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A B S T R A C T

Up-to-date forest inventory information relating the characteristics of managed and natural forests is funda-
mental to sustainable forest management and required to inform conservation of biodiversity and assess climate
change impacts and mitigation opportunities. Strategic forest inventories are difficult to compile over large areas
and are often quickly outdated or spatially incomplete as a function of their long production cycle. As a con-
sequence, automated approaches supported by remotely sensed data are increasingly sought to provide ex-
haustive spatial coverage for a set of core attributes in a timely fashion. The objective of this study was to
demonstrate the integration of current remotely-sensed data products and pre-existing jurisdictional inventory
data to map four forest attributes of interest (stand age, dominant species, site index, and stem density) for a
55Mha study region in British Columbia, Canada. First, via image segmentation, spectrally homogenous objects
were derived from Landsat surface-reflectance pixel composites. Second, a suite of Landsat-based predictors
(e.g., spectral indices, disturbance history, and forest structure) and ancillary variables (e.g., geographic, to-
pographic, and climatic) were derived for these units and used to develop predictive models of target attributes.
For the often difficult classification of dominant species, two modelling approaches were compared: (a) a global
Random Forests model calibrated with training samples collected over the entire study area, and (b) an ensemble
of local models, each calibrated with spatially constrained local samples. Accuracy assessment based upon in-
dependent validation samples revealed that the ensemble of local models was more accurate and efficient for
species classification, achieving an overall accuracy of 72% for the species which dominate 80% of the forested
areas in the province. Results indicated that site index had the highest agreement between predicted and re-
ference (R2=0.74, %RMSE=23.1%), followed by stand age (R2= 0.62, %RMSE=35.6%), and stem density
(R2=0.33, %RMSE=65.2%). Inventory attributes mapped at the image-derived unit level captured much finer
details than traditional polygon-based inventory, yet can be readily reassembled into these larger units for
strategic forest planning purposes. Based upon this work, we conclude that in a multi-source forest monitoring
program, spatially localized and detailed characterizations enabled by time series of Landsat observations in
conjunction with ancillary data can be used to support strategic inventory activities over large areas.

1. Introduction

A key requirement of sustainable forest management is the estab-
lishment and maintenance of forest inventories to provide accurate and
timely information on the state of the forest that supports a variety of
purposes and information needs (White et al., 2016), and most im-
portantly forest planning across a range of scales (Kangas and Maltamo,
2006). Traditionally, inventories have provided relevant information
via a suite of attributes including timber volume, mean stand height,
and mean tree diameter (Gillis et al., 2005). This information is

required to inform strategic planning over large areas and to aid in
harvest planning (or to identify locations where information of greater
detail is required). Increasingly, forest inventories are being used to
relate the provision of other ecosystem goods and services, including
habitat characteristics, biotic diversity, and carbon stocks (Laamanen
and Kangas, 2011).

In Canada, where extensive forest management practices dominate,
forest inventories are often derived from a multi-stage process that in-
volves acquiring aerial photography, using the photos to delineate
homogenous units or forest stands, and then interpreting attributes
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from the photography for those delineated stands, often with the aid of
stereo vision (Leckie and Gillis, 1995; Gillis and Leckie, 1996). Field
plots are then commonly used to adjust regional estimates (Leckie and
Gillis, 1995). Forest inventories as a mapped outcome are polygonal in
nature (often with a minimum mappable unit of 2 ha), with homo-
genous stands delineated and attributed to the desired level of detail on
the relevant structural, compositional, and functional attributes re-
quired by the inventory (Eid et al., 2004). At the most basic, these
strategic-level forest inventories are produced to provide forest man-
agers with information to support decisions around timber allocations
and harvest planning related to current and projected wood supply
(Gillis et al., 2005). As specified, forest inventory are produced on a
cycle (e.g., renewed on a decadal basis), with time required for the end-
to-end inventory process to be implemented. As a result, inventories are
composed of information acquired from different dates and focused
preferentially on the managed portions of a jurisdictions’ forested land-
base. Over time, inventories also use some level of projection to po-
pulate polygons that were not represented by new aerial surveys or are
not subject to forest management practices (e.g., parks and protected
areas). The result is that a given forest inventory typically does not
represent the forested land-base uniformly in terms of space, time, or
attribution.

