidt procedure is considered one of the most
commonly used pan-sharpening methods [34].

2.3. Field Data for Training and Test Classifications

During the summer of 2015, individual trees of seven dominant species in Haliburton Forest were
located along three triangular transects (i.e., green, yellow, blue triangle with side length of 400 m
in Figure 1) using a highly accurate Trimble GeoExplorer (Trimble Navigation Limited, Sunnyvale,
CA, USA). The triangular transect sampling method is a standard cruise method in forestry [35].
This sampling method is very efficient because the triangular shape makes it not only possible to cover
a broad topographic range but also to start and end at the same point to avoid wasted effort or tuck
logistics. Trees along the transects and their surroundings (~50 m) were recorded if they exhibited
healthy crown and were in dominant or co-dominant crown positions visible to the sensor. From
reference perspective, the triangular transect sampling method is also beneficial because once the major
trees are identified at the vertices, the tree point accuracy can be determined based on its deviation
from the edges of the triangular.

A total of 672 individual trees were located: sugar maple (Acer saccharum, abbreviated as Mh
hereafter: 276), hemlock (Tsuga canadensis, abbreviated as He hereafter: 95), beech (Fagus grandifolia,
abbreviated as Be hereafter: 94), yellow birch (Betula alleghaniensis, abbreviated as By hereafter: 89),
red maple (Acer rubrum, abbreviated as Mr hereafter: 64), balsam fir (Abies balsamea, abbreviated as Bf
hereafter: 28), and red oak (Quercus rubra, abbreviated as Or hereafter: 26). The abbreviations of the
tree pieces follow the codes used in the Ontario Land Survey Data and these codes are commonly used
by foresters in Ontario, Canada. The composition of species across the three transects, and in the forest
in general, is dominated by sugar maple and so the less common species were sampled preferentially
and opportunistically in an attempt to achieve a more balanced sample size distribution across the
seven species. Table 1 summarizes the ground-measured individual tree species in the three transects.
It should also be noted that although these seven dominant species represent the majority of species
found at our field site, several other species are present in the study area including white pine, white
ash, eastern white cedar, trembling aspen, white spruce, and black cherry.

Table 1. Sample sizes of the training dataset, by species and transect.

Species Mh Mr Be By He Or Bf Total

Transect 1 94 20 31 29 30 0 16 220
Transect 2 81 42 24 21 33 26 7 234
Transect 3 101 2 39 39 32 0 5 218

Total 276 64 94 89 95 26 28 672

Mh, sugar maple; Mr, red maple; Be, beech; By, yellow birch; He, hemlock; Or, red oak; Bf, balsam fir.

To ensure the multi-seasonal images aligned with each other and matched the GPS measured trees
well, we recorded 10 road intersections (Figure 1) around the three transects as ground control points,
and then implemented geometric correction for the multi-seasonal images. Geometric correction was
complemented in software ENVI 5.3 (Harris Geospatial Solutions, Broomfield, Colorado, United States)
with a 3rd polynomial transformation and resulted in an accuracy of better than 0.5 pixel root mean
square error (RMSE), representing approximately 25 cm or less error on the earth’s surface.
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To expedite the image processing, three 25-ha square subsets were clipped from multi-seasonal
images to cover the area of field measurement, hereafter named Sites 1, 2, and 3, respectively (Figure 1).
The late-spring, mid-summer, early-fall, and late-fall WorldView images of Site 1 are shown in Figure 2.
The spatial distribution of ground-measured individual tree species along three transects are shown in
Figure 3. The presence and frequency of each species differed from one transect to the next, e.g., red
oak was absent from Transects 1 and 3.
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Figure 3. Location and species identity of trees sampled along the three transects.

The spectral values of dominant species over late-spring, mid-summer, and early-fall images are
displayed in Figure 4. The seasonal variations are evident in spectral values, with trees in mid-summer
(solid lines in Figure 4b) generally having higher reflectance, followed by late-spring (dotted lines in
Figure 4a) and early-fall (dashed lines in Figure 4c). For all seasons, the greatest variation is observed
in Near-IR1 region, followed by Near-IR2 and Red Edge. Among species, the two conifer species
(i.e., balsam and hemlock) display lower reflectance than the deciduous species in Red Edge, Near-IR1,
and Near-IR2 regions. Among deciduous species, sugar maple and red oak tend to have higher
reflectance in Red Edge, Near-IR1, and Near-IR2 regions.
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Figure 4. Mean reflectance of dominant species over three seasons. (a) Early-spring; (b) mid-summer;
and (c) early-fall images in Haliburton Forest and Wildlife Reserve. The later fall image was not
included because it was taken from the leaf-off season.

