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A B S T R A C T

Digital aerial photogrammetry (DAP) has demonstrated utility across a range of forest environments as an al-
ternative data source to airborne laser scanning (ALS) for estimating forest inventory attributes in an area-based
approach. In this context, metrics are typically derived from the DAP point cloud in a manner analogous to that
of ALS data. However, image matching algorithms also allow for spectral information from the image data to be
transferred to the point cloud. Herein, we quantify the contribution of this spectral information to the area-based
prediction of five forest inventory attributes: Lorey's mean height, quadratic mean diameter, basal area, gross
volume per ha, and stems per ha in a highly productive coastal temperate rainforest on Vancouver Island, British
Columbia, Canada. Using ground plots and ALS-derived area-based estimates as reference, we compare plot-level
predictions generated using (i) DAP point cloud metrics, (ii) DAP spectral metrics, and (iii) combinations of DAP
point cloud and spectral metrics. In addition to prediction accuracy, we assessed variable importance to identify
those metrics that were most informative for the developed models. Our results indicated that for models
generated using DAP data, prediction accuracy was greatest when the point cloud-based metrics were in-
corporated. Models that incorporated both point cloud and spectral information were only slightly more accurate
than models based on point cloud metrics only. We found that the improvement in accuracy was not observed for
all stand attributes. The highest increase in accuracy for models combining point cloud and spectral metrics was
observed for quadratic mean diameter, basal area per hectare, and stem volume per hectare, with change in
relative root mean square error of −1.3%, −1.75%, and −0.23%, respectively. Models derived with spectral
metrics only had the lowest accuracy with R2 values never exceeding 0.25. Analysis of the variable importance
indicated that point cloud metrics are markedly more important than spectral metrics. We conclude that the
benefit of the additional spectral information in this forest environment is negligible, and the effort to derive the
spectral information cannot be justified for operational applications. Our results confirm those of other studies in
other environments that have likewise found minimal benefit to the incorporation of DAP spectral information in
area-based estimation.

1. Introduction

Airborne laser scanning (ALS) has been established as an accurate
source of three-dimensional structural information for forest stand at-
tribute estimation (Magnussen et al., 2010; White et al., 2017). Using
area-based approaches (ABA; Næsset, 2002) either parametric or non-
parametric predictive models can be developed (Penner et al., 2013;
White et al., 2013a, 2017), which relate forest variables of interest
including Lorey's height (HL), quadratic mean diameter (QMD), basal
area (BA), or total volume (V) with ALS-based metrics as independent
variables. The resulting spatial predictions represent a crucial compo-
nent of enhanced forest inventories (EFI) (White et al., 2017), which

can inform managers on the state of the current resources, as well as be
linked to growth models to estimate future growth and yield
(Tompalski et al., 2018).

Recently, digital aerial photogrammetry (DAP) has emerged as an
additional technology capable of providing three-dimensional point
clouds suitable for estimating forest stand attributes in an ABA. The
advancement of DAP as a technology capable of providing high quality
three-dimensional structural information of forests comes from rapid
technological advancements and cost reductions in computer hardware,
that have increased the automation of photogrammetric workflows
(Leberl et al., 2010; Nolan et al., 2015). In particular, the use of image
matching algorithms either area- or feature-based (Kukkonen et al.,
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2017; Zitová and Flusser, 2003), have been successfully applied to
generate three-dimensional point clouds for estimating structural at-
tributes of vegetation (White et al., 2013b). In the case of ALS data,
these point clouds represent the x, y, and z locations in the vertical
canopy profile where laser energy is intercepted by a branch, foliage,
etcetera. However, in the case of DAP, these point clouds represent x, y,
and z locations of the same pixel that is matched on two or more digital
images. In the case of DAP data, the object (pixel) must be visible in
both (or multiple) images in order for a match to occur. Thus, while a
certain amount of laser energy is able to reach the forest floor and
enable characterization of the terrain surface under canopy, DAP data
are limited to the outer canopy envelope. Moreover, the utility of these
data in an area-based approach has been demonstrated across a range of
forest environments (Bohlin et al., 2012; Hawryło et al., 2017; Pitt
et al., 2014; Puliti et al., 2017a; Straub et al., 2013; White et al., 2015).
The effectiveness of these image-matching algorithms in generating
high-density point clouds has led to renewed interest in digital aerial
photogrammetry (Remondino et al., 2014) due to their provision of
very-high-resolution imagery and structural information at a lower re-
lative cost than ALS (Rahlf et al., 2017; Stone et al., 2016). Moreover,
the capacity to generate 3D point clouds from historical air photos in
order to inform characterizations of forest stand growth and age pro-
vides additional data for these attributes that are challenging to char-
acterize based on field plot data alone (Vastaranta et al., 2014; Véga
and St-Onge, 2008).

In contrast to ALS however, image-based point clouds are limited to
the top canopy surface with ground points located only when the
ground can be observed on the imagery, such as in canopy gaps or
exposed ground. The lack of sufficient ground representation requires
an alternative digital terrain model in order to calculate the relative
heights of points above ground (White et al., 2013b). In addition, image
matching algorithms are confounded by shadows, which are common in
forest canopies, as well as factors related to solar illumination
(Baltsavias, 1999; St-Onge et al., 2008). Despite these challenges, the
success with which DAP data have been used in area-based estimates of
forest inventory attributes have resulted in them being considered as an
effective data source for updating EFIs and for providing incremental
forest stand growth information (Tompalski et al., 2018).

