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A B S T R A C T

Given long time series of satellite imagery, multiple disturbances can be detected for a particular location at
different points in time. We assessed multiple disturbances for the 650 Mha of Canada's forested ecosystems
using annual change information derived from Landsat time series imagery (1985–2015). Changes were typed by
agent (fire, harvest, and non-stand replacing). Spectral change rate and time between successive disturbances
were used to characterize disturbance-type combination differences. Short-term spectral recovery following the
last disturbance was compared to a reference sample of pixels disturbed only once. Results indicated that of the
97.6 Mha disturbed, 13.5 Mha have had two or more disturbances, with low magnitude non-stand replacing
disturbances involved in the majority of occurrences (77.2%). The total area disturbed represents 18.27% of
forest ecosystems, with 2.53% having multiple disturbances and 0.54% having multiple stand-replacing dis-
turbances. Systematic time series-based investigation of multiple disturbance events and agents provides insights
on forest disturbance dynamics and recovery processes.

1. Introduction

Forest ecosystems are constantly undergoing alteration by both
natural and anthropogenic drivers, and information regarding the lo-
cation and nature of these changes is required for scientific, policy, and
fulfilling management and reporting needs (Goward et al., 2008;
Kangas and Maltamo, 2006). The capture of forest disturbances is im-
portant to inform forest inventories to ensure an accurate and up-to-
date portrayal of forests (Gillis and Leckie, 1996). Forest disturbances
modulate the carbon flux between the biosphere and the atmosphere,
therefore detailed knowledge of disturbances over time and space is
critical to predict present and future carbon dynamics (Hirsch et al.,
2004; Kurz et al., 2009). As such, carbon accounting programs require
information on forest change related aspects including pre- and post-
disturbance cover, disturbance agent, and magnitude of disturbance
(Wulder et al., 2004). These programs are designed to monitor and
report on forest carbon stocks and stock changes and are commonly
informed by forest inventories as a core data source (Kennedy et al.,
2018; Kurz et al., 2008; Wilson et al., 2013).

Along with climatic and topographic factors, forest disturbance,
regeneration and recovery characteristics are also influenced by dis-
turbance history (Kulakowski and Veblen, 2002). Dynamic forested
ecosystems present complex interactions among multiple disturbance

types which overlap through time over a range of severities (Oliver and
Larson, 1990). Following major disturbances there can be a change in
the species composition that in turn can modify forest structure and
productivity altering a locations' predisposition to subsequent dis-
turbances (Bigler et al., 2005; Lavoie and Sirois, 1998). Interactions
between multiple disturbances are defined as linked when the occur-
rence or severity of the first event has legacies that affect that of the
second disturbance (Edwards et al., 2015), or compounded when the
likelihood or speed of recovery (to a similar state and function) from the
subsequent disturbance is altered (Buma, 2015). In a changing climate
scenario where disturbance events may increase in both their frequency
and severity, the analysis of multiple disturbance interactions is im-
portant since they have the potential to exceed the ecological resilience
of an ecosystem, implying potential non-recovery or an ecosystem shift
(Beisner et al., 2003; Buma and Wessman, 2011; Turner et al., 2019).
These interactions, however, have rarely been quantitatively examined
since modeling requires temporally-comparable and spatially-explicit
datasets, which historically have not been available (Bebi et al., 2003).

Remote sensing technology is ideally suited to enable monitoring
systems that capture timely information describing forest condition and
dynamics over large areas and long time periods (Banskota et al., 2014;
Wulder et al., 2004). Free and open access to the United States Geo-
logical Survey (USGS) Landsat image archive (Woodcock et al., 2008)
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provides users with high-quality analysis-ready data at informative
spatial and temporal resolutions for analyzing natural and human-in-
duced changes in terrestrial ecosystems (Wulder et al., 2012). A direct
consequence of this modification to data accessibility policy is the
emergence of novel techniques to monitor forested ecosystems (Wulder
et al., 2019; Zhu et al., 2019). Methods for seamlessly assembling image
data into composites representing large areas in a systematic and con-
sistent fashion have been developed (Griffiths et al., 2013; Hermosilla
et al., 2015a; Roy et al., 2010; White et al., 2014). Similarly, the rich-
ness and multi-decadal depth of Landsat image archive (Wulder et al.,
2016) has fostered the development of change detection approaches
based on the analysis of dense time series of imagery (Hermosilla et al.,
2015b; Huang et al., 2010; Kennedy et al., 2010; Verbesselt et al., 2010;
Zhu and Woodcock, 2014). These change detection approaches are
typically based on the temporal analysis of spectral trajectories and
enable both stand replacing (i.e., discrete changes such as wildfire and
harvest) and non-stand replacing disturbances (more subtle or longer
term events such as defoliation, water stress, etc.) to be discriminated
with high sensitivity and reliability (Kennedy et al., 2014). Further-
more, these change detection approaches effectively integrate time
series of imagery acquired with Landsat-4 and -5 Thematic Mapper
(TM), −7 Enhanced Thematic Mapper Plus (ETM+), and -8 Opera-
tional Land Imager (OLI), which has resulted in more than three dec-
ades of continuous observations at 30-m spatial resolution. Common to
spectral-trajectory-based change detection approaches is the capacity to
independently detect and characterize several disturbances occurring
over the same geographic space (pixel) but at different times over the
analyzed period. While multiple disturbances are captured in the time
series, these events are not commonly spatially represented or reported
upon. Given the temporal depth of Landsat measures (from 1972 at 60-
m and since 1982 at 30-m spatial resolution), multiple disturbances at a
particular location are increasingly likely.