Due to the capability of airborne laser scanning (ALS) to provide a
detailed three-dimensional view of forest structure (Lim et al., 2003),
the technology and related analysis approaches have transformed the
derivation of forest inventory in many jurisdictions globally (Reutebuch
et al., 2005; Asner et al., 2012; White et al., 2016). Attributes such as
stand volume, biomass, diameter, and basal area as well as information
on foliage cover and its vertical distribution have all been shown to be
accurate (Popescu et al., 2003; Næsset, 2002), often meeting or ex-
ceeding the accuracy requirements associated with operational forest
management (Magnussen et al., 2012) with relative root mean square
errors (%RMSE) typically lower than 20% (Hyyppa and Hyyppa, 2001;
Hilker et al., 2008). However, most of these efforts are implemented on
an ad hoc basis over priority areas (Bolton et al., 2018; Shang et al.,
2019). The enhanced forest inventory information generated from these
data is of high operational utility, but results in a non-systematic cov-
erage that does not necessarily relay the information required for re-
gional, strategic, monitoring and decision making. Further, the manual
elements of the forest inventory process can result in limitations to the
quality and consistency of the attributions made (White et al., 2016).
This gave rise to the concept of “lidar-plots”, where ALS samples suf-
ficient in number and distribution are used to provide independent
calibration and validation data (Wulder et al., 2008a, 2012a). For ex-
ample, Andersen et al. (2011) utilized ALS data in a two-stage approach
to predict biomass across Alaska, and Wilkes et al. (2015) used a similar
modelling approach with ALS to predict canopy heights across large
forest areas of Victoria, Australia. Using imputation techniques, a two-
stage approach to estimating forest attributes can be developed using
the ALS estimates of forest attributes at select locations over the land-
scape (Wulder et al., 2012a).

Combining the wall-to-wall coverage of optical satellite data of a
known vintage with ALS samples, either as areas (Bolton et al., 2018) or
transects (Wulder et al., 2008a), allows for new opportunities to
monitor forests (Wulder et al., 2012a). Advances in both the access to
and quality of optical remotely sensed data, in particular the 2008
opening of the Landsat archive (Woodcock et al., 2008; Wulder et al.,
2012b), offer new opportunities for strategic forest inventory devel-
opment. Matasci et al. (2018a) combined ALS plot-derived information
with Landsat surface-reflectance pixel composite to produce forest
structure estimates for over 650Mha in Canada using nearest neighbour
imputation to estimate both ALS metrics of height (e.g., mean height,
standard deviation of height) and cover, as well as area-based modeled
inventory estimates of Lorey’s height, basal area, stem volume, and
biomass. These spatial coverages can then be used to inform both the
dynamics and regional trends in forest growth and change. Even though

wall-to-wall forest attributes maps derived in this fashion cannot fully
replace ground-based forest inventory systems, they could contribute to
inferences at much finer scales. A number of forest attributes are re-
quired to provide the full complement of variables necessary for stra-
tegic-level forest inventories (see attribute listing in Falkowski et al.,
2009). Forest structural attributes such as height, volume, and cover are
critical (Matasci et al. (2018a, 2018b); however, other attributes such
as dominant tree species, stand age, site productivity, and stem density
are also important forest inventory information for strategic forest
planning, which would allow for more specific decisions to be made.

The goal of this research is to present a methodological framework
that combines remotely-sensed data and derived products to update
existing forest attribute maps in a spatially exhaustive, temporally
consistent fashion, over 55Mha covering the forested area of British
Columbia, Canada. The specific research objectives are (i) to assess the
utility of object-based image analysis for delineating forest stands using
Landsat surface reflectance pixel composites to enable integration with
forest stands that are currently used for inventory purposes in the
province; and (ii) to examine how a predictive model for dominant tree
species calibrated with locally collected training samples compares to a
global model calibrated with training samples across the entire study
area, in terms of accuracy and efficiency. Ultimately, the approach
demonstrated in this research would enable the generation of a more
complete suite of forest attribute estimates at a finer level of spatial
detail to support strategic level forest planning.

2. Study area

The study area spans the treed area of British Columbia, Canada,
totalling over 55Mha or approximately 59% of the province (Fig. 1).
Dominated by mountain ranges, British Columbia features a highly
varied climate. As a result, vegetation distribution is controlled by both
latitudinal and longitudinal gradients, making it one of the most bio-
logically diverse provinces in Canada (Mathys et al., 2018). The most
common tree species in British Columbia include, by area, lodgepole
pine (Pinus contorta), subalpine fir (Abies lasiocarpa), trembling aspen
(Populus tremuloides), douglas-fir (Pseudotsuga menziesii), mountain
hemlock (Tsuga mertensiana), western hemlock (Tsuga heterophylla), and
a variety of spruce (Picea). Forest management in the province is of
economic importance and in most years forest harvesting occurs over
an average of 0.17Mha annually for the period 1985–2015 (White
et al., 2017; Natural Resources Canada, 2018). Although fire suppres-
sion is common in managed forests, wildfires still occur and can be
highly variable in areas impacted on an annual basis. Single recent
annual burned areas of greater than>1Mha have been reported which
are well over the average area burned of less than 0.05Mha for
1985–2015 (Crowley et al., 2019; White et al., 2017, Hermosilla et al.,
2017). Additionally, forests in British Columbia are also affected by
non-stand replacing disturbances, such as an outbreak of mountain pine
beetle which resulted in high tree mortality impacting trees for an area
˜16Mha over a decade plus period,1 noting that differences in severity
and overlapping of annual survey outcomes can impact reported areas
(Wulder et al., 2009). The diversity, nature, and extent of these dis-
turbances underscore the importance, and need for, more frequent
forest inventory updates (Bourgeois et al., 2018).