3. Methods

3.1. Overview

Individual tree-based species classification starts with ITC delineation, followed by object-based
classification. In this study, the multi-scale ITC maps were first produced by segmenting the
pan-sharpened multispectral image from the mid-summer, using the spectral angle segmentation
(SAS) algorithm [9,36]. Using 750 reference crowns that were manually digitized, the best scale was
optimized based on the lowest segmentation evaluation index (SEI) value [37], yielding the final ITC
map for the subsequent classification. The object-based species classification was conducted in five
feature spaces, including the independent use of early-spring, mid-summer, and early-fall image,
the combined use of early-spring, mid-summer, and early-fall images, as well as the integration of
all four images. Of the 672 trees identified, 70% of the trees were assigned as the training samples
while 30% of the trees were used for validation. RF classifier [20] was then implemented for classifying
tree species in the above five feature spaces. Finally, confusion matrices were derived for accuracy
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assessment and comparison. The workflow of individual tree-based species classification is displayed
in Figure 5 and described in more details in the following sections.
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3.2. Individual Tree Crown Delineation

As our study site was a mixed deciduous forest dominated by shade-tolerant hardwood species,
we chose to implement a recently-proposed watershed segmentation method, the SASL algorithm [9,36],
for ITC delineation. Watershed segmentation is always implemented with gradient images rather than
original images to ensure that watershed lines match the boundaries of ITCs [34]. The first step of
the SAS algorithm was to calculate the spectral angle gradient, which is able to take full advantage
of eight spectral bands for watershed segmentation. Next, the preliminary segments were produced
through the watershed transformation of the spectral angle gradient using the most efficient algorithm
proposed by Vincent and Soille [38], which is implemented in the System for Automated Geoscientific
Analyses (SAGA). Controlled by the scale parameter of “Seed to Saddle Difference”, the preliminary
segments were further merged from bottom to top using the merging process implemented in the
SAGA [39] to generate multi-scale ITC maps. The upper and lower bounds of this parameter were
determined using a “too coarse” and a “too fine” scale, where a “too coarse” scale corresponds to the
case that many ITCs are merged together to a large object, and a “too fine” scale corresponds to the
case that an ITC is divided into many small pieces. More details of the SAS algorithm can be referred
to Yang et al. [9,36]. Finally, we manually delineated and rasterized 750 reference crowns and utilized a
supervised scale selection method to optimize the best scale of ITC map for the following object-based
species classification. In this step, the modified SEI, which was first proposed by Yang et al. [37] and
further modified by Yang et al. [9], was utilized to measure the goodness of fit between the delineated
ITCs and reference crowns. As demonstrated by Yang et al. [9], the value of SEI is between 0 and 0.71,
with lower values indicating higher similarity to the manual delineated segments of ITC delineation.
The resultant SEI values were calculated for the multi-scale ITC maps and the best one was identified
by the lowest value of SEI.

In this study, we segmented the mid-summer WorldView image to create the final ITC map for
species classification. The mid-summer scene was in the intermediate stage of canopy dynamics
among three leaf-on scenes and corresponded best with the ground-based data collection. In order to
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examine the effects of multi-seasonal images and four extra bands on species classification, the same
ITC delineation result was utilized for all of the subsequent classifications. The detailed procedure for
the ITC delineation is illustrated in Figure 6.
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Figure 6. Flowchart of individual tree crown (ITC) delineation method implemented in this study. The
equation of the spectral angle gradient calculation is in Yang et al. [9].

3.3. Object-Based Species Classification

Within each band, and ITC, the average pixel value was determined. In order to determine which
season of WorldView images is most effective for species identification, the early-spring, mid-summer,
and early-fall image were analyzed separately to classify the segmented ITCs into seven dominant
species. As there were some canopy gaps in the above three sites, the hierarchical strategy was adopted
to mask out these canopy gaps based on the selected ITC map prior to the species identification.
The canopy gaps were most often over-segmented during the ITC process, but this did not affect the
canopy gap identification. As illustrated by Vincent and Soille [38], the independent use of high spatial
resolution optical images is able to capture non-forest gaps (i.e., waterbodies where trees are absent)
based on their distinct spectral features but is not sufficient to identify forest gaps (i.e., the gaps appear
in the images because trees are much smaller than their immediate neighbors to be invisible in the
images) due to their spectral similarity to tree canopies. Unfortunately, the LiDAR data used for that
study were collected six years prior to the acquisition of multi-seasonal WorldView images. We felt
that it was not appropriate to use the LiDAR data to determine the status of forested canopy gaps
in the target year due to the subsequent gap dynamics that had occurred during the intervening the
six-year period (e.g., harvesting activities, mortality events, gap filling by small trees). Therefore, we
masked out the non-forest gaps only prior to the species classification. Hereafter, we will refer to these
as non-forested areas to distinguish them from forested areas, which include both tree canopies and
forest gaps.