With increasing disturbance frequencies expected as a result of
changing climatic conditions (Price et al., 2013), there is likewise an
increase in the likelihood of multiple disturbances occurring in rapid
succession relative to vegetation recovery rate (Bradford et al., 2012).
The detailed information provided by a time series of Landsat imagery
captures and describes forest disturbances and subsequent vegetation
regrowth for several decades (Kennedy et al., 2010; White et al., 2017),
which can assist in improving our understanding on the behaviour and
consequences of multiple, interacting disturbances. The aim of this re-
search is an improved understanding of the frequency and nature of
multiple disturbance dynamics for Canada's forested ecosystems. Using
Landsat time series imagery and derived forest change products, we
analyzed the frequency, distribution and agents of multiple forest dis-
turbances, and related short-term vegetation recovery, for the period
1985–2015. Systematic analysis of multiple disturbances using dense
time series of remotely sensed imagery informs on both forest dis-
turbance dynamics and recovery processes. Results of this research can
inform projections of forest regrowth following multiple disturbance
events in complex-change forest environments and are valuable to
sustainable forest management and carbon accounting information
needs.

2. Study area

Canada's forested ecosystems constitute ~650 Mha (534.3 Mha of
net forested area excluding land surface water; White et al., 2017), or
65% of Canada's total area (Wulder et al., 2008). These forested eco-
systems cover a broad range of ecological and climatic conditions, and
are highly variable in their abundance of treed areas, productivity and
growing conditions, as well as the degree of forest management and
human population density. Remote northern forests are generally un-
managed, with little to no fire suppression or harvesting tenure ar-
rangements. Forest inventory data in these areas are therefore also
limited. In contrast, southern latitudes of Canada's forested ecosystems

are subject to forest management practices such as harvest tenure
agreements, inventory generation, and other sustainable forest man-
agement initiatives. Although fire suppression activities are more
common in these managed forest, wildfires are still an annual occur-
rence. Fire is the main stand replacing disturbance in Canada's forests
(Fig. 1) (Boulanger et al., 2012). The annual average area disturbed by
wildfire is approximately 1.56 Mha, compared to the 0.65 Mha dis-
turbed by harvest (White et al., 2017). Insects impact an estimated 16.6
Mha on average each year with varying defoliation or mortality ef-
fects.1 The influence of multiple disturbances on Canada's forests has
been highlighted by various studies that have examined disturbance
interactions and impacts (Cobb et al., 2007; Maynard et al., 2014;
Pidgen and Mallik, 2013; Vepakomma et al., 2010; Woods et al., 2017).

3. Methods

3.1. Landsat time series data and derived forest change information

Forest change information was produced using the
Composite2Change or C2C approach (Hermosilla et al., 2016). This
methodology computes annual best-available pixel (BAP) image com-
posites by selecting optimal pixel observations from all available ar-
chived Landsat-5 TM, -7 ETM+, and −8 OLI imagery (Hermosilla
et al., 2017) from 1984 to 2016 over the 1280 scenes (path/row)
covering Canada (White and Wulder, 2014). This analysis utilized
Landsat images from USGS Collection-2 with surface reflectance values
generated using LEDAPS (Masek et al., 2006; Schmidt et al., 2013).
Cloud and cloud shadow information was derived using the Fmask al-
gorithm (Zhu and Woodcock, 2012).

All pixels were ranked using a set of compositing scoring functions
to identify optimal observations (Hermosilla et al., 2016; White et al.,
2014). Scoring functions included proximity to target date (August 1st,
Julian day 213 ± 30 days), occurrence and distance to clouds and their
shadows, haze opacity, and acquisition sensor (i.e., lower rank for
Landsat-7 ETM+ following the scan line corrector failure). With the
inclusion of Landsat-8 OLI data in C2C from 2013 forward, the haze
opacity score was no longer used. On average, 14.2% of pixels are
identified as having data gaps each year (Hermosilla et al., 2016). The
annual BAP composites are then further processed to remove any re-
sidual cloud, shadow, and haze. Noise is distinguished from real change
using an approach that compares anomalous values (i.e., spikes) in the
pixel series with the difference between the pixel in the preceding and
subsequent year. If the spike is larger than a pre-determined threshold
(determined using a sensitivity analysis) times the difference, the pixel
is flagged as noise (Kennedy et al., 2010). This detection of anomalous
values is applied independently to each of the six Landsat bands. If a
pixel is flagged as noise in three or more of the six spectral bands, then
the pixel is labelled no data. As a result additional data gaps (~8.4% on
average annually; Hermosilla et al., 2016) are added to the annual BAP
composites. To facilitate trend detection, a preliminary infilling of data
gaps is undertaken over temporal series of Normalized Burn Ratio
(NBR) values (Key and Benson, 2006). The NBR index incorporates the
short-wave infrared wavelength and is understood to inform on forest
structure (Cohen and Goward, 2004; Horler and Ahern, 1986). NBR
suitability and performance for forest change detection is supported by
previous research (Cohen et al., 2018; Hermosilla et al., 2016; Pickell
et al., 2016). Temporal trends and changes are identified with linear
segments describing spectral trajectories and remove noise using a
bottom-up breakpoint selection algorithm (Keogh et al., 2001). This
algorithm divides temporal series with n elements (number of years)
into n-1 segments. Potential segments are evaluated by calculating the
vertical differences between the best-fit line for the segment and the
NBR values, and then squaring and summing them (i.e., the Root Mean