When applying an ABA for estimating forest inventory attributes,
DAP data are typically used in a manner analogous to ALS data (White
et al., 2017). A set of descriptive point cloud metrics are generated from
the DAP data that characterize the vertical distribution of vegetation
through the canopy profile. These metrics are statistical summaries of
the point heights or z-values from the point cloud. As noted earlier,
these DAP data primarily characterize the outer canopy envelope, and
as a result, DAP point clouds are concentrated in the upper canopy.
Thus, it is expected that values for DAP and ALS point cloud metrics
will differ. White et al. (2015) demonstrated that although many of the
ALS- and DAP-based point cloud metrics are statistically different, the
similarity between metrics increases with increasing canopy cover and
is likewise for those metrics that characterize the upper canopy. Unique
to DAP point clouds is the potential to link the associated spectral in-
formation to z-heights. DAP data are typically acquired in the visible
and near-infrared wavelengths as full colour or colour-infrared ima-
gery. It is anticipated that this complementary spectral information
associated with the DAP-derived three-dimensional clouds can provide
additional information on forest species, land cover type, insights into
the physiological condition of the stand, as well as potential insights
into forest types and species. The integration of ALS point cloud metrics
with spectral information derived from imagery has been demonstrated
in several studies (e.g. Leckie et al., 2003; Hudak et al., 2006). In most
cases, ALS data is merged with aerial imagery acquired simultaneously
or at another time (Packalén and Maltamo, 2007; Niska et al., 2010).

Packalén and Maltamo (2007) used digitized analog air photos to
derive spectral and textural plot-level predictors, with the objective of
deriving species-specific area-based estimates of basal area, stem

number, volume, and diameter and height of the basal area median
tree. Textural features were based on grey-level co-occurrence matrix
(GLCM) approach of Haralick et al. (1973), but were calculated for the
entire plot without the use of a moving window. Spectral metrics were
calculated as the mean and median intensities from each of the green,
red, and near-infrared bands. Models were generated using a multi-
variate non-parametric k-MSN approach with 7 image-based and 18
ALS-based metrics. Image-based metrics were intended to improve se-
parability between species, specifically between spruce and pine. The
authors concluded that the ALS-based metrics were more effective for
predicting structural attributes than the image-based metrics were for
discriminating species. Niska et al. (2010) also assessed ALS- and
image-based metrics for assessing species-specific plot volumes. Similar
to Packalén and Maltamo (2007), the authors developed spectral and
textural metrics from digitized analog air photos, which were used in
concert with ALS metrics in various machine learning approaches. In
that study, the relative contributions of the different metrics were not
reported in depth.

In the case of DAP data, spectral information can be derived directly
from the generated true-orthophoto, which is spatially aligned with the
generated point cloud, thereby reducing issues associated with a geo-
metric mismatch between the spectral information and point cloud
data, or a temporal mismatch between the acquisition of the point cloud
and the spectral data. To date, these DAP spectral metrics have rarely
been used in area-based model development. Melin et al. (2017) ana-
lyzed the capability of DAP data to estimate forest canopy cover uti-
lizing both point cloud and spectral metrics, demonstrating that the
inclusion of spectral information resulted in a reduction in the relative
RMSE by 1% (from 10.3% when only point cloud metrics were used, to
9.3% when spectral metrics were included). Melin et al. (2017) also
demonstrated that the although the models based only on spectral
metrics had slightly lower accuracy (relative RMSE of 12.4%), they
were better at characterizing the extreme values of the canopy cover
distribution than models based on point cloud metrics alone. Bohlin
et al. (2012) used height-based texture metrics in addition to standard
point cloud metrics, to improve accuracy of height, basal area, and stem
volume predictions, reporting that models which incorporated texture
metrics had lower RMSE for basal area and stem volume (e.g. RMSE
was reduced from 14.6 to 13.1% for volume).

As interest in DAP approaches grow due to the potential cost savings
associated with the use of DAP versus ALS, and given the opportunity to
derive retrospective three-dimensional point clouds from previously
acquired airborne imagery, additional studies are required to in-
vestigate the predictive power of these models compared to ALS-de-
rived models. In this analysis, our goal is to advance understanding of
how, if, and in what form spectral measures from DAP can be used to
augment area-based models of forest inventory attributes generated
from DAP point clouds. To meet this goal, we ask the following specific
questions to guide our analysis:

What is the difference in prediction accuracy for common forest in-
ventory attributes using conventional point cloud metrics derived from DAP
and ALS data?

To address this question we examine the predictive capacity of
models for common forest attributes using both DAP and ALS datasets,
acquired in the same growing season, in the highly productive, dense
canopy cover forests of northern Vancouver Island, BC, Canada. Using a
machine learning approach, we examine the impacts of different
structural point cloud metrics derived from ALS and DAP data on the
prediction accuracies of area-based models of Lorey's mean height (HL),
quadratic mean diameter (QMD), basal area (BA), gross volume per
hectare (V), and stems per hectare (N). The objective is to establish a
reference baseline or expected level of DAP model performance,
building on the work of White et al. (2015).