When using a single-seasonal image, the entire early-spring, mid-summer, or early-fall scene
was first classified into forested and non-forested areas, then seven tree species were identified
from the forested areas (Figure 7a). When using the late-spring, mid-summer, and early-fall images
simultaneously, the mid-summer image was first used for separating the forested and non-forested
areas, then all the three seasonal images were used for tree species classification (Figure 7b). When
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further adding the late-fall image, the coniferous and deciduous trees were separated from the
forested areas using the late-fall image, and each species was then identified from the corresponding
coniferous or deciduous class by the combined use of the late-spring, mid-summer, and early-fall
images (Figure 7c).
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Figure 7. Illustration of hierarchical classification strategy within five feature spaces. Mh, sugar maple;
Mr, red maple; Be, beech; By, yellow birch; He, hemlock; Or, red oak; Bf, balsam fir. The flowchart
(a) illustrates a single-seasonal image classification step, where the entire early-spring, mid-summer,
or early-fall scene was first classified into forested and non-forested areas, then seven tree species
were identified from the forested areas. The flowchart (b) shows the use of mid-summer image first
for separating the forested and non-forested areas, and then all the three seasonal images were used
for tree species classification The flowchart (c) shows the use of the late-fall image to separate the
coniferous and deciduous trees from the forested area using the late-fall image, and each species was
then identified from the corresponding coniferous or deciduous class by the combined use of the
late-spring, mid-summer, and early-fall images.

In the above five feature spaces, each level of classification was implemented using the RF classifier,
which has recently become available in the Trimble eCognition Developer. The RF classifier is an
ensemble learning algorithm that consists of many decision trees and the decision is taken on the class
that is the mode of the class’s output by individual trees [20]. In a decision tree, each node is split using
the best split among all variables. In RF, however, each node is split using the best among a subset of
predictors randomly chosen at that node. Therefore, the RF classifier is able to overcome a decision
tree’s tendency to overfit its training set [40]. In the Trimble eCognition Developer, we implemented
the RF classifier by using the default setting of eight parameters (i.e., Depth: 10; Min sample count: 0;
Use surrogates: No; Max categories: 16; Active variables: 0; Max tree number: 50; Forest accuracy:
0.01; Criteria termination type: Both). RF in eCognition uses the same parameters as a decision tree
such as depth, minimum sample count, and maximum categories as well as make use of surrogates.
Additional parameters include active variables which are the number of randomly selected features
to be considered at each tree node, forest accuracy which is a target for the desired level of accuracy,
and a termination criteria which can be set to the maximum number of trees, forest accuracy, or both.

In order to maintain a sufficient number of training and test samples for all the seven species, all
three sites were pooled for species classification. To determine whether or not the five feature spaces
significantly improve species classification accuracy, seven three-raining-test samples were randomly
generated for classifying tree species in all of the five feature spaces. Accuracy parameters, derived
from the error matrix, include producer’s accuracy (PA), user’s accuracy (UA), overall accuracy (OA),
and Kappa index of agreement (KIA). The best feature was identified by the highest OA value.

In order to further determine whether or not the four extra bands of WorldView images (i.e.,
Coastal, Yellow, Red Edge, and Near-IR2) improve classification accuracy, we repeated the above
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analyses using only the four traditional bands (i.e., Blue, Green, Red, and Near-IR1) of WorldView
images to classify tree species in the best feature space. The above ten sets of seven three-training-test
samples were also applied. Moreover, we investigated the effectiveness of each new band by examining
overlap values among the sampled tree species, which is a quantitative measure of spectral separability
between a focus class and another class (Trimble eCognition Developer). The overlap is defined as
the ratio of the overlap between the histograms of two selected classes to the histogram of the focus
class. Specifically, the overlap value is between zero and one while the lower value indicates greater
separation between the focus class and the other selected class.

Finally, all of the multi-scale ITC maps created in Section 3.2 were used for object-based classification
and accuracy assessment to demonstrate the relationship between the accuracy of tree species
classification and the quality of ITC delineation.

4. Results

4.1. ITC Delineation

In total, 20 scales of ITC maps were produced by adjusting the scale parameter of “Seed to Saddle
Difference” from 0.05 to 1 with an interval of 0.05. As the scale parameter increased, the SEI value
first decreased to a minimum value and then increased. The lowest SEI value (0.49) was observed
when “Seed to Saddle Difference” was set to 0.5. All subsequent ITC maps (Sites 1, 2, and 3) were
created using this scale parameter followed by object-based species classification (Figure 8). Visual
inspection indicated that the ITSs were delineated well, but with a few instances of over-segmentation
and under-segmentation (Figure 8). To further examine how the delineated segments matched with
tree crowns, the reference crowns and delineated crowns were overlaid on top of the images from three
seasons (early-spring, mid-summer, and early-fall). The late fall image was not included because it
was the leaf-off season without the deciduous’ crowns. The delineated crowns exhibited three cases of
over-segmentation in the selected subset (Figure 9).