1 http://nfdp.ccfm.org/en/index.php
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Square Error, RMSE). The RMSE is then used to evaluate the cost of
merging each pair of adjacent segments, resulting in the pair with the
lowest cost being merged. The cost value is then recomputed and the
process iterated until reaching the maximum merging cost (0.125) or
the maximum number of segments (i.e., six; Hermosilla et al., 2017).
Temporal trends with negative slopes represent disturbances in vege-
tation and are identified as changes. Changes are detected between
1985 and 2015 (i.e., no change events are detected the first and last
years of the time-series: 1984, 2016). Temporal trends and changes in
each pixel series are then used to assign synthetic or proxy values to the
data gaps generated from the aforementioned noise detection process.
The output of this process are annual gap-free surface reflectance
composites with temporally fitted spectral values, forest changes, and a
suite of metrics characterizing the forest changes (Hermosilla et al.,
2015a).

Changes detected in the time series were then allotted to dis-
turbance agent classes using an object-based image approach, the
change hierarchy introduced in Hermosilla et al. (2015b), and a
Random Forests model. At the highest level, pixels are partitioned as
change and no change. Based on their characteristics (spectral, tem-
poral and geometrical), changed pixels are separated into stand and
non-stand replacing classes. Stand replacing changes are abrupt dis-
turbances that generally involve a major removal of vegetation (e.g.,
wildfire, harvest). Non-stand replacing disturbances are gradual
changes in the vegetation status and health that do not necessarily re-
quire a change in land cover class (i.e., disease, insects, water stress,
and decline). Due to its spatial resolution, Landsat imagery is sub-
optimal for mapping and detecting roads (Stewart et al., 2009) and road
construction changes (Hermosilla et al., 2016), especially in forest en-
vironments where roads can be temporary, narrow, sub-pixel, as well as
having variable reflectance characteristics due to the road surface

present (e.g., dirt, gravel, or paved). Therefore, and as a result of the
lower reliability on the attribution of roads, these changes were ex-
cluded from further analysis. As the focus of this research is forested
ecosystems, changes in agricultural lands were identified and excluded
from further analysis using a mask provided by Agriculture and Agri-
Foods Canada. C2C forest change products were independently assessed
following the approach outlined in Olofsson et al. (2014) resulting in an
overall accuracy of 89% for the change detection and 92% for the
change classification to a change type. The change year was correctly
identified in 89% of cases, with 98% of cases detected within±1 year.
For complete and detailed accuracy assessment results, please see
Hermosilla et al. (2016).

3.2. Analysis of multiple disturbances

We analyzed the Landsat-derived forest change layers to map and
summarize disturbances in Canada's net forested ecosystem area (which
excludes land surface water and includes agricultural lands, as per
White et al., 2017) between 1985 and 2015, reporting on pixels that
underwent multiple disturbances (n=150,127,388 pixels). We further
analyzed those pixels that had two disturbances during the analysis
period (n=141,335,955 pixels) according to their disturbance agent
(i.e., fire, harvest, and non-stand replacing disturbance), and time
elapsed between the two disturbance events. The distribution of metrics
spectrally characterizing the change and the post-disturbance vegeta-
tion recovery of these pixels were studied based on the order of oc-
currence (first or second). Instances with three or more disturbances
were not analyzed further due to the small area impacted (0.81% of the
total disturbed area). To define a baseline scenario that enabled com-
paring the effect of multiple disturbances on change rate and recovery,
we first derived a random sample from pixels that had one single

Fig. 1. Area disturbed by fire, harvest, and non-stand replacing (NSR) disturbances for the period 1985–2015, as identified using the Composite2Change (C2C)
approach (Hermosilla et al., 2016). Map shows the greatest disturbance based on disturbance magnitude. Legend only applicable within Canada's forested eco-
systems. Inset map displays Canada's forested ecozones: Atlantic Maritime (AM), Boreal Cordillera (BC), Boreal Plains (BP), Boreal Shield East (BSE), Boreal Shield
West (BSW), Hudson Plains (HP), Montane Cordillera (MC), Pacific Maritime (PM), Taiga Cordillera (TC), Taiga Plains (TP), Taiga Shield East (TSE), and Taiga Shield
West (TSW). Agricultural land provided by Agriculture and Agri-Foods Canada. Water bodies derived from Hermosilla et al. (2018).
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disturbance event during the analyzed period. These pixels provided
reference values that were then compared to pixels with two detectable
disturbances.

Disturbances were spectrally characterized using the C2C change
rate metric, which is computed as the ratio of change magnitude and
change persistence (Hermosilla et al., 2016):

=rate NBR
pd

d

(1)

where p is the persistence or duration of the change segment, and
∆NBRd is the change magnitude:

=NBR NBR NBRd y p y (2)

where NBRy is the NBR value at the beginning of the disturbance seg-
ment, and NBRy−p is the NBR value at the end of the disturbance seg-
ment.