3. Methods

The methodological framework presented in this paper enables the
production of wall-to-wall forest attribute maps at the sub-stand level
for the entire province of British Columbia, through a combination of

1 https://www2.gov.bc.ca/gov/content/industry/forestry/managing-our-
forest-resources/forest-health/forest-pests/bark-beetles/mountain-pine-beetle/
responding-to-the-1999-2015-outbreak
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image segmentation, Landsat-derived spectral, structural, land cover,
and disturbance metrics, as well as terrain and environmental data as
ancillary variables (Fig. 2). Here we provide an overview of the
methodology, with the details discussed in Sections 3.1 through 3.5.
First, image segmentation was performed on Landsat surface

reflectance pixel composites to derive spectrally-homogeneous micro-
stand objects. Best-available pixel composites were generated following
the Composite2Change (C2C) approach (White et al., 2014; Hermosilla
et al., 2016). Second, the boundaries of these micro-stand objects were
used to extract information from Landsat-derived forest structural

Fig. 1. Study area in British Columbia, Canada, shown with Landsat surface reflectance pixel composite relating 2015 conditions (Red: shortwave infrared band,
Green: infrared band, Blue: red band) overlaid with abbreviated ecozones: Pacific Maritime (PM), Boreal Cordillera (BC), Montane Cordillera (MC), Taiga Plains (TP),
and Boreal Plains (BP). Three test sites located in northern, interior, and coastal British Columbia are labeled as A, B, and C respectively. The inset shows the satellite
land cover derived treed area for British Columbia. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

Fig. 2. Overall workflow presenting the suite of predictor variables and steps for stand-level forest attribute modelling and map production.
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layers (Matasci et al., 2018a), transforming them from 30-m pixel-based
to micro-stand level inventory data. Third, a selection of Landsat-de-
rived products, including surface reflectance pixel composites
(Hermosilla et al., 2015a), land cover (Hermosilla et al., 2018), forest
disturbance information (Hermosilla et al., 2015b), and forest struc-
tural layers (Matasci et al., 2018a) were used, in conjunction with
geographical, topographical and climatic ancillary data as predictor
variables (Table 1), to model a suite of forest attributes (i.e., dominant
species, site index, stem density, and age) available in the vegetation
resources inventory (VRI) using Random Forests (Breiman, 2001).
Lastly, these predicted forest attributes at the micro-stand level were
added to the existing forest structural layers to form a harmonized
polygon-based inventory system (Fig. 2). In order to examine the se-
parability of tree species based on our predictor variables, we applied
principal components analysis (PCA) to three contrasting sites in British
Columbia along a latitudinal and longitudinal gradient (Fig. 1).

3.1. Vegetation resources inventory as response variable

Predictive models of forest attributes over large areas require an
extensive network of field data to cover the full range of species and
structural variability present across the landscape. To provide a pro-
vince-wide sample of species and structural conditions, we utilize the
current Vegetation Resources Inventory (VRI) data for British Columbia
as reference data. As a long-standing provincial inventory program, VRI
is an aerial photo interpretation-based inventory program encom-
passing a range of forest attributes (British Columbia Ministry of
Forests, Lands, Natural Resource Operations and Rural Development,
2018). Data acquisition for VRI was carried out following a photo-
based, two-stage inventory protocol. First, forest stands were manually
delineated as individual polygons and applicable forest attributes were
interpreted based on visual characteristics of the aerial photographs.
Second, ground sampling was undertaken for calibration and validation
purposes. Following delineation and interpretation, a suite of stand-
level forest attributes are available, including species composition (up
to six species recorded for each stand), height, canopy closure, age,
volume, basal area, stem density, and site index (British Columbia
Ministry of Forests, Lands, Natural Resource Operations and Rural
Development, 2018). Given the relatively large size of the VRI polygons
(mean area =8.5 ha), some of these polygons might not represent

homogeneous internal conditions. That is, the forest stand conditions
may be consistent for attribution, but there may also be anthropogenic
(e.g., road edges, landings) or other natural features (e.g., streams, rock
outcrops). Considering this, median values of our predictor variables
were extracted for each polygon to reduce the influence of outliers on
model development. Additionally, to remove possible edge effects,
pixels located along the boundaries between VRI polygons were not
considered for computation of median values. Herein, we focused on
four attributes from the VRI to expand our suite of forest attributes:
stand age, site index, stem density, and dominant species. The defini-
tions and range of values for these attributes are provided in Table 2. It
is worth noting that the extreme values for some of the forest attributes
are unrealistic, such as a max site index of 90m and stem density of
21,792 trees/ha. This relates to the subjectivity of the photo inter-
pretation process, where estimates are subject to human errors, which
calls for data screening protocols prior to model development and va-
lidation.