4.2. Individual Tree-Based Species Classification

When using an image from a single season, the OA of tree species classification was 0.46 for the
late-spring scene, 0.42 for mid-summer scene, and 0.32 for the early-fall scene. When combined, these
three images yielded a much higher OA of 0.79. Unfortunately, when using the late-fall image to
separate coniferous and deciduous species prior to specific species classification, the OA of conifers
and deciduous was 0.80 (UA: 0.53, PA: 0.47 for the conifers; UA: 0.89, PA: 0.86 for the deciduous),
and the OA of all species classification decreased to 0.53. To demonstrate the detailed accuracy of
individual tree-based species classification, the error matrices of the five feature spaces (Figure 7) were
generated in Table 2. The seven dominant species were well identified with high PA and UA by the
combined use of late-spring, mid-summer, and early-fall WorldView images.

The classification maps of Sites 1, 2, and 3 are depicted in Figure 10. In Site 1, for example, most
of coniferous trees were located along the northeast–southwest transition areas, whereas most of
deciduous trees were located at the northwest and southeast areas (Figure 10). Maple species (i.e.,
sugar maple and red maple) dominated the second site while hemlock was also abundant in the
northwest areas (Figure 10). It is also worth noting that most of red oak trees were identified from the
second site instead of Sites 1 and 3, consistent with the distribution observed in the field work.

By comparing the classification accuracies of five feature spaces (Table 2), we concluded that
individual tree-based species were best identified by the combined use of late-spring, mid-summer,
and early-fall images. Using this best combination of the images, the OA of tree species classification
only using the four traditional bands of WorldView images (0.53) was substantially lower than that
using all the eight bands (0.79). The classification accuracies of all the species were not as high as those
using all eight bands, except for the PA of sugar maple (Table 3). Most importantly, the OA decreased
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from 0.79 to 0.53, suggesting that the extra four bands of WorldView images greatly contributed to the
classification of species at the individual tree level.Remote Sens. 2019, 11, x FOR PEER REVIEW 13 of 24 
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of 0.5.
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Figure 9. A close view of the reference crowns (left maps: a subset of Site 1. Late-spring, mid-summer,
and early-fall images from top to bottom) and corresponding delineated crowns (right maps: a subset of
Site 1. Late-spring, mid-summer, and early-fall images from top to bottom). The delineated crowns were
taken from the ITC map produced from the mid-summer image based on the optimal scale parameter
of 0.5. The late-fall image is not included in the figure because it was taken from the leaf-off season.

The number of test samples that were actually used for classification accuracy assessment also
provided insights on how segmentation and non-forest gap classification could affect classification
results. We kept 30% of the ground tree samples (i.e., 672 trees) for testing, equivalent to 201 test
samples (i.e., 672 × 30%). However, when adding up the test tree samples in Tables 2 and 3, it is
obvious that the test tree samples used in classifications were less than those reserved. For example,
we only used 151 samples for early fall image classification accuracy assessment and around 167 or
168 for other individual or combination of seasonal image classification assessments. These results
suggest that out of 201 test samples, about 50 (=201 − 151) or 24.9% of tree samples were removed
from the validation process for early fall image classifications, and about 34 (=201 − 167) or 16.9% of
tree samples were removed from the validation process for other individual or combined seasonal
image classifications.

The average overlap values of Coastal (0.59) and Yellow (0.51) bands were much higher than
those of Red Edge (0.41) and Near-IR2 (0.40) bands, indicating that the Red Edge and Near-IR2 bands
captured more spectral separability for tree species classification compared to the Coastal and Yellow
bands. While there was only a marginal difference between the Red Edge and Near-IR2 bands, the
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Yellow band contributed more to tree species separability than the Coastal band. Using the Red Edge
and Near-IR2 bands, the spectral separability between sugar maple and other species was the highest,
with the overlap values of 0.20 and 0.19, respectively.

We also classified tree species using the ITC maps produced based on different scale parameters,
and further utilized the same set of test samples to evaluate their classification accuracies using the
multi-seasonal eight-band WorldView images. We chose to use ten scales of ITC maps by adjusting
the scale parameter of “Seed to Saddle Difference” from 0.05 to 1 with an interval of 0.1 (Figure 11).
It was expected that the highest classification accuracy (i.e., OA: 0.79) would correspond to the lowest
SEI value (0.49), i.e., the best scale of ITC map. Meanwhile, we also noted that the classification
accuracies dramatically decreased for the neighboring two scales of ITC maps although the quality of
ITC delineation was not that bad at those two scales. On the other hand, the classification accuracy
was quite stable for the other scales of ITC maps even though the SEI value increased a lot.
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Table 2. Error matrix of individual tree species classification in five feature spaces. For each error
matrix, the rows and columns correspond to the reference and classified individual tree species.