Post-disturbance vegetation recovery was characterized using the
recovery indicator metric (Kennedy et al., 2012; White et al., 2017).
The recovery indicator is a relative measure of spectral vegetation re-
covery which is conditioned by the change magnitude:

=RI
NBR

NBR
regrowth

d (3)

where ∆NBRregrowth indicates the absolute change in NBR at five years
following the disturbance (Eq. 4).

=NBR NBR NBRregrowth y y5 (4)

where NBRy5 is the NBR value at 5 years post-disturbance and NBRy is
the NBR value in the year of disturbance. Accounting for the need to
have a 5-year post-disturbance period, we considered only those pixels
disturbed between 1985 and 2011 to compute the recovery indicator
metric.

Fig. 2 shows examples of spectral NBR time series with two dis-
turbances. The time series in Fig. 2A exemplifies a scenario comprised
of six spectral trends (segments AB, BC, CD, DE, EF, FG) from which two
segments have negative slopes and represent disturbances (segments BC
and EF). The first disturbance starts in yB, finishes in yC, and has a
persistence of one year (yC-yB). The second disturbance starts in yE,
finishes in yF, and has a persistence of seven years (yF-yE). Time between
these two disturbances is computed as the number of years between the
end of BC (yC) and the beginning of EF (yE), and is 11 years in this
particular example. The change rate for the first disturbance is com-
puted as the ratio between the change magnitude ∆NBRdBC divided by
the change persistence (yC-yB). Similarly, the change rate for the second
disturbance is computed as the ratio between the change magnitude
(∆NBRdBC) divided by the disturbance persistence (yF-yE). The recovery
indicator for the second disturbance is computed as the ratio between
the ΔNBRregrowth (∆NBRregrowthF+5) at five years following the dis-
turbance (yF+5) divided by the change magnitude (∆NBRdEF). The re-
covery indicator can be computed for any disturbance. As the aim of
this analysis is to test compounded interaction of multiple disturbances
(i.e., variations in the likelihood or speed of recovery from the sec-
ondary disturbance; Buma, 2015), we only calculated recovery in-
dicator for the second disturbance. The time series shown in Fig. 2B is
made of three spectral trends (segments AB, BC, CD) from which seg-
ment AB and BC represent disturbances. The first disturbance (segment
AB) is an example of non-stand replacing disturbance that starts in yA,
finishes in yB, and has a persistence of 18 years (yB-yA). Non-stand re-
placing disturbances are by definition low magnitude and typically
persist for several years. The second disturbance (segment BC) starts in
yB and finishes in yC, having a persistence of one year (yC-yB), and re-
presents a stand replacing disturbance (i.e., fire, harvest). Whereas non-
stand replacing disturbance year is the culmination of a multi-year
process; wildfire and harvest events are labelled with the actual year of
disturbance. In this case, the time between disturbances is zero, since it
the ending year of the first disturbance segment AB (yB) corresponds

with the start year of the second disturbance segment BC (yB).

4. Results

The spatial distribution of the number of disturbance events in
Canada's forested ecosystems is mapped in Fig. 3, with insets over se-
lected areas to relate local detail within especially dynamic and com-
plex environments shown (by ecozone), Montane Cordillera (Fig. 3A),
Boreal Shield West (Fig. 3B), Hudson Plains (Fig. 3C), and Boreal Shield
East (Fig. 3D).

Table 1 shows the summary of disturbed forest area with reference
to the number of disturbances present between 1985 and 2015. During
this 30-year time period, approximately 18.27% of Canada's net
forested ecosystem area (exclusive of water) was impacted by wildfire,
harvest, and non-stand replacing disturbances. On an annual basis the
average, area disturbed by wildfire is 1.61 Mha and harvest is 0.64
Mha. These results indicate a 3% increase in the average annual area
disturbed by wildfire and a 2% decrease in area disturbed by harvest
when considering the period 1985–2015 relative to the annual rates
reported by White et al. (2017) for the 1985–2010 period. The majority
of the disturbed forest area (86.16%) had only a single disturbance over
the analyzed period, while 13.03% of the disturbed area had two dis-
turbance events, representing approximately 2.38% of Canada's net
forested ecosystem area (excluding water). Further, 0.81% of the forest
disturbance area had three or more disturbance events (i.e., 0.15% of
Canada's net forest area).

The distribution of disturbances related to their change type at
disturbance order (first or second disturbance event) is shown with a
Sankey diagram in Fig. 4. Sankey diagrams represent cross-tabulated
data graphically using flows connecting nodes in a network (Schmidt,
2008). These diagrams are well suited to present information on land
cover dynamics and change over multiple times, since they enable
emphasizing the size and direction of these flows within a system
(Cuba, 2015).

Our results indicated that non-stand replacing (low magnitude or
longer term events) disturbances were involved in the majority of the
multiple disturbance occurrences, with 77.2% of these cases involving
non-stand replacing as first and/or second change type. The largest
proportion of multiple disturbances (33.6%) were related to con-
secutive non-stand replacing disturbances. Non-stand replacing dis-
turbances followed by fire represented 26.3%, and non-stand replacing
followed by harvest events were 7% of the two multiple disturbance
area. Small portions of area initially affected by fire were later har-
vested (1.1%), while the opposing situation (i.e., harvesting followed by
wildfires) was slightly more common (2.3%). Of the areas that had two
disturbances in the analysis period, 11% were affected by two con-
secutive wildfires, and 8.5% by two consecutive harvest events.