3.2. Predictor variables

3.2.1. Landsat image composites, forest change and land cover information
To characterize various forest attributes across British Columbia for

the target year of 2015, we used Landsat-based surface reflectance
composites and forest disturbance information derived following the
Composite2Change (C2C) approach (Hermosilla et al., 2016) as well as
land cover map computed with Landsat time series (Hermosilla et al.,
2018). In summary, a best-available-pixel compositing technique was
used to avail upon the entirety of free and open Landsat archive (White
and Wulder, 2014; Wulder et al., 2012b) to produce cloud-free, radio-
metrically consistent composites (Hermosilla et al., 2016, 2017). While
the mapping year for this study is 2015, composites, change, and land
cover all are informed by time series analysis. The period of analysis
aligns with the introduction of 30-m spatial resolution imagery from
Landsat-5 in 1984. We acknowledge that 30-m data is theoretically
available since 1982 with Landsat-4, but that the data yield was too
limited to meet the required density of data coverage (Wulder et al.,
2016). From the work in Hermosilla et al. (2016), the average number
of images that meet screening requirements and offer pixels to the
annual best-available-pixel composites is ˜2500 per year (st
dev= 878.9). These annual best-available-pixel composites are in turn

Table 1
Predictor variables used to develop the predictive models for our target forest attributes.

Variable group Variable name Description Reference

Landsat surface reflectance composites TCB Tasseled Cap Brightness Hermosilla et al. (2016)
TCG Tasseled Cap Greenness
TCW Tasseled Cap Wetness

Land cover land cover Land cover Hermosilla et al. (2018)
Forest disturbance disturbance type Type of disturbance Hermosilla et al. (2015b)

year since disturbance Year since disturbance
change persistence Persistence of change

Topography elevation Elevation GDEM V2
TWI Topographic wetness index
TSRI Topographic solar radiation index
slope Slope

Geographic location latitude Latitude NA
longitude Longitude

BEC classification biogeoclimatic zone Biogeoclimatic ecosystem classification Pojar et al. (1987)
Forest structure basal area Basal area Matasci et al. (2018a, 2018b)

elevation cv Coefficient of variation of vegetation height
elevation mean Average vegetation height
elevation p95 95th percentile of vegetation height
elevation stddev Standard deviation of vegetation height
volume Gross stem volume
lorey’s height Lorey’s height
cover 2m Percentage of first returns above 2m
cover mean Percentage of first returns above mean height
biomass Total above ground biomass

C. Shang, et al. Int J Appl  Earth Obs Geoinformation 84 (2020) 101956

4



used to generate Canada-wide image composites following Hermosilla
et al. (2015a, 2016).

The target date for the image compositing was set to August
1 st ± 30 days to be within the growing season for most of Canada’s
forested ecosystems (White et al., 2014). All the available images with
≤70% cloud cover acquired within this temporal window were
downloaded from the USGS Landsat archive for the period between
1984 and 2016 as Level-1 Terrain Corrected (L1T) products. Clouds and
associated shadows were detected using Fmask (Zhu and Woodcock,
2012). The Landsat Ecosystem Disturbance Adaptive Processing System
(LEDAPS) algorithm was applied to compute surface reflectance (Masek
et al., 2006). To generate surface reflectance composites with the
highest possible fidelity, a scoring function was implemented to select
the optimal source of information for each pixel using the following
criteria: sensor type, proximity to the target date, distance to cloud or
cloud shadow, and atmospheric opacity (White et al., 2014).

Given the varying data availability at different latitudes and per-
sistent cloud presence over certain areas, data gaps in composites were
present, representing 10.7% (st dev= 6.1%) of the study area after
image compositing. To fill these gaps, spectral trend analyses using the
Normalized Burn Ratio (NBR) (Key and Benson, 2006) were performed
on the time series imagery at the pixel level, thereby removing the
possible noise in the data and filling the gaps through temporal inter-
polation (Hermosilla et al., 2015a).

Spectral trend analysis also enabled characterization of changes in
terms of magnitude, type of disturbance (e.g., harvesting, fire, and non-
stand replacing), and temporal dynamics of disturbance (i.e., change
persistence and year since disturbance) (Hermosilla et al., 2015b). From
the surface reflectance pixel composites for the target year 2015 we
derived Tasseled Cap brightness (TCB), greenness (TCG), and wetness
(TCW) (Crist, 1985). Furthermore, a series of land cover maps was
generated for the study area using the virtual land cover engine (VLCE)
approach, which uses temporal information, such as disturbance his-
tory, knowledge of vegetation succession, and logical rules to reduce
instances of spurious classification results (Hermosilla et al., 2018). The
classification scheme consisted of 12 land cover classes in total, of
which four are treed classes, including wetland-treed, coniferous,
broadleaf, and mixedwood.