Independent Use of Late-spring Image Independent Use of Mid-summer Image

Mh Mr Be By He Or Bf Mh Mr Be By He Or Bf

Mh 36 2 4 4 1 2 0 Mh 31 2 3 2 1 1 0
Mr 2 4 1 3 1 0 1 Mr 12 7 1 6 6 2 1
Be 9 3 11 1 4 0 1 Be 8 2 11 2 2 0 1
By 12 5 3 7 6 1 0 By 10 0 3 7 4 0 1
He 3 1 1 4 11 0 0 He 2 1 4 2 10 1 0
Or 3 0 1 0 0 3 0 Or 4 1 0 0 1 2 0
Bf 4 0 1 3 4 0 4 Bf 2 2 1 4 2 0 3
PA 0.52 0.27 0.50 0.32 0.41 0.50 0.67 PA 0.45 0.47 0.48 0.30 0.38 0.33 0.50
UA 0.73 0.33 0.38 0.21 0.55 0.43 0.25 UA 0.78 0.20 0.42 0.28 0.50 0.25 0.21
OA 0.46 KIA 0.31 OA 0.42 KIA 0.29

Independent Use of Early-fall Image Combined Use of Late-spring, Mid-summer, Early-fall Images

Mh Mr Be By He Or Bf Mh Mr Be By He Or Bf

Mh 16 2 4 3 5 0 0 Mh 45 0 1 1 0 0 0
Mr 12 6 3 6 1 0 0 Mr 6 15 0 2 1 0 0
Be 5 2 6 0 1 1 0 Be 4 0 21 0 3 0 0
By 4 0 4 7 2 0 0 By 8 0 0 18 0 0 0
He 13 2 3 1 13 1 0 He 0 0 1 0 21 0 0
Or 7 0 1 1 3 3 1 Or 3 0 0 0 1 6 0
Bf 5 0 1 3 0 1 2 Bf 3 0 0 2 0 0 6
PA 0.26 0.50 0.27 0.33 0.52 0.50 0.67 PA 0.65 1.00 0.91 0.78 0.81 1.00 1.00
UA 0.53 0.21 0.40 0.41 0.39 0.19 0.17 UA 0.96 0.63 0.75 0.69 0.95 0.60 0.55
OA 0.35 KIA 0.19 OA 0.79 KIA 0.73

Integration of All Four Scenes

Mh Mr Be By He Or Bf

Mh 48 2 6 3 0 3 0
Mr 6 8 2 1 8 0 1
Be 4 1 9 1 2 0 1
By 7 2 4 6 2 0 0
He 2 1 2 8 12 1 0
Or 1 1 0 0 1 2 0
Bf 1 0 0 4 1 0 4
PA 0.70 0.53 0.39 0.26 0.46 0.33 0.67
UA 0.77 0.31 0.50 0.29 0.46 0.40 0.40
OA 0.53 KIA 0.39

Mh, sugar maple; Mr, red maple; Be, beech; By, yellow birch; He, hemlock; Or, red oak; Bf, balsam fir; PA, producer’s
accuracy; UA, user’s accuracy; OA, overall accuracy; KIA, Kappa index of agreement.

Table 3. Error matrix of individual tree species classification using eight bands and four traditional
bands of multispectral WorldView images. For each error matrix, the rows and columns correspond to
the test and classified tree species samples.

Using Eight Bands of Multispectral WorldView Images Using Four Traditional Bands of Multispectral WorldView Images

Mh Mr Be By He Or Bf Mh Mr Be By He Or Bf

Mh 45 0 1 1 0 0 0 Mh 49 3 5 4 2 2 0
Mr 6 15 0 2 1 0 0 Mr 5 6 0 2 3 0 1
Be 4 0 21 0 3 0 0 Be 5 2 9 2 3 1 1
By 8 0 0 18 0 0 0 By 3 1 4 9 4 0 0
He 0 0 1 0 21 0 0 He 1 1 2 3 9 0 0
Or 3 0 0 0 1 6 0 Or 4 2 1 0 2 3 0
Bf 3 0 0 2 0 0 6 Bf 2 0 2 3 3 0 4
PA 0.65 1.00 0.91 0.78 0.81 1.00 1.00 PA 0.71 0.40 0.39 0.39 0.35 0.50 0.67
UA 0.96 0.63 0.75 0.69 0.95 0.60 0.55 UA 0.75 0.35 0.39 0.43 0.56 0.25 0.29
OA 0.79 KIA 0.73 OA 0.53 KIA 0.39

Mh, sugar maple; Mr, red maple; Be, beech; By, yellow birch; He, hemlock; Or, red oak; Bf, balsam fir; PA, producer’s
accuracy; UA, user’s accuracy; OA, overall accuracy; KIA, Kappa index of agreement.
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of multiple scales of ITC maps versus “Seed to Saddle Difference”.