What is the additional predictive power provided by spectral information
derived from the true orthophoto and are any particular spectral wavelengths
more useful than others in increasing predictive accuracy?
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Previous studies have demonstrated the predictive power of high
spatial resolution spectral data in both the visible and near-infrared
(NIR) wavelengths. Examples include conifer species composition and
forest cover classification (Franklin et al., 2000), estimation of in-
dividual tree species and crown closure (Cohen et al., 2001), stem
density and stand height (Franklin and McDermid, 1993), and volume
(Wulder et al., 2012). In addition, information on the physiological
capacity of vegetation such as leaf area index (LAI), biomass, and net
and gross primary productivity (NPP, GPP) (Coops et al., 2010; Hilker
et al., 2009; Turner et al., 2006) have also been successfully derived.
Given these insights, do spectral metrics derived from DAP point clouds
improve predictive capacity for the aforementioned suite of inventory
attributes and if so, are there certain attributes for which the use of
spectral metrics are particularly advantageous? In addition, are parti-
cular spectral bands or indices computed from these bands, more useful
than others in improving the accuracy of the derived models? The ob-
jective of this component is to quantify any improvement to DAP area-
based model performance through the use of additional spectral me-
trics.

2. Methods

2.1. Study area

Data used in our analyses were acquired over northern Vancouver
Island, BC, Canada (NVI), and represent an area of approximately
52,000 ha, spanning three geographically separate areas (Fig. 1). The
study area is a coastal temperate rainforest, with western hemlock
(Tsuga heterophylla (Raf.) Sarg.), western red cedar (Thuja plicata Donn
ex D. Don), and amabilis fir (Abies amabilis Douglas ex J. Forbes) as the
most common tree species. Other tree species found in the study area
include Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), red alder
(Alnus rubra Bong.), yellow cedar (Chamaecyparis nootkatensis (D.Don)
Spach), mountain hemlock (Tsuga mertensiana (Bong.) Carrière), and

Sitka spruce (Picea sitchensis (Bong.) Carrière). Located primarily within
the wetter Coastal Western Hemlock biogeoclimatic zone (CWH), the
NVI study area is characterized by high annual precipitation
(3000–5000mm), mild winters (average temperature 0 °C to 2 °C), and
cool summers (average temperature 18 °C to 20 °C). Elevation within
the study area ranges from sea level to 1200m, with an average slope of
23.6°. The average age of stands in the NVI was 144 years (standard
deviation= 127 years).

2.2. Ground plot data

A total of 131 ground plots measured in summer of 2013 were used
in this study, with plot centres measured with a Trimble GeoXH GPS
receiver equipped with an external Tornado antenna. On average, more
than 900 GPS measures were acquired per plot centre. Plot positions
were differentially corrected to have sub-metre planimetric precision.
Plots were circular in shape, with a radius of 14 m and an area of
615.75m2. Within each plot, all live standing trees with diameter at
breast height (DBH) ≥12.0 cm were measured. Individual tree mea-
sures included DBH (cm), tree height (m), and species. Individual tree-
based measurements of stem height and diameter were used to compute
plot-level values of Lorey's mean height (HL), quadratic mean diameter
(QMD), basal area (BA), gross volume per hectare (V), and stems per
hectare (N). A summary of plot characteristics is presented in Table 1.

2.3. Point-cloud data

2.3.1. NVI DAP
Digital imagery was acquired for the study area using a Vexcel

UltraCamX camera in 2012 (August 16, September 25, and October
4–6, between 10:00 and 15:00). The imagery was delivered as 4-band
(RGB and NIR; red, green, blue, and near-infrared), with 8 bit radio-
metric resolution, a 0.30m ground sampling distance (GSD) and was
acquired along 6 flight lines, with a minimum 60% along-track and

Fig. 1. Location and extent of the study area.
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20% across-track overlap. We used Agisoft Metashape (Agisoft, 2019)
to generate dense image point clouds and true-orthophotos. The initial
image alignment as well as the dense point cloud generation settings
were set to “highest” and “ultra high”, respectively. The “depth filter”
option during dense cloud generation was set to “mild”. The resulting
average point density of the image-based point cloud was 13.19 points/
m2. The R, G, B, and NIR values for each point were stored as additional
attributes in the exported point clouds. A 4-band true-orthophoto was
generated at 1m resolution. The “mosaic (default)” option was used
when generating the orthomosaic (Agisoft, 2019).

2.3.2. NVI ALS
ALS point clouds were acquired in August and September of 2012

using an Optech ALTM3100EA scanning system operated at an altitude
of approximately 700m above ground level (Table 2). The average
return pulse density was 11.6 points/m2 (Tompalski et al., 2015). A
Digital Terrain Model (DTM) with a spatial resolution of 1m was cre-
ated using ground returns and standard pre-processing routines as per
Axelsson (2000).

2.3.3. Data processing
The ALS and the DAP point clouds were processed following stan-

dard processing routines, which included filtering, tiling, and height
normalization. Processing was performed using a combination of point
cloud processing tools including LAStools (Isenburg, 2018), and the
lidR package for R (R Core Team, 2019; Roussel and Auty, 2018). A tile
size of 1000×1000m and a 30m buffer were used. Point cloud nor-
malization of both ALS and DAP point clouds was performed using the
ALS ground points and the lasnormalize function of the lidR package.
The ALS points classified as ground were used to normalize the DAP
point cloud elevations relative to the ground surface. The true-ortho-
photos and each generated point cloud dataset, were clipped using the
outlines of the plots using lidR and raster packages for R (Hijmans,
2019).

2.3.4. Point cloud and CHM metrics
Point cloud metrics included measures of central tendency (mean,

median), measures of dispersion (variance, standard deviation, inter-
quartile range), percentiles, proportions, and densities of point heights
above ground and were computed using lasmetrics function of the lidR
package. A complete list of point cloud metrics can be found in Table 3.