3.2.2. Forest structural data
We obtained wall-to-wall, 30-m pixel, structural information from

the Landsat-derived forest structural layers produced by Matasci et al.
(2018a, 2018b). These forest structural layers represent six imputed
ALS metrics (i.e., elevation mean, elevation standard deviation, eleva-
tion coefficient of variation, elevation 95th percentile, canopy cover,
and canopy cover above mean height), as well as four inventory attri-
butes that were modeled through the combination of ALS and field plot
data in an area-based approach (i.e., Lorey’s height, basal area, stem
volume, and total biomass). Imputations were undertaken using a k-
Nearest Neighbor (k-NN) approach with topographic and Landsat
spectral predictors, and a Random Forest-based distance metric. With
k=1, the most similar sample for each prediction unit was identified in
the training data pool, thus allowing for indirect imputation of the
second group of forest attributes (Matasci et al., 2018b) constrained to
the treed classes derived from the land cover map (Hermosilla et al.,
2018).

3.2.3. Geographical and topographic data
Geographic coordinates (i.e., latitude and longitude) were first de-

rived for the centroid of each Landsat pixel and used as predictors to
capture the geographic influences on forest characteristics in a format
consistent with our other Landsat-based predictors. Then, a suite of
topographic variables were derived from the Advanced Spaceborne
Thermal Emission and Reflection Radiometer (ASTER) global digital
elevation model (GDEM V2). Compared to the initial version of this
DEM released in 2009, this second iteration was developed withTa
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updated algorithms and an additional 260,000 stereo-pairs from the
ASTER sensor onboard the Terra satellite, with 30m postings
(Tachikawa et al., 2011) compatible with Landsat imagery. Derived
topographic predictors included elevation, slope, topographic solar
radiation index (TSRI) (Roberts and Cooper, 1989), and topographic
wetness index (TWI) (Kirkby and Beven, 1979).

3.2.4. Biogeoclimatic ecosystem classification data
Given that forest attributes are influenced by climatic conditions

over broad scales (Hamann and Wang, 2006), we incorporated Bio-
geoclimatic Ecosystem Classification (BEC) into our analysis. Based on
vegetation, climate, and soil characteristics, BEC is a well-established
classification system that categorizes British Columbia into relatively
independent ecosystems (Pojar et al., 1987). With a hierarchical
structure, BEC organizes ecosystems at three distinct levels: local, re-
gional, and chronological (MacKinnon et al., 1992). By considering the
influence of climate and soil conditions on vegetation, the potential for
vegetation can be determined for each site. At the broadest level, BEC
zones represent areas under the control of a particular type of macro-
climate, characterized by the most dominant tree species. Our study
area can be divided into 16 BEC zones, which may contain valuable
information for tree species classification (Hamann and Wang, 2006).
We used the BEC zones as a categorical predictor variable to char-
acterize the potential associations between climatic and ecological re-
gimes and forest attributes.

3.2.5. Ecozones
We used the ecozones of Canada as a guide to interpret the varia-

tions in dominant species classification accuracy at meaningful ecolo-
gical scales for the province in the results section. In total, there are
fifteen terrestrial and five marine ecozones in Canada, each character-
ized by distinct biotic and abiotic properties. British Columbia covers
five terrestrial ecozones, including Pacific Maritime, Boreal Cordillera,
Montane Cordillera, Taiga Plains, and Boreal Plains (Ecological
Stratification Working Group, 1996).

3.3. Image segmentation for micro-stand establishment

We applied automatic image segmentation over British Columbia-
wide Landsat surface reflectance pixel composites to produce polygons
of homogenous spectral features that resemble forest stands. Due to its
ability to group spatially-adjacent pixels into image segments with

relatively high within-segment homogeneity, image segmentation is
well-suited for delineating forest stands, as exemplified by Wulder and
Seemann (2003); Hay et al. (2005), and Mora et al. (2010). To ensure
the homogeneity of our prediction units, the imagery was intentionally
over-segmented, producing forest patches at the micro-stand level
(Mustonen et al., 2008; Maltamo and Packalen, 2014). A multi-
resolution segmentation procedure was implemented in eCognition
(Trimble, USA) to segment the Landsat surface-reflectance pixel com-
posites, with scale= 20, shape=0.1, and compactness= 0.5. Despite
the availability of techniques which can automatically determine the
optimal parameters for image segmentation (Drăguţ et al., 2014;
Gonçalves et al., 2019), these techniques tend to follow specific eva-
luation criteria not applicable to this study, such as spectral variation in
the spatial domain (Woodcock and Strahler, 1987), spatial alignment
with reliable reference polygons (Yang et al., 2015), or classification
accuracy (Gonçalves et al., 2019). Therefore, segmentation parameters
were determined empirically through an iterative process aimed to
generate polygons representing relatively homogeneous forest condi-
tions, as per the approach of Wulder et al. (2004a, b). Following image
segmentation, each object was characterized with the median values for
all the predictor variables, which were used subsequently for gen-
erating wall-to-wall forest attribute maps at the micro-stand level.