Histograms of years elapsed between the first and second dis-
turbance for each combination of change types are shown in Fig. 5
(note that y-axis ranges are different for each histogram). The occur-
rence of a second fire following another wildfire had the greatest spread
in years elapsed, with two maxima located at 16 and 23 years after the
first disturbance. Similarly, the harvest-fire interaction of disturbances
also resulted in a wide distribution of years elapsed. Values, however,
are skewed towards the earlier years following the first disturbance.
Both fire-harvest and harvest-harvest interactions were notably skewed
towards the earlier years. Non-stand replacing disturbances followed by
fire and non-stand replacing followed by harvest had major histogram
maxima right after the first disturbance event (time since dis-
turbance= 0; see example in Fig. 2B). The occurrence of two successive
non-stand replacing disturbances shows a clear maxima a year after the
first disturbance. The distribution of the histogram values for fire fol-
lowed by non-stand replacing spanned out across the earlier years fol-
lowing the event. Non-stand replacing following harvest mostly oc-
curred immediately after the first disturbance.

The distribution of change rate values by change type is shown in
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Fig. 6. For reference, Fig. 6A shows the change rate from pixels where
one single disturbance was given during the analysis period. Wildfires
had the highest annual change rate values (median= 0.59), followed
by harvest (median=0.41) and non-stand replacing disturbances pre-
sent the lowest values (median=0.15). Fig. 6B shows the distribution
of change rate values for first and second change for each pair of change
type combination. Fires presented similar distribution of change rate
values with independence of the position of this event (first or second
disturbance) or the accompanying change type (fire, harvest, or non-
stand replacing). Similarly, first harvest events showed comparable
values to the reference ones. Second harvest events, however, had
lower change rate when following fire (median= 0.24) or previous
harvest disturbances (median=0.29). Non-stand replacing dis-
turbances followed by fire and harvest events resulted in the lowest
change rate values (medians= 0.02 and 0.04, respectively). However,
the dispersion of non-stand replacing change rate values when followed
by harvest (interquartile range, IQR=0.10) is markedly greater than
when followed by fire (IQR=0.05).

Fig. 7 shows the distribution of the recovery indicator metric fol-
lowing single disturbance events (as control), compared to the dis-
tribution for multiple disturbances. Note that although there are dif-
ferences in the median values, there is also greater variation in the
distribution of the recovery indicator metric, suggesting that multiple
disturbances increase variability in spectral recovery. The recovery
indicator metric values when fire is the second event (Fig. 7A) have a
similar distribution than single wildfire disturbances (median=0.33)
with the exception of harvest-fire interaction which resulted in larger
recovery indicator values (0.41). Compared to single harvest events
(median=0.56; Fig. 7B), the recovery indicator metric for the harvest-

harvest interaction reached slightly higher values (median= 0.62). In
contrast, harvest after fire disturbances resulted in lower recovery in-
dicator metric values (median= 0.34). Single non-stand replacing
disturbances are characterized to present the larger variability
(range=−0.55–1.75) and large values (median=0.59) on the re-
sulting recovery indicator metric, similarly to harvest followed by non-
stand replacing disturbances and two consecutive non-stand replacing
disturbances (Fig. 7C). The fire followed by non-stand replacing dis-
turbances, however, displays a markedly smaller variability
(range=−0.25–0.89) and lower recovery indicator metric values
(median= 0.30).

5. Discussion

In this research, we mapped, reported, and analyzed areas that
presented multiple disturbances across Canada's forested ecosystems,
with reference to their disturbance agent, the time elapsed between
these disturbances, and the spectral characterization of both the dis-
turbance event itself and the post-disturbance vegetation regrowth.
This multifaceted analysis was enabled by the Landsat-derived datasets
produced using the Composite2Change (C2C) approach which included
annual Canada-wide seamless surface reflectance composites and land
change information products that characterize and categorize forest
disturbances by disturbance agent (Hermosilla et al., 2016) as well as a
quantification of vegetation return following disturbances (White et al.,
2017). Akin to other widely used change detection approaches (Zhu,
2017) based on the temporal analysis of pixels using dense time series
of Landsat imagery (Huang et al., 2010; Kennedy et al., 2010;
Verbesselt et al., 2010; Zhu and Woodcock, 2014), C2C enables the

Fig. 2. Example of spectral trends and breakpoints used to identify disturbance segments (shown in red) and compute change metrics for a single pixel of Landsat
time series data. (A) ΔNBRdBC and ΔNBRdEF represent the disturbance magnitude for the disturbances BC and EF, respectively. ΔNBRregrowthF+5 represents the post-
disturbance regrowth five years following the EF disturbance. (B) ΔNBRdAB and ΔNBRdBC represent the disturbance magnitude for the disturbances AB and BC,
respectively. ΔNBRregrowthC+5 represents the post-disturbance regrowth five years following the BC disturbance. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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detection and characterization of multiple disturbances occurring in the
same pixel at different times within the analyzed period. While com-
puted, multiple disturbance information, however, is not commonly
assessed (Thomas et al., 2011) and is often subsumed in the graphical
representation and statistical reporting of the changes in favour of
simplifications representing the greatest or latest disturbance recorded
during the analysis period. Adding additional years to a given existing
time series offers opportunities to confirm or observe alterations to
previously reported trends. When compared to White et al. (2017) re-
lating disturbance trends from 1985 to 2010, the results of the current
analysis (1985 to 2015) with an additional five years of data show a 2%
decrease in the average annual area disturbed by harvesting and a 3%
increase in the annual area disturbed by fires. It is also possible that
more notable regional changes to existing trends can be muted in na-
tional statistics. Previous research (Coops et al., 2018) only found
evidence of regionally significant increasing trends of burned area in
specific ecozones, namely the Montane Cordillera, Taiga Plains, and
Taiga Shield West. Increasing disturbance rates would certainly impact
the interpretation of results on multiple disturbance interactions and
post-disturbance vegetation regrowth, and suggest a need for epochal
analyses (e.g., Frazier et al., 2015) of both multiple disturbance inter-
actions and vegetation regrowth.