Separate ALS and DAP canopy height models (CHMs) were generated
for each plot at a 1m resolution, and then were used to generate an
additional set of metrics. The CHMs were generated using the point-to-
raster method, i.e. for each pixel of the output raster, the height of the
highest point is assigned (Roussel and Auty, 2018). The set of CHM-
based metrics included measures of central tendency (mean, median),
dispersion (sd, coefficient of variation), proportions (% of pixels above
2, 10, and 20m), and a measure of CHM roughness (rumple index,
Table 4) and were calculated using a combination of raster and lidR
packages for R.

2.3.5. Spectral metrics
A number of spectral indices and band statistics (Table 5) were

calculated based on the spectral information assigned to each point in
the DAP point cloud as well as based on the true-orthophoto. First, the
orthophoto was used to derive overall plot-level summary statistics that
incorporated spectral values in each band, the Normalized Difference
Vegetation Index (NDVI), as well as GLCM texture metrics derived for
the NIR band. We used raster and glcm packages to calculate the plot-
level summary statistics (Zvoleff, 2019; Hijmans, 2019). The pixel-level
statistics were summarized at a plot level with mean and standard de-
viation. Second, using a custom function, the 3D spectral metrics

Table 1
Inventory field plot characteristics by species groups. Reported are mean values with standard deviation in parentheses. HW – Western hemlock, CW – Western red
cedar, OC – other conifer, OD – other deciduous.

Species count HL [m] QMD [cm] BA [m2/ha] V [m3/ha] N

HW 74 32.7 (10.1) 38.3 (14.4) 64.0 (29.7) 913.4 (538.6) 690.4 (385.3)
CW 17 26.0 (8.3) 39.8 (15.8) 81.3 (38.9) 850.4 (495.4) 803.4 (475.6)
OC 32 33.0 (9.7) 45.1 (12.4) 88.4 (30.4) 1102.9 (488.7) 636.4 (261.7)
OD 8 23.2 (6.0) 28.0 (6.9) 34.00 (12.0) 373.7 (199.0) 676.0 (367.4)
Total 131 31.3 (10.0) 39.6 (14.3) 70.39 (33.3) 918.5 (528.7) 691.0 (370.4)

Table 2
Airborne laser scanning (ALS) data acquisition parameters.

Acquisition parameter Value

Year of acquisition 2012
Sensor ALTM3100EA
Flying height 700m AGL
Flight speed 130 kts
Pulse repetition rate 70 kHz
Scanning frequency 65 Hz
Scan angle 25 deg
Beam divergence 0.3mrad
Average pulse density 11.6

Table 3
Point cloud metrics used as predictor variables.

Metric Description

PTS_perc_all_above_threshold2 proportion of points above 2m
PTS_perc_all_above_threshold5 proportion of points above 5m
PTS_perc_all_above_mean proportion of points above mean

height
PTS_perc_all_above_median proportion of points above median

height
PTS_zmax maximum height
PTS_zmean mean height
PTS_zsd standard deviation of point heights
PTS_zskew skewness
PTS_zkurt kurtosis
PTS_zq5, PTS_zq10, …, PTS_zq95 percentiles (5th - 95th)
PTS_zpcum1, PTS_zpcum2, …,

PTS_zpcum9
deciles - cumulative percentage of
return in xth layer (Woods et al.,
2008). x= {1:9}

PTS_lad.cv Coefficient of variation of the LAD
profile (Bouvier et al., 2015)

Table 4
Canopy height model (CHM) metrics used as predictor variables.

Metric Description

CHM_rumple rumple index (Kane et al., 2010)
CHM_chmmean mean of CHM pixel values
CHM_chmsd standard deviation of CHM pixel values
CHM_chmcv coefficient of variation of CHM pixel values
CHM_CC2 proportion of CHM pixels above 2m
CHM_CC10 proportion of CHM pixels above 10m
CHM_CC20 proportion of CHM pixels above 20m
CHM_CCmean proportion of CHM pixels above chmmean
CHM_CCmeansd proportion of CHM pixels above chmmean + chmsd
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derived from the spectral information corresponding to each of the ALS
returns were used to characterize the three-dimensional variability of
the NDVI (Fig. 2). NDVI was first calculated for each point and then
summarized with mean, standard deviation, coefficient of variation,
and percentiles at the plot level. To characterize the vertical variability
of the NDVI, we divided the point cloud into 10 equal vertical layers
with layer height equal to 10% of the point heights range and calcu-
lated a mean NDVI for each of the layers. We also calculated the
average NDVI above and below every height percentile.

2.4. Experimental design

To examine the differences between the prediction accuracy of ALS-
and DAP-based metrics, as well as the role of spectral-based metrics, we
designed an experimental framework that included different combina-
tions of available predictors to model HL, QMD, BA, V, and N. The
experimental design included four scenarios (Table 6). Overall, three
classes of predictors were considered in model development: point

cloud metrics, CHM metrics, and DAP spectral metrics. In the first
scenario we created area-based models using ALS-derived metrics as
predictors. Results from this scenario were then used as a baseline for a
comparison with results from the three other scenarios. In the second
scenario the area-based models were developed using DAP point cloud
metrics. In the third scenario only DAP spectral metrics were used,
while in the final, fourth scenario, models were developed using all
available DAP metrics (i.e. both point cloud and spectral metrics). A
random forest (RF) modelling approach was used to develop predictive
models for each of the five forest stand attributes. RF was selected
because it is computationally efficient, robust to overfitting, readily
parameterized, and provides useful measures of variable importance
(Breiman, 2001). Prediction accuracy was assessed by calculating an R2

coefficient, bias, and RMSE (absolute and relative). Leave-one-out cross
validation was used, and the accuracy measures were calculated based
on the predictions for the left-out samples.