3.4. Training and validation sample selection from VRI data

As part of our sample selection strategy, we implemented a two-
stage data screening procedure to remove records that deviate from
pooled data trends and ranges present in the VRI database (Fig. 3).
Since high intra-polygon variability represents over generalization in
stand delineation (Næsset, 1996), homogeneous VRI polygons were
deemed to be of lower uncertainty. To select VRI polygons with
homogeneous internal conditions, we implemented the following se-
lection rules: (1) VRI polygon area<50 ha, (2) number of micro-stands
within a polygon< 15, (3) within-polygon height and canopy cover
coefficient of variation<0.5, (4) number of land cover types within a
polygon< 2, (5) majority of the polygon covered by treed classes.
Sampling ensured that different types of forest stands with varying
canopy cover conditions and species composition were eligible for se-
lection. The second phase of sample selection aimed to mask out VRI
polygons exhibiting poor correspondence between forest attributes in
VRI and the corresponding Landsat-derived forest structural variables
(Matasci et al., 2018a, 2018b). Polygons exhibiting significant

Fig. 3. Workflow diagram consisting of (i) VRI data screening and (ii) model development and assessment.
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discrepancy in stand-level estimates were removed from the training
pool by developing linear regression models for canopy height and stem
volume using all the VRI samples, and samples with the highest re-
siduals (± top 20%) were removed (Fig. 3). Descriptive statistics for
the response variables, site index, stem density, and stand age after the
training pool refinement are presented in Table 3. The raw VRI data has
over 3 million polygons, which was reduced to approximately 0.4
million after these data screening protocols were applied. Compared to
the descriptive statistics presented in Table 2, the distributions of the
response variables became narrower after the data screening protocols
were applied. Considering that the raw VRI data derived from photo
interpretation comes with a largely unknown margin of error, this
discrepancy highlights the effectiveness of our data screening protocols,
aimed to remove VRI polygons that may have unrealistic estimates.

To capture the compositional and structural variability across
British Columbia, we divided the study area into a tessellation of
100×100 km tiles representing unique geographic zones.
Subsequently, training and validation samples were drawn from each
zone following a stratified random sampling strategy over all the spe-
cies present. To characterize the regional particularities of each zone,
8000 training samples were selected from each of the 133 zones in
British Columbia, while a total of 12,000 samples were selected for
model validation. A subset of the validation samples were used for
evaluating species classifications following methods introduced in
Section 3.5.5.

3.5. Statistical analysis

3.5.1. Random Forests model
The refined selection of VRI polygons formed the basis of predictive

modelling of forest attributes using the Random Forests (RF) technique
(Breiman, 2001). As a classic non-parametric modelling technique, the
RF model does not make assumptions on data distribution (Breiman,
2001), and is capable of handling both classification and regression
tasks (Belgiu and Drăguţ, 2016; Rodriguez-Galiano et al., 2012; Pal,
2005). Specifically, RF regression was performed for continuous vari-
ables examined in this study (i.e., stand age, site index, and stem
density), and RF classification was applied to discriminate dominant
species. RF consists of a number of decision tree models, each trained
with a subset of predictors using a bootstrap sample of the original
training data. Variable importance scores are determined as the mean
decrease in Gini for classification and mean decrease in MSE for re-
gression. For model calibration, we applied the default parameters:
number of regression trees (i.e., ntree) was set to 500, the number of
predictor variables sampled at each split (i.e., mtry) was set to one third
or the square root of the total number of predictors for regression and
classification, respectively, and the minimum terminal node size (i.e.,
nodesize) was set to five.

3.5.2. Dimensionality reduction through variable clustering
Even though RF is relatively robust against collinearity among

predictor variables (Penner et al., 2013; Breidenbach et al., 2010;
Hudak et al., 2008), the presence of collinearity could impose bias in
variable importance derivation and result in suboptimal performance
(Chrysafis et al., 2017; Karlson et al., 2015). Therefore, hierarchical
variable clustering was employed to reduce the redundancy (i.e.,

collinearity) among the predictor variables. This clustering technique
follows a bottom-up approach, grouping one pair of the most correlated
predictors at each iteration until only one cluster remains. Due to the
use of synthetic variables to represent each cluster, the ClustOfVAR
package in R (Chavent et al., 2011) allows for flexible variable clus-
tering on datasets with a mixture of quantitative and qualitative vari-
ables. The optimal number of clusters to retain was computed using the
adjusted Rand index (Hubert and Arabie, 1985), which informs on the
highest possible intra-cluster homogeneity. As a result, predictor vari-
ables falling into the same clusters are highly correlated; therefore, only
one predictor was selected to represent each cluster and calibrate the
predictive models.