Studying the multiple disturbance interactions is of value as mul-
tiple disturbances can result in broad changes to the composition and

configuration of affected forest stands. Short-time intervals between
disturbances may not have afforded opportunity for the forest to re-
cover from the initial disturbance, and this can result in regional le-
gacies of modified ecosystem structure into the future (Edwards et al.,
2015; Pidgen and Mallik, 2013). Climate change scenarios typically
anticipate an increase in the severity and frequency of natural dis-
turbances (Price et al., 2013). Consequently, as disturbance frequencies
increase, the possibility of multiple forest disturbances occurring before
the recovery of previous events becomes increasingly likely (Bradford
et al., 2012; Schelhaas et al., 2003), potentially reducing the capability
of forests to sustain carbon stocks (Galik and Jackson, 2009) and al-
tering the biodiversity by changing the community composition
(Chapin et al., 2000; Lavorel and Garnier, 2002).

Extensive analysis of the interactions between multiple disturbances
has been generally focused on natural disturbances such as wildfire and
insect outbreaks (Bebi et al., 2003; Bigler et al., 2005; Kulakowski and
Veblen, 2002). However, similar analysis with anthropogenic dis-
turbances such as forest harvest have been found to be challenging to
conduct due to a lack of consistency and quality as well as the spatial
and temporal extent of spatial records of historical harvest activity
(White et al., 2017). Landsat time series provides synoptic and con-
sistent data for mapping multiple disturbance types, enabling the study
of interactions between natural and anthropogenic disturbances. The
production of remotely-sensed spatially explicit datasets such as those

Fig. 3. Spatial distribution of the number of disturbances detected in Canada's forested ecosystems between 1985 and 2015. Regional spatially detailed insets
showing multiple disturbances in (A) Montane Cordillera, (B) Boreal Shield West, (C) Hudson Plains, and (D) Boreal Shield East.
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used herein is key to support modeling of multiple disturbances, as well
as subsequent ecological processes, which in turn enables estimation of
the probability of future disturbances (Bebi et al., 2003).

During the analyzed period (1985–2015), 18.27% of Canada's
forested ecosystem area (discounting waterbodies) had some form of
disturbance. Within this disturbed area, approximately 13.03% under-
went two and 0.18% had three or more disturbances. Although fire is
the main stand-replacing disturbance agent by area in Canada's forested
ecosystems (Boulanger et al., 2012; Stocks et al., 2002), non-stand re-
placing disturbances prevailed in those instances where there were
multiple disturbances (77% of multiple disturbance area). Moreover, a

third of the total multiple disturbance area was caused by two con-
secutive non-stand replacing events. By definition, non-stand replacing
disturbances do not involve broad vegetation removal, but a change in
the vegetation condition, and hence they will result in more trees or
other vegetation present to be subject to a second change relative to the
stand replacing disturbances of wildfire and harvesting. Further, many
of the multiple non-stand replacing disturbances are associated with
areas dominated by wetlands (e.g., Hudson Plains ecozone, Fig. 3C;
Wulder et al., 2018), where vegetation changes may be linked to
variability in hydrological regimes and precipitation (e.g., vegetation
stress, desiccation processes).

Wildfires following non-stand replacing disturbances involved ap-
proximately 26% of the multiple disturbance areas, and non-stand re-
placing disturbances followed by harvest events were approximately
7.2%. Long-term declining trends can indicate mature vegetation dis-
playing a slow reduction in the spectral values, but also a variety of
disturbance agents including pests, drought, and insect infestations.
First non-stand replacing disturbances may prompt the immediate oc-
currence of subsequent stand replacing disturbances due to both natural
(e.g., wildfire) or anthropogenic (e.g., preventive harvest, prescribed
fires) factors. Fig. 2B shows an example for a declining spectral trend
occurring over a long time period that is abruptly overridden by a
stand-replacing disturbance. These multiple disturbances interactions
are shown in Fig. 3A in the vicinity of Williams Lake, British Columbia,
where preventative harvesting campaigns were executed as a strategy
to reduce the impact and spread of a mountain pine beetle (Den-
droctonus ponderosae) outbreak in the Montane Cordillera (Wulder
et al., 2009). In this sense, the detection of non-stand replacing dis-
turbances immediately followed by stand replacing (i.e., fire and har-
vest) can be defined as linked, with the first disturbance having legacy
effect on the occurrence of the of second disturbance (Edwards et al.,
2015; Johnstone et al., 2016). Non-stand replacing disturbances fol-
lowing fires are found across several years following the first event,
reflecting delayed post-fire mortality of the residual vegetation (Bolton
et al., 2015). Conversely, non-stand replacing disturbances occur

Table 1
Summary of multiple disturbances in Canadas's forested ecosystems (1985–2015), by total area, percentage of net ecosystem area and percentage of total disturbed
area.