The R2 was calculated using the following formula:

Table 5
Spectral metrics used as predictor variables in area-based models.

Metric Description

SPC_x_Mean; SPC_x_Std.Dev Average and standard deviation of x spectral band (orthophoto); x= {B, G, R, NIR}
SPC_NDVI_Mean; SPC_NDVI_Std.Dev Mean and standard deviation of the point cloud-based NDVI
SPC_NDVI_P5, SPC_NDVI_P10, …, SPC_NDVI_P95 Percentiles of the point cloud-based NDVI
SPC_NDVI_L1, SPC_NDVI_L2, …, SPC_NDVI_L10 Average point cloud-based NDVI in L layer of the point cloud. Height of each layer is equal to 1/10 of the

range of point heights. L= {1:10}.
SPC_NDVI_above_Z_P5, SPC_NDVI_above_Z_P10, …,

SPC_NDVI_above_Z_P95,
Average point cloud-based NDVI calculated on a subset of points above each of the height percentiles.

TX_glcm_x_Mean; TX_glcm_x_Std.Dev … Grey level co-occurrence matrix (GLCM)-based texture metrics derived using the NIR band. x= {Mean,
Variance, homogeneity, Contrast, Dissimilarity, Entropy, Second_moment, Correlation (Haralick et al.,
1973)

Fig. 2. A profile of a DAP point cloud for a field plot showing different color composites (RGB and CIR) as well as the NDVI values associated with every point in the
cloud. CIR – colour-infrared. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Table 6
Predictor sets used in each of the four model scenarios examined.

Area-based model scenario Predictors included

S1 – Reference ALS point cloud and CHM metrics (Tables 3 and 4); reference data for benchmarking
S2 DAP point cloud and CHM metrics (Tables 3 and 4)
S3 DAP spectral metrics only (Table 5)
S4 DAP point cloud, CHM, and spectral metrics (Tables 3–5)
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where: N is the number of plots, yi is the observed value, ŷi is the
predicted value, and ȳ is the mean of the inventory variable.

In addition, we used statistical equivalence tests to assess the pre-
dictions. The standard statistical tests (e.g. t-test, Wilcoxon test) are
designed to test for differences in the mean values (or mean ranks), i.e.
the null hypothesis is posit that there are no differences between the
model and the data (Robinson et al., 2005). Failure to reject the null
hypothesis in a standard statistical test indicates we do not have enough
evidence to suggest that the two variables are different. However, this
result does not warrant that the variables are similar as the selected test
may be weak (Fekety et al., 2018; Robinson and Froese, 2004). These
tests are also sensitive to the sample size, as their ability to detect
differences increases with increasing sample size (Robinson et al., 2005;
Robinson and Froese, 2004). As opposed to the standard tests,
equivalence tests reverse the usual null hypothesis – they postulate that
the compared variables are different and use the data to prove other-
wise, and are therefore more suitable for model validation (Robinson
et al., 2005).

We used the equiv.boot function available in the equivalence R
package (Robinson, 2016) to validate the models. This implementation
of the test uses the bootstrapped, regression-based, two one-sided test
(TOST) of equivalence. In the regression-based validation strategy a
linear regression model is established between the two compared
variables (e.g. observation and prediction), and predetermined regions
of equivalence are established for the intercept and slope. The tests for
intercept and slope are performed separately, and are based on de-
termining if the confidence intervals are contained inside the regions of
equivalence (Robinson et al., 2005). As described by Fekety et al.
(2018) the test for intercept informs on the bias and determines if the
means of the two compared variables are equal. The test for slope,
which determines if the slope is equal to 1, informs on the pro-
portionality of the observed and predicted variables. We used the de-
fault region of equivalence of± 25% as per previous studies (Fekety
et al., 2015, 2018; Penner et al., 2013).

The equivalence test was used to evaluate the predictions of each
scenario with field data as reference, as well as to compare predictions
derived using the various combinations of DAP data metrics (scenarios
S2, S3, and S4) with ALS-based predictions (scenario S1) used as re-
ference. These two variants of the test allowed us to use it not only for
model validation, but also further investigate how different the DAP-
based predictions are from the ALS-derived baseline when different sets
of metrics are used. In addition we also used the test to determine if the
results of scenarios S2 and S4 are equivalent.

Lastly, we used the RF-based method of characterizing variable
importance to identify variables with the highest contribution for each
of the models. Instead of calculating the variable importance as the
mean decrease in accuracy if a given variable is randomly permuted, we

used the conditional variable importance measure as calculated using
the cforest function implemented in the party package for R (R Core
Team, 2019; Strobl et al., 2008). Strobl et al. (2008) showed that the
variable importance calculated in the original randomForest function
(Breiman, 2001) assigns higher values of importance to correlated
predictor variables and that the variable importance is affected by the
number of categories and scale of measurement of the predictors (Strobl
et al., 2007). As a result Strobl et al. (2008) suggested the conditional
variable importance measure as a reliable alternative.

In this study we calculated the variable importance during every
model run of the leave-one-out cross validation. Because it was possible
that the variable importance values would be slightly different, variable
importance values for every model run were saved and then averaged
across all model runs. Before every model run we also evaluated cor-
relations between predictor variables and kept only predictors that had
a Pearson's correlation coefficient less than 0.8. Correlation between
predictors has been demonstrated to influence variable importance
measures in random forests, as well as to dilute the importance of key
predictors (Gregorutti et al., 2017; Kuhn and Johnson, 2013; Strobl
et al., 2008).