3.5.3. Species separability analysis
To evaluate the spectral and structural separability of the most

dominant tree species across different landscapes within the study area,
PCA was performed for three sites along a latitudinal gradient prior to
the development of the RF models, each with unique species compo-
sitions (Fig. 1). The first two principal components (PC) were selected
to represent a two-dimensional feature space, where similarity between
the most abundant species (top 80%) present in each site was examined.

3.5.4. Local versus global implementation of the RF model
Preliminary analysis of the BEC data indicated that different sub-

regions within British Columbia were occupied by distinct species
compositions with varying forest structural characteristics. To examine
how selection of training samples influence the predictive power of the
RF model, two RF models were developed for species classification:
local model and global model. The global model was calibrated with a
collection of samples across all the zones introduced in Section 3.4,
while the local approach aimed to develop predictive models for each
zone independently. Given the large number of VRI polygons available
for model calibration, we conducted sensitivity analysis to determine
the optimal training sample size for both the local and global model.
The effective training sample size for the former was the number of
training samples within the individual zones, while that of the latter
was carried out by counting the total number of training samples across
all the zones in British Columbia. With such a large volume of training
data collected over the entire land base of British Columbia, an addi-
tional rule was added to the global RF model: for each mapping unit the
predicted species is limited to the species compositions of the local zone
it resides in, such that species not present in the local region are not
predicted by the global model. Based on the premise that the level of
association between our predictor variables and the other response
variables do not vary as strongly as the case with species, only global
models were developed for stand age, stem density, and site index,
following similar modelling strategy as the global species classification.

3.5.5. Model assessment
Agreement between VRI data and our model outputs for dominant

species, age, site index, and stem density were assessed via independent
validation samples. These validation samples were derived in a similar
manner as the calibration data, by using the median values within VRI
polygons. A sample size of 1200 was selected for validation using a
stratified random sampling procedure following Eq. 1 (Cochran, 2007).

= × × −
z
m

n ( ) p (1 p)2
(1)

where n is the total sample size, z is the percentile associated with the
desired confidence interval (1.96 for 95% confidence interval), m re-
presents the margin of error (0.02), and p is the population proportion
assumed in this study (0.85).

The allocation of the validation samples followed the re-
commendation from Czaplewski and Patterson (2003), such that minor
classes are over-represented to obtain a comprehensive understanding
of the classification system (Eq. 2).

Table 3
Descriptive statistics for site index, stem density and stand age in VRI after
training pool refinement based on approximately 0.4 million samples.

Attribute Min Max Average Standard deviation

Stand age (years) 8.0 831.0 148.1 73.2
Site index 2.0 59.9 12.0 4.9
Stem density (stems/ha) 1 5100 742.9 589.1
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2i i (2)

where ni is the sample size assigned to class i, pi is the proportion of

area occupied by class i, n represents the overall sample size, and k is
the total number of classes.

Confusion matrices were derived for both the global and local spe-
cies model, and overall, user’s, and producer’s accuracies were

Fig. 4. Predicted stand age, site index, stem density, and dominant species mapped at the micro-stand level for sites A, B, and C at different spatial scales (see Fig. 1
for location of the sites). The non-treed areas consist of non-treed land cover, such as water, snow/ice, exposed land, etc.

Fig. 5. Size distribution of (A) micro-stand level objects derived from image segmentation, and (B) VRI polygons after the data screening criteria were applied.
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calculated using a class proportion-adjusted weighting scheme
(Olofsson et al., 2014). Performance of the RF regression models for site
index, stand age, and stem density was evaluated using coefficient of
determination (R2) and relative root mean squared error (%RMSE).

4. Results

4.1. Forest attribute maps

The predicted stand age, site index, stem density, and dominant
species are presented in Fig. 4 for the three select sites in our study area.
Overall, there is a moderate agreement between the geographical fea-
tures exhibited in the four sets of forest attribute maps, especially over
large areas. For example, productivity in riparian zones (Fig. 4A) were
clearly characterized with relatively high site index, where proximity to
water sources also influenced distribution of tree species. At a finer
scale (Fig. 4B), the boundaries of the micro-stands become more dis-
cernable, showcasing the remarkable amount of spatial details captured
in this harmonized polygon-based inventory system. In the medium
scale maps presented in Fig. 4C, the important role of topography and
landscape position in shaping the development of forests in terms of
both species composition and disturbance history is evident.

4.2. Micro-stand characterization

The size distribution of our micro-stand level segmentation and that
of the VRI polygons remaining in the training pool after data cleaning
(described in Section 3.4) is shown in Fig. 5. In both cases, the majority
of the polygons were relatively small in size: approximately 90% of
image-derived polygons and 79% of the polygons in the refined VRI
pool were respectively below 5 ha in size. However, the distribution of
the VRI polygons featured a slightly longer tail, with some polygons
exceeding 20 ha. Overall, the size distribution of VRI polygons selected
for model development were in alignment with our micro-stand scale
objects, which means the training pool selection protocols contributed
to controlling the size and intra-polygon homogeneity of VRI.