Disturbance type Area [ha] % of Canada’s net forested
ecosystem area

% of Canada’s total disturbed area
(1985–2015)

No disturbance Total 436,704,546 81.73 -

Disturbance (Greatest change 1985-
2015)

Total 97,606,107 18.27 100
Fire 49,851,292 9.33 51.07
Harvest 19,688,088 3.68 20.17
Non-stand replacing 28,066,727 5.25 28.76

1 disturbance Total 84,094,643 15.74 86.16
Fire 43,899,416 8.22 52.20
Harvest 17,027,640 3.19 20.25
Non-stand replacing 23,167,587 4.34 27.55

2 disturbances Total 12,720,236 2.38 13.03
Fire-Fire 1,393,876 0.26 1.43
Fire-Harvest 142,025 0.03 0.15
Fire-NSR 858,219 0.16 0.88
Harvest-Fire 286,452 0.05 0.29
Harvest-Harvest 1,081,279 0.20 1.11
Harvest-NSR 442,820 0.08 0.45
NSR-Fire 3,350,370 0.63 3.43
NSR-Harvest 894,987 0.17 0.92
NSR-NSR 4,270,208 0.80 4.37

≥3 disturbances Total 791,229 0.15 0.81
Fire (as terminal disturbance) 230,985 0.04 0.24
Harvest (as terminal
disturbance)

114,510 0.02 0.12

NSR (as terminal disturbance) 445,734 0.08 0.46

Fig. 4. Sankey diagram with the relationship between first (left) and second
(right) disturbance event based on the change type. This graph represents the
2.38% of Canada's forested ecosystems that was impacted by two disturbances
(1985–2015).
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immediately after the harvest events. Harvest disturbances are not al-
ways discrete events and after clearcutting sites can be prepared for
planting and stand tending with soil scarification and herbicide treat-
ment (Pidgen and Mallik, 2013).

Harvest-harvest interactions represented 8.5% of the multiple dis-
turbance area and are likely related to harvesting practices (e.g., partial
cutting), site preparation activities (e.g., mechanical, chemical), and
silvicultural treatments (e.g., thinning) (Jarron et al., 2017; Thomas
et al., 2011). Two consecutive wildfires involved 11% of the area that
had two disturbances during the analysis period. The fire-fire interac-
tion had a scattered distribution of time since previous disturbance
values (Fig. 5), which is related to the arbitrary nature of fires, typically
ignited by lightning strike, that can occur widely across boreal forested
ecosystems as opposed to human related activities (e.g., harvest) which
are confined within managed areas. Natural disturbances rarely elim-
inate all structural elements from the disturbed site (Franklin et al.,
2002), which combined with the high productivity of some forested
ecosystems in Canada allows for accumulating fuel that can be burned
by a second wildfire within the 30 year period analyzed. This situation
is shown in Fig. 3B, focusing upon a fire-dominated area within the
Boreal Shield West ecozone, which has one of the shortest fire return
intervals (Coops et al., 2018; Stocks et al., 2002), and hence is more
prone to the occurrence of short-interval fire disturbances.

Fire-harvest and harvest-fire interactions occur with the least fre-
quency (Fig. 4). This is seen as a result of wildfires and harvest activities
generally occurring in different geographical areas: harvesting is com-
monly present in more southern latitudes in conjunction with forest

management practices where wildfire events are uncommon due to fire
suppression (White et al., 2017). An example of these multiple dis-
turbance interactions between wildfire and harvest is displayed in
Fig. 3D, which shows a 1991 wildfire that affected a heavily managed
forested area close in the vicinity of Betsiamites River, Quebec
(Environment Canada, 1991). In addition, fire-harvest and harvest-fire
interactions also relate several forest management practices such as
salvage cutting activities of damaged trees following wildfires (Thomas
et al., 2011), and clearcutting followed by prescribed burning of the
remaining vegetation (slash and burn) (Beaudry et al., 2011).

Using the spectral information provided by the annual time series of
seamless surface reflectance composites representing temporally-fitted
spectral values, we spectrally characterized disturbances (via change
rate, Fig. 6) and post-disturbance vegetation regrowth (via recovery
indicator, Fig. 7). Overall, fires had the highest variability in spectral
change rate, which is expected as wildfires occur over a broader range
of forest conditions and land cover types in comparison to harvest ac-
tivities which typically take place in productive forest areas with
greater pre-disturbance forest cover (White et al., 2017). Wildfires in-
volved in multiple disturbances had change rates analogous to those
instances with a single wildfire. The recovery indicator, however, in-
dicates a more rapid short-term vegetation regrowth from fires that
burned previously harvested areas (24% higher), which could suggest
the establishment of vegetation communities different to areas with a
single harvest event (Pidgen and Mallik, 2013). The results here pre-
sented would suggest that harvest-fire interactions are compounded as
the rate of recovery to a similar spectral state from the previous

Fig. 5. Histograms of years between first and second change for each pair of change type combination. NSR: non-stand replacing disturbances. Note that y-axis range
is different for each histogram.
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disturbance has been altered (Buma, 2015). Short-term recovery of fire-
harvest interactions was on average 39% lower than locations with
single harvest events, likely influenced in part by differences in site
productivity. Notably, the median recovery indicator for fire-harvest
interactions (0.34) is comparable to the median recovery indicator
value resulting from single fire events (0.33). Areas that were disturbed
by two harvest events resulted in the highest recovery indicator values
(median=0.62) and a 10% increase compared to single harvest events,
which denotes the higher productivity of the forested ecosystems where
these practices take place (Masek et al., 2011).