3. Results

Our results indicated that model prediction accuracy was highest
when the ALS-derived point cloud metrics were used as predictors (S1;
Table 7). For this scenario, models for each of the five forest stand at-
tributes had higher R2, and lower RMSE%. The proportion of explained
variance was highest for models predicting HL and lowest for models
predicting N, with R2 values equal to 0.92 and 0.33, respectively. RF
predictions of HL with ALS metrics had also the lowest bias% (−0.16%)
and RMSE (9.23%). Predictions of QMD, BA, and V had R2 values
ranging from 0.43 to 0.65, and RMSE% ranging from 22.04% to 34.16%
(Table 7). The results of the equivalence test (Fig. 4) showed that the
predictions of all attributes were statistically equivalent in terms of
bias, and that predictions of HL and V were statistically equivalent in
terms of proportionality.

The results reported in S1 established a baseline for comparison
with prediction accuracies in S2, S3, and S4 (Fig. 3). The most accurate
predictions for DAP-derived metrics achieved for S2 (DAP point cloud
metrics only) and S4 (DAP point cloud and spectral metrics combined),
and lowest for S3 (DAP spectral metrics only). The results of the

Table 7
Accuracy of the five stand attributes (HL, QMD, BA, V, N) predicted under four
different scenarios with different sets of metrics used as predictors: S1 – ALS
metrics; S2 – DAP point cloud metrics; S3 – DAP spectral metrics; S4 – DAP
point cloud and spectral metrics.

Attribute Scenario R2 bias Bias% RMSE RMSE%

HL S1 0.89 0.21 0.68 3.34 10.65
HL S2 0.75 0.17 0.56 4.93 15.74
HL S3 0.14 0.03 0.11 9.25 29.52
HL S4 0.76 0.17 0.53 4.90 15.63
QMD S1 0.60 0.12 0.31 8.99 22.73
QMD S2 0.43 0.34 0.86 10.72 27.10
QMD S3 0.24 0.11 0.27 12.40 31.35
QMD S4 0.49 0.15 0.39 10.21 25.80
BA S1 0.42 −0.14 −0.20 25.21 35.81
BA S2 0.24 0.61 0.87 28.95 41.13
BA S3 0.16 0.41 0.58 30.48 43.30
BA S4 0.30 0.65 0.93 27.72 39.38
V S1 0.63 4.57 0.50 319.20 34.75
V S2 0.50 7.66 0.83 374.17 40.74
V S3 0.09 2.43 0.26 501.86 54.64
V S4 0.50 8.42 0.92 372.07 40.51
N S1 0.37 0.74 0.11 292.53 42.33
N S2 0.20 −0.24 −0.03 330.78 47.87
N S3 0.07 2.46 0.36 355.64 51.47
N S4 0.19 2.15 0.31 331.24 47.94
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equivalence test for these scenarios showed that the predictions of all
attributes were statistically equivalent in terms of bias. In terms of
proportionality, predictions of HL and BA were statistically equivalent
for S2. In S4 only predictions of HL were statistically equivalent.

. For S3, the achieved prediction accuracy was low, with high RMSE
% (e.g. 51.00% for V) and low R2 (e.g. 0.15 for BA, 0.09 for V). The
results of the equivalence test for this scenario showed that no pre-
dictions for any of the forest attributes considered were statistically

equivalent in terms of proportionality.
The effect of using a combination of point cloud- and spectral-based

metrics on the prediction accuracy is depended on the target attribute.
Results for S2 and S4 were similar to each other, especially for HL and V
(Fig. 4). Predictions of HL had the highest R2 equal to 0.79 for both
scenarios, with RMSE% of 14.59 and 14.67, respectively. Accuracy of
QMD, BA, and N was slightly higher in S4 than in S2. For example, the
R2 for QMD increased from 0.47 to 0.52, and the RMSE% decreased

Fig. 3. Scatterplots of predicted vs observed values for the five modelled forest stand attributes (HL, QMD, BA, V, and N), under each scenario. HL – Lorey's height,
QMD – quadratic mean diameter, BA – basal area, V – volume, N – number of stems.
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Fig. 4. Results of bootstrapped equivalence tests for all scenarios (S1 – S4) and all stand attributes. In each case (scenario + stand attribute) the equivalence test is
performed for bias and for proportionality. The test for bias is centered on the mean value of the observed attribute, while the test for proportionality is centered on a
slope value of 1. The grey rectangle indicates the region of equivalence, while the black crossbar depicts the 95% confidence interval. Asterisk indicates cases when
the test is satisfied (i.e. confidence interval within the region of equivalence).

Fig. 5. Results of bootstrapped equivalence tests for scenarios that used DAP-derived metrics as predictors (S2 – S4) with ALS-based predictions (S1) used as
reference. See Fig. 4 for details regarding figure interpretation.
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from 26.31% to 24.85%. The results of the equivalence test (Fig. 4) also
showed similar outcome for these two scenarios. However, when using
ALS-based predictions as a baseline (Fig. 5) the results of the equiva-
lence test showed that in S4 all of the stand attributes were statistically
equivalent for both bias and proportionality. These results were slightly
better than for S2, in which the null hypothesis of the test for pro-
portionality was not rejected for N.

Fig. 6 shows how the model accuracy changed when the DAP data
was used without (S2) or with spectral metrics. The addition of spectral
metrics never resulted in a decrease in R2 or an increase in RMSE% for
any of the attributes (Fig. 6). The influence that the addition of spectral
metrics in S4 had on bias% was less consistent: for HL, QMD, and BA
the bias% was reduced, whereas for V and N the bias% increased. By
performing the equivalence test on the results of S2 and S4, we found
that they were statistically equivalent for both bias and proportionality,
for all stand attributes. The addition of spectral metrics in S4 provided
no statistically significant increase in prediction accuracy for HL, QMD,
BA, and V, relative to those of S2.