5. Discussion

Workflow of Individual Tree-Based Species Classification

It is more intuitive that individual tree-based species classification should be implemented in three
consecutive steps: canopy gap elimination, ITC delineation, and object-based species classification.
In some circumstances, it may be beneficial to add an additional step of image segmentation for
non-forest gap elimination. We streamlined this strategy by utilizing the selected ITC map to identify
and mask out the non-forest gaps prior to the species identification. Despite many over-segmentation
issues for non-forest gaps in the selected ITC map, the over-segmentation would not affect the
identification of non-forest gaps as much as under-segmentation.

In the current study, we also made use of ITC maps produced with a range of scale parameters
to classify species at the individual tree level, and found the classification was quite sensitive to the
quality of ITC delineation. In other words, the best classification result (i.e., OA: 0.79) was derived
from the best ITC map (i.e., SEI: 0.49), and the classification accuracy decreased significantly when
using only a slightly worse ITC delineation. This observation could be explained by the specificity of
individual tree-based species classification in dense, species diverse forests. Any slight mis-delineation
of a tree crown would cause subsequent mis-delineation for all of its neighboring tree crowns. This
mis-delineation may cause misclassification if the neighboring crown is a different species with
different spectral signatures. This in turn can affect the average ITC value and contribute to greater
perceived spectral overlap among the neighboring species in all bands. We noticed that when using
ITC delineation at very coarse or very fine scales (i.e., SEI was very high) to run classification, the
map accuracy was low but quite stable. This was not only because the SEI was designed to give more
penalties to serious over-segmentation and under-segmentation, but also due to the sample assignment
in object-based classification. At a very coarse scale, many tree crowns of similar or confused spectral
features were merged together, and thus very likely to include more than one training or test samples
in different species. In our study, we eliminated these kinds of samples, unless all of them belonged to a
single species, so classifying these confused trees was incidentally avoided when using this coarse-scale
ITC map. Therefore, the classification accuracy was able to remain relatively stable although the
over-merging problem resulted in serious confusion of intra-crown spectral features. On the other
hand, many tree crowns were partitioned into smaller pieces at a very fine scale. With the decreasing
size of tree crowns, the intra-crown spectral features became more homogenous, even more similar
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to their typical spectral characteristics for some trees. We suspect that this is why the classification
accuracy remained stable within the fine-scale range, even increasing a bit when using the two finest
scales of ITC maps. Based on the above analysis, neither coarse-scale nor fine-scale ITC maps were
able to provide the satisfactory classification accuracy as the best scale. Therefore, we conclude, not
unexpectedly, that that the quality of ITC delineation directly impacts the accuracy of individual
tree-based species classification.

The number of test samples that were actually used for classification accuracy assessment is
much lower than the reserved test samples. In specific, about 24.9% of tree samples were removed
from the validation process for early fall image classifications, and about 16.9% of tree samples were
removed from the validation process for other individual or combined seasonal image classifications.
The tree points were removed from analysis due to (1) under-segmentation leading to more than one
tree points in some segments; and (2) non-forest gap misclassification causing some test trees falling
into the classified non-forest gaps. The combination of the under-segmentation and non-forest gap
misclassification led to a stable error (i.e., 16.9%) in all other single or combined multi-season image
classifications, while resulting in about 8% more bias in early-fall image classification. Given we
only used one ITC map for all classification, the impact of ITC is theoretically the same on the final
classifications if ignoring the potential bias introduced by image view angles. The 8% greater bias in
early fall image is most likely contributed from non-forest gap misclassification. On the other hand,
the image acquisition view angles (late-spring image off nadir: 21.90◦, mid-summer image off nadir:
8.40◦, early-fall image off nadir: 16.30◦, and late-fall image off nadir: 17.30◦) may have affected image
classification results. As indicated by Immitzer et al. [41], the influence of the view angle on the image
usability could be pronounced when the angle is greater than 20◦. Figure 9 displays some shift when
overlapping the mid-summer image-based segments with the late-spring and early-fall images. It is
clear that a few segments do not cover the entire tree crowns with black gaps showing at the bottom of
the segments in the late-spring and early-fall images. Further investigation is warranted to explore
how the view angles affect the segmentation and further classification results.