The distribution of change rate values for non-stand replacing dis-
turbances followed by wildfires is lower and less scattered than when
non-stand replacing disturbance preceding harvest activities. This
might indicate fires occur on mature vegetation which exhibits in the
time-series a long-term reduction in the spectral response, while these
harvest events were likely triggered by preventive management re-
sponses to pest or diseases outbreaks. In both cases, the regrowth of
vegetation was found to be comparable to single disturbance wildfires
and harvest, respectively. Short-term vegetation recovery for non-stand
replacing disturbances following harvest events and following non-

stand replacing disturbances is comparable to instances with a single
non-stand replacing event. However, the recovery indicator results
suggest a slower vegetation regrowth for non-stand replacing dis-
turbances following wildfires to the status previous to the second dis-
turbance event.

The results presented demonstrate the prevalence of non-stand re-
placing disturbances in the occurrence of multiple disturbances. Given
the lower magnitude of change and the typical lack of association of
non-stand replacing disturbances with a change in the land cover class,

Fig. 6. Boxplots representing median, interquartile range, and extreme values
of change rate metric (ΔNBR·yr−1). (A) Reference value distribution per change
type for pixels with only one disturbance. (B) Value distribution for first and
second disturbance for each change type combination. NSR: non-stand repla-
cing disturbances.

Fig. 7. Boxplots representing median, interquartile range, and extreme values
of recovery indicator after (A) fire, (B) harvest, and (C) non-stand replacing
disturbances. Left boxes represent values for single disturbances (as reference),
and the remainder represent the recovery indicator following the second dis-
turbance different combination of multiple disturbances for fire (F), harvest
(H), and non-stand replacing (NSR) disturbances.
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non-stand replacing changes are not typically systematically mapped
and reported (Ahmed et al., 2017; Bell et al., 2018; Cohen et al., 2016;
Franklin et al., 2015). Forest change information derived from Landsat
data using the C2C approach provided the ability to analyze multiple
disturbances involving non-stand replacing changes. More detailed ca-
tegorization of non-stand replacing disturbances (e.g., insect dis-
turbances, pests, water stress) would be desirable and would enrich the
analysis and our understanding of the interactions between multiple
disturbances. However, given the diverse nature of the non-stand re-
placing disturbances and their various manifestations (e.g., mortality,
defoliation) depending on the disturbance agent and nature of the ve-
getation affected, it is challenging to further break down non-stand
replacing disturbances in more detailed subcategories exclusively using
multi-spectral data (Senf et al., 2017).

Future research on multiple disturbances will offer unique oppor-
tunities for investigation due to increasingly longer records of Earth
observation data. The Landsat program has acquired geo-radiometically
calibrated, 30-m data since 1982, with more frequent acquisition
starting in 1984 with the launch of Landsat-5 TM. As a result, Landsat's
archive is a unique window into the past, providing an invaluable, free
and open data source, to monitor forest dynamics and other global
phenomena (Wulder et al., 2012). Currently Landsat-8 OLI and Sen-
tinel-2 are acquiring hundreds of observations daily, the launch of
Landsat-9 is scheduled for December 2020, and Landsat-10 planning is
ongoing (Wulder et al., 2019). In addition to future acquisitions, novel
methods for developing and standardizing Landsat MSS products for
inclusion in time series analyses are acting to reliably extend the
monitoring period to start in 1972 (Savage et al., 2018; Vogeler et al.,
2018).

6. Conclusions

In this research, we used annual forest change information derived
from a three-decade time series of Landsat imagery to capture and
perform an assessment of the multiple disturbances found over 650 Mha
of Canada's forested ecosystems from 1985 to 2015. Frequency, dis-
tribution, and causes of multiple forest disturbances, and subsequent
vegetation recovery were analyzed using the disturbance agent attri-
bution (fire, harvest, and non-stand replacing disturbances) and spec-
tral metrics derived from the time series of Landsat imagery char-
acterizing change (change rate and time between disturbances) and
following vegetation regrowth (recovery indicator). The results in-
dicated that for the analyzed period, 18.27% of Canada's forested
ecosystems (excluding waterbodies) underwent disturbances, and
2.53% was impacted by multiple disturbances (two or more disturbance
events). Moreover, and although wildfires are the principal stand re-
placing disturbance agent by area in Canada's forests, the majority of
multiple disturbances involved non-stand replacing events. Most of
multiple disturbances presented a similar behaviour to single dis-
turbance events in terms of spectral disturbance characterization.
Lower spectral recovery rates were found on harvest and non-stand
replacing events following wildfires, and higher recovery rates after
fires subsequent to harvest activity. Outcomes of this research provide
insights regarding the interaction between multiple disturbances and
can in turn inform subsequent stand establishment and longer-term
growth expectations. This information is valuable to advise planning
activities for sustainable forest management and to inform expectations
of future carbon stocks and models of greenhouse gas exchanges with
the atmosphere.
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