Analysis of the variable importance indicated that point cloud me-
trics are markedly more important than spectral metrics (Fig. 7). For
scenarios that were based on point cloud metrics only (S1 and S2) the
set of most important predictors was very similar, with height percen-
tiles, CHM-based descriptive statistics, rumple, and proportions as the
most important predictors. It is notable that the cover metrics (i.e.
metrics describing the proportion of points above a threshold, e.g.
PTS_perc_above_threshold2) and metrics describing the variability of
point heights (e.g. PTS_zsd) were more important in S1, as the ALS
point cloud better characterize vertical structure of the stand.

When the point cloud-based and spectral-based metrics were com-
bined (S4), eight spectral-based metrics were among the top most im-
portant predictors and only 1 spectral metric was in the top 5. Indeed,
the top 5 predictors for S2 and S4 were identical, with the exception of
cumulative percentage of return in the 9th layer (PTS_zpcum9) being
replaced by the standard deviation of the green band (SPC_G_Std.Dev).
Overall, the important predictors for S4 were very similar to those for
S2. For S3, the standard deviation in the green band was identified as
the single most important metric for all modelled forest stand attri-
butes, with markedly higher importance than any of the other pre-
dictors.

4. Discussion

Research has demonstrated that DAP data can provide results ana-
logous to ALS data when used in an area-based approach to estimating
forest inventory attributes; however, the results obtained with ALS data
are always superior (Goodbody et al., 2019). In this work, we aimed to
determine if the accuracy of DAP area-based predictions can be im-
proved through the integration of spectral information. Different sets of
ALS- and DAP-derived metrics were used to compare prediction accu-
racy of five forest stand attributes: HL, QMD, BA, V, and N. Using four
different model scenarios with four different sets of predictor variables
(Table 6) we analyzed the relative contribution of spectral metrics to
improving the prediction accuracy of DAP area-based models. The re-
lative importance of candidate predictors was also assessed to identify
those predictors or spectral wavelengths that were most informative for
the developed models.

ALS models were used to establish a baseline for the comparison and
showed to have similar accuracy to previously reported results in the
study area (White et al., 2015). The DAP-point cloud only models
(scenario 2) were less accurate, which also corresponds to the findings
reported in White et al. (2015), and to the accuracies reported in the
literature (Goodbody et al., 2019; Noordermeer et al., 2019; Straub
et al., 2013; Vastaranta et al., 2013; White et al., 2015). The addition of
spectral metrics (S4) did not result in a statistically significant increase
in prediction accuracy for any of the modelled attributes. The difference
in model accuracy statistics was in fact minor and observed for only for
3 out of 5 modelled attributes (QMD, BA, V) and the maximum dif-
ference in R2 coefficient between the two scenarios was 0.06. When
compared to ALS-based predictions, the addition of spectral metrics
showed to be important in only one case – predictions of N were sta-
tistically equivalent to predictions derived with ALS only when the
point clouds and spectral metrics were combined.

The modeling scenario that incorporated only spectral metrics re-
sulted in the least accurate estimates of every stand attribute. This
confirms the importance of the three-dimensional information on the
forest structure for predicting inventory attributes and demonstrates
that the metrics used herein derived from the spectral values extracted
from the point cloud are not suitable for this type of modeling. In
particular, none of the metrics characterizing spectral values in dif-
ferent horizontal strata of the point cloud (and therefore taking the

Fig. 6. Change in R2, RMSE% and bias% between scenario 2 (S2) and scenario 4 (S4).
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advantage of the combined spatial and spectral information of DAP
point cloud), were found to be important for model development. The
most important predictor was the standard deviation of the green band,
derived from the orthophoto; this metrics was also the most important
spectral variable when the point cloud and spectral metrics were
combined. This finding corresponds to results reported by Puliti et al.
(2015) who used a combination of UAV-acquired point cloud and
spectral metrics to estimate stand attributes. They also found the green
band-based metrics (mean and standard deviation) to be the most re-
levant spectral variables included in their models.

The most important and informative metrics for the estimation of
HL, QMD, BA, V, and N using DAP data were those metrics derived from
the point clouds. In models developed with the point cloud metrics
only, and in models developed with the combined point cloud and
spectral metrics, metrics characterizing canopy height and canopy
cover were consistently identified as the most important variables for
model development. This result corresponds to results reported in the
literature for studies that used ALS point clouds integrated with aerial
or satellite imagery (Erdody and Moskal, 2010; Hudak et al., 2006;

Latifi et al., 2010; Tonolli et al., 2011). Here we confirm that the same
applies to predictions based on DAP data – the benefit of the additional
spectral information is negligible, with no clear and significant increase
in accuracy observed for any of the modelled forest stand attributes.
Similar outcomes were also reported by Puliti et al. (2015) and
Kukkonen et al. (2017). In complementary research using spectral in-
formation in conjunction with ALS data, Melin et al. (2019) found that
when building predictive models for avian habitat, the inclusion of
hyperspectral data did not improve model performance over the use of
ALS data alone.