To validate the effectiveness of multi-seasonal images for tree species classification, this study
selected a representative scene from three leaf-on seasons (i.e., spring, summer, and fall), respectively.
When using single-seasonal images, we found that the late-spring and mid-summer images produced
equivalent classification accuracy (i.e., OA: 0.46 vs. 0.42), but much higher than the accuracy yielded
by the early-fall image (i.e., OA: 0.35). This observation was in agreement with the classification result
reported by Pipkins et al. [30], concluding that the late-spring and mid-summer images were the better
choices than the early-fall to differentiate spectral features between species. In addition to species
differences in foliage and shift caused by view angles, this could also be explained by species differences
in reproductive biology, including the timing of reproduction as well as the spectral differences between
reproductive structures (flowers and seeds). Some tree species like red maple produce flowers and
seeds in the spring, while others flower in the spring and set seed in the late summer. Thus, it is possible
that reproductive phenology helped to improve the classification accuracy when using the late-spring
and mid-summer images, but not the early-fall image. The amount of seed produced on a yearly basis
is however not consistent. Most tree species produce bumper crops of seed every 3–10 years and so
the strength of the spectral signal associated with flower and seed production may not always be
reliable. In the case of Haliburton it was reported by Hossain et al. [42] that 2015 (the acquisition year
of multi-seasonal WorldView images) was not a mast year for the most abundant species in Haliburton
(sugar maple), meaning that it produced few if any flowers and seeds. In this context, the reproductive
structures of other species may have had a great effect on canopy reflectance patterns, such that the
spectral differences between species could be even more pronounced in this non-mast year. However,
Key et al. [28] and Hill et al. [29] noted that the optimally timed photography acquired during peak
autumn colors provided the best single date of image to identify deciduous species because many
deciduous species differed considerably in their senescence strategies, producing unique fall colors that
could be exploited for species discrimination. Due to the absence of mid-fall image in our study, we
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were not able to verify this conclusion. Similar to [30], we found that the late-spring and mid-summer
images were effective for classifying the forests where coniferous and deciduous species coexist. By the
combined use of these three-season images, the significant increase in classification accuracy provided
evidence that multi-seasonal images have the capability to enhance inter-species separability for tree
species identification [28–30,43,44]. However, separation of deciduous and coniferous trees as an extra
step based on a late-fall image was not successful, probably due to the complex structure of Haliburton
Forest. It is likely that the intermediate canopy and understory coniferous trees, that were hidden
beneath the dominant and co-dominant overstory trees in the leaf during three leaf-on scenes, were
exposed in the late-fall image and contributed to some spectral mismatches with the earlier scenes.

Although the multi-seasonal imagery greatly improved classification accuracy, the great
improvements were also observed when using all eight bands of WorldView images over four traditional
bands. These additional four bands (i.e., Coastal, Yellow, Red Edge, Near-IR2) enhanced inter-species
separability for tree species identification (i.e., OA: 0.79 vs. 0.53). Several other studies [11,16,25,26]
have also found that additional bands improved classification accuracy, particularly when a larger
number of tree species had to be separated or when the tree species showed substantial spectral
overlaps. Based on the contributions of four extra bands to spectral separability between species,
we can draw the conclusion that the Red Edge and Near-IR2 bands were more useful to mitigate
spectral overlaps than the yellow and coastal bands and that the coastal band contributed least to the
improvement in spectral separability. This is likely because the Near-IR2 band partly overlapped the
wavelength range of Near-IR1 band and was less affected by atmospheric influence [13] and more
sensitive to chemistry and physical composition of vegetation [27]. The Red Edge and Yellow bands
were able to capture even minor differences in carotenoid and chlorophyll pigments amongst species,
thus supposed to enhance the separation between different species and may be most effective in early
fall when deciduous leaves are experiencing senescence [11,24,25].

6. Conclusions and Future Work

In this study, we proposed an operational workflow of individual tree-based species classification
using three-seasonal WorldView images, involving three steps of ITC delineation, non-forest gap
elimination, and object-based classification. In specific, we implemented the SAS algorithm for ITC
delineation, followed by non-forest gap classification and individual tree species identification using
the RF classifier. The late-spring and mid-summer images produced similar classification accuracy
when using single-seasonal images, but much higher than the accuracy yielded by the early-fall image.
A multi-temporal classification approach was satisfying using late-spring, mid-summer, and early-fall
images, whereas the use of late-fall image for the separation of deciduous and coniferous trees as an
extra step was not successful and thus failed to further improve the classification accuracy. We also
noted that the four extra bands of WorldView images contributed substantially to classifying species at
the individual tree level. It was further concluded that the best species classification map was obtained
only using the best scale of ITC map. Even small changes in the scale of ITC, in either a finer or a
coarser scale, lowered the classification accuracy dramatically.

Although this study proposed an operational method to classify individual tree species, some
issues (e.g., image view angle, forest gap identification, ITC delineation refinement, and classification
improvement) will limit its potential applications thus still warranting further work. Supplementary
data sources, such as SWIR bands of Worldview images, LiDAR, and hyperspectral data, can also
facilitate this task and may achieve a higher accuracy of individual tree-based classification despite the
increasing costs of data acquisition and processing complexity.