4.3. Dimensionality reduction

Fig. 6 presents the variable dendrogram obtained from the variable
clustering analysis, aimed at reducing the dimensionality of the feature
space. Since this clustering technique groups the most similar pair of
variables at each iteration, the most correlated variables are grouped
together at the bottom of the dendrogram, such as elevation p95 and

lorey’s height as well as volume and biomass. After the optimal parti-
tioning strategy was determined (depicted in red dotted line), only one
predictor was allowed to emerge from the individual clusters of vari-
ables, thus reducing the level of collinearity among the predictor
variables. Based on the information conveyed, our predictors consist of
three major functional groups (Fig. 6). The first one was comprised
primarily of geographic and climatic variables (i.e., latitude, longitude,
and BEC zone), topographical variables derived from a DEM (i.e., ele-
vation, slope, TSRI, and TWI), and spectral variables derived from
Landsat data (i.e., land cover, TCB and TCG), representing environ-
mental conditions. The second functional group was characterized by
forest disturbance-related information, such as disturbance type and
year of the disturbance. The last cluster consisted of Landsat-derived
forest structural variables, such as canopy height, variability of height,
cover, and biomass.

4.4. Species separability

In Fig. 7, we report the varying levels of class separability for stand-
level dominant species across a latitudinal and longitudinal gradient in
our study area. The degree of overlap between the co-occurring species
classes varied between 20% and 90% depending on the site. For site C,
the distributions of samples for the four most abundant tree species
were widespread within the two-dimensional feature space, which
implies these species would be difficult to differentiate using parametric
models. In contrast, the patterns associated with the most dominant
species in site B are easier to discern based on topographical positions
and spectral signatures characterized by TCB and TCG. Despite the
significant overlaps between species in the feature space for site B and
C, it is worth noting the correspondence between species distribution
and the predictor variables. For example, the four species in site C
exhibited a gradient along PC2, represented by topographical variables,
such as elevation and slope, while TCB and TCG also contributed to the
differentiation between Spruce hybrid and Engelmann spruce in site B.
Therefore, the utility of predictors varied from one site to another for
discriminating tree species, relating to the varying driving factors be-
hind a given species distribution.

4.5. Model assessment

4.5.1. Species classification
Fig. 8 depicts the performance of local and global species classifi-

cations as a function of training sample size. With small sample size
(n< 500 per zone), both models performed poorly with an overall

Fig. 6. Variable dendrogram derived from
variable clustering analysis. The red dotted line
indicates the optimal partition that minimizes
the correlation among the remaining predictors
yet retains the majority of the information from
the input. For interpretation purposes, this
variable dendrogram was partitioned into three
primary functional groups. (For interpretation
of the references to colour in this figure legend,
the reader is referred to the web version of this
article.)
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accuracy of lower than 50%. As expected, accuracy for both the local
and global classification increased as more training samples were se-
lected; however, the rate of increase was markedly different between
the two. The local model reached an accuracy of approximately 60%
with 2000 training samples per zone, while the global model plateaued
at an accuracy of approximately 50% even with much larger sample
size across all the zones (i.e., 2500×130 zones). In addition to im-
proved classification accuracy, the local species model was more
computational efficient than the global model, proving it a more sui-
table approach for large area mapping.

With 8000 samples per zone, the local species classification reached
an overall accuracy of 61.7% globally, and the model generated a
species distribution comparable to the reference data over the entire
British Columbia (Fig. 9). Even though the final species classification
was derived from an ensemble of sub-models calibrated with locally
drawn samples, there was a noticeable discrepancy between the ob-
served and predicted species abundance. The rare species were under-
predicted, while the more dominant species were over-predicted.
Fig. 10 depicts the user’s and producer’s accuracy for the five ecozones
in our study area. Despite the varying accuracies for different species,
the user’s accuracies were generally higher than producer’s accuracy,
which means there were generally greater omission than commission
errors. Additionally, rare species, on average, had higher user’s

accuracies than more dominant species, and accordingly lower produ-
cer’s accuracies, especially in the Montane Cordillera zone. Among the
five ecozones, Taiga Plains had the highest overall accuracy at 71.2%,
Boreal Cordillera ranked the second with an overall accuracy of 69.1%,
followed by Pacific Maritime (68.8%), Boreal Plains (63.4%), and
Montane Cordillera (63.1%).

4.5.2. Forest structural attributes estimation
The goodness-of-fit statistics for site index, stand age, and stem

density is presented in Fig. 11. Among these three forest attributes, site
index had the best fit, with a R2 of 0.74 and a %RMSE of 23.1%. Re-
latively good agreement was also found between predicted and re-
ference stand age (R2= 0.62, %RMSE=35.6%). In contrast, stem
density was modeled with much lower accuracy (