Puliti et al. (2015) theorize that the limited improvement of pre-
diction accuracy when the spectral variable were included might be
caused by the time of their data acquisition (late fall) and often poor
image quality (lack of spectral calibration of the UAS user-grade
camera). In the case of our study, the timing of the image acquisition
(August 16, September 25, and October 4–6, between 10:00 and 15:00)
had less effect since the majority of the plots were conifer-dominated,
and the acquisition was performed with calibrated large-format digital
camera. The heterogeneity of the spectral values between individual

Fig. 7. Scaled variable importance values of the 10 most important metrics for each of the modelled forest stand attributes under each scenario. Each panel contains
variable importance values for each of the scenarios. Within each panel, the stacked colored bars indicate the total importance of given predictor variable, with colors
depicting the five modelled attributes. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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images that originates from changing topography, changing sun-sur-
face-sensor configuration during the day (heterogeneity within in-
dividual acquisition) or time of year (heterogeneity between acquisi-
tion) may result in a lack of consistency between spectral-based metrics
and therefore limit their suitability as predictor variables. However,
White et al. (2015) explicitly tested the impact of acquisition date (for
these same data) on area-based models of height, basal area, and vo-
lume, finding no significant difference in model estimates.

Given that tree crowns have internal spectral variability, even si-
milar forest structures will have variable spectral response values re-
sulting from viewing geometry and sensor-sun configurations (Leckie
et al., 2005; Maschler et al., 2018; Wulder et al., 2008). This effect is
likely to be more prominent in tall stands, where spectral variability
increases through the vertical canopy profile and horizontally over a
larger crown extent. As described by Leckie et al. (2005), in an old
growth temperate conifer forest, the within-species spectral variability
is often large because of illumination and view-angle conditions,
openness of trees, natural variability, shadowing effects, and a range of
crown health, while conversely, the spectral differences between spe-
cies are often small. From investigations looking at individual tree
crowns from high spatial resolution imagery, it is known that there are
sunlit and shaded portions of a given crown (Coops et al., 2004; Leckie
et al., 2005). As such, the two-dimensional expression of a tree crown is
expected to have variability in spectral response from an image based
perspective (Korpela et al., 2011; Wulder et al., 2004). When expanded
to a three-dimensional environment (i.e. DAP point cloud with spectral
information associated with every point), the impact of sun-surface-
sensor viewing geometry resulting from variations in forest structure
will be exacerbated with points located further from tree tops and into
gaps between trees. This spectral variability likely confounds the utility
of spectral information to relate meaningful information on forest
structure. In contrast, as an active sensor, ALS measurements can be
expected to consistently characterize the same structural conditions in
the same way, when differences in instruments and acquisition para-
meters accounted for. Future studies aiming to link DAP spectral and
structural information in a predictive sense would be improved by de-
scribing the expected relationship between the forest structural (and
compositional) characteristics present in the area of interest and the
spectral characteristics of the given sensor and resulting data.

As there was no marked improvement in prediction accuracy for
models that incorporated spectral metrics versus those that did not, we
cannot recommend incorporation of DAP spectral-based metrics as
predictors for estimating HL, QMD, BA, V, or N with area-based ap-
proach. Moreover, the effort required to obtain and integrate the
spectral information cannot be justified based on the results presented
herein. Past studies that have attempted to integrate spectral and
structural information have been motivated by a need to generate
species-specific models (Niska et al., 2010; Packalén and Maltamo,
2007) in an environment with limited species complexity. Such in-
formation is less of a driver in this context, and the results of previous
studies have indicated that the results for this application (distin-
guishing species) is not particularly compelling. In fact, based on the
results, we cannot identify situations (forest types, stand attributes) that
would always benefit from including the spectral metrics in the mod-
eling.

Finally, we recognize that although the spectral information did not
lead to increase in prediction accuracy in our case, it may be useful in
forest stands of different structure or species composition. For example,
Maltamo et al. (2006) found that adding spectral metrics may slightly
improve the accuracy of the ALS-based volume predictions. They re-
ported that the relative RMSE of volume decreased from 15.58% to
13.28% when data from aerial images was included. Puliti et al.
(2017b) demonstrated the benefits of including the spectral information
when predicting species proportions and species-specific volume.
However, when compared to ALS, a combination of a DAP point cloud
and spectral metrics did not result in higher prediction accuracy of plot-

level total volume or species-specific volume (Puliti et al., 2017b).
Spectral-based predictors may be also beneficial for individual tree
based approach. As shown by St-Onge et al. (2015) when the point
cloud and spectral data were integrated for individual tree approach,
they were more accurate for discriminating species than ALS-derived
structure and intensity metrics.

To summarize, as the influence of spectral metrics reported in the
literature is not consistent, their role in predictions should be evaluated
on a case by case basis with consideration of the effort required to
generate them. Our results showed that among the spectral variables,
the metrics based on individual green band were identified as most
important, and, in general, similar spectral metrics were most in-
formative in spectral-only models and in models that were based on
integrated point cloud and spectral metrics. These spectral variables
should be therefore among the first to incorporate in addition to point
cloud metrics.

5. Conclusions

In this study we compared how different sets of predictors derived
from DAP dataset influence the accuracy of area-based estimates of HL,
QMD, BA, V, and N. We compared the results with the observed data
(field plots) as well as with ALS-derived predictions. We found that
even the best results derived with DAP data had lower accuracy than
ALS-based estimates, although the difference was often small and ac-
ceptable for inventory applications. We found no benefit in including
spectral metrics derived from the DAP-based ortho or DAP point cloud –
the differences between model runs that included point cloud based
predictors combined with spectral metrics, when compared to models
developed using only point cloud predictors, were negligible. Given
these results and caveats discussed herein, the level of effort required to
extract the spectral metrics and incorporate them into area-based
models is not presently justified for operational applications.
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