Despite the fact that many efforts have been made to improve delineation accuracy in recent
years [6,9,18,19,45], ITC delineation algorithms are still in need of further development, especially
for interlocking tree crowns in dense forests. Some recent advances include work by [18,19] who
identified eight types of ITC shapes (i.e., regular, embayed, dumbbell, bent dumbbell, worm, irregular
worm, irregular, and convolute) by evidence-based rules and then refined these types of poorly
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delineated crowns by splitting them into multiple ITCs. Guo et al. [46] recently provided a review
on deep learning for semantic segmentation, and suggested that recent studies in deep learning have
resulted in groundbreaking improvements in the accuracy of the segmentations. For ITC delineation,
Weinstein et al. [47] used semi-supervised deep learning neural network-detected ITCs in RGB imagery,
and they provided neural networks the opportunity to learn generalized features on a wider array of
training examples, with a goal to improve deep learning on limited training data.

Separating forest gaps from tree canopies with optical images as was done in [36] would help
reduce the “noise” created by young trees in the forest gaps. Classifying these trees in the forest
gaps in a separate step would likely improve the OA of the dominant or co-dominant trees in the
continuous canopies. The additional canopy height model (CHM) derived from LiDAR data should
further improve the forest and non-forest canopy gap elimination, provided that the acquisition of
LiDAR data was within a year or two of the multi-seasonal WorldView images.

Additional and supplementary data sources could also be used to achieve a higher accuracy,
though it would increase the costs of data acquisition and processing complexity. At large scales, cost
and limits in storage and computing power are significant barriers. To maximize the utility of the
limited funding source, we decided to use eight band WorldView images with 0.5 m (Panchromatic)
and 2.0 m (Multispectral) instead of using all other possible bands (including SWIR and CAVIS) and
the higher spatial resolution of 0.3 m (Panchromatic) and 1.2 m (Multispectral). We understand that
the SWIR bands and the higher spatial resolution have a high potential for tree species classification,
however, the cost of image acquisition would be dramatically increased for more bands or for higher
spatial resolution. One should consider acquiring the complete data for analysis when funding permits.
In addition, although Korpela et al. [22] suggested that multi-seasonal images could compensate for the
limited spectral resolution of multispectral images to some extent, a narrow-band hyperspectral image
is still valuable to provide more spectral information for tree species classification [5,14,21]. To further
explore this, spectral signatures of target tree species should be measured in specific wavelength
ranges and compared to their physicochemical properties. Despite the increased accuracy of species
classification found in this study, acquiring three seasons of eight-band WorldView was still a very
cost-prohibitive task compared to four-band aerial imagery. From this perspective, it could be of great
value to identify the exact timing of image acquisition for optimal classification while acquiring and
using as few images as possible. For instance, Madonsela et al. [25] combined only two WorldView-2
images acquired at key points of the typical phenological development of savannahs (peak productivity,
transition to senescence) to improve the discrimination of savannah tree species. It may be interesting
to acquire images every week for the entire growing season and identify which two scenes produce the
highest OA of all the species present in the forest and not just the most common ones. In our study site,
this would mean that we would need to sample extensively to acquire a suitable sample size for the
entire area of 22 tree species found on the landscape. As we move from experimental to operational,
the ability to identify all species will become even more important, particularly when we consider the
fact that understanding and documenting species diversity is a key component to sustainable forest
management and one of the primary goals of any forest inventory.

Further, we only used band reflectance to test the potential influence of multi-seasonal images on
tree species identification. We are aware that a combination of spectral features (e.g., band reflectance,
various vegetation indices, and transformation features) with spatial and textural features (e.g., first
order textural feature) may improve individual tree species classification, especially given the rich and
useful textural information hidden in the images. In addition, we only used RF classifier and a set of
default setting of eight parameters to enable comparison. Advanced machine learning algorithms that
have been developed in recent years may achieve better classification accuracy, and different settings of
parameters hold potential to further improve classification results with RF algorithm. As indicated in
the methodology section, we used the default values for the RF parameters in eCognition. For example,
the default number of trees was 50 while this parameter is usually set to be much higher in similar
studies. Further work should further explore the effect of the number of trees in the results and ensure
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the out of bag observations error does not change with increased number of trees higher than 50. For the
images we used, the impact of view angles on segmentation and classification was ignored, while
previous studies (e.g., [41]) have highlighted the influence of the view angle on the usability of the data
for classification approaches. Further, we focused on the accuracy improvement by taking advantage of
three-seasonal images compared to each single-seasonal image. Madonsela et al. [19] has showed that
the combined use of WorldView-2 images from two seasons also improve the classification accuracy.
Therefore, future work should focus on testing more features for classification, exploring different
classifiers, investigating more setting of control parameters when running RF classifier, considering
the impact of sensor view angles on classification, and taking into account all possible combinations of
the four images so that the users would know the best option considering accuracy and data costs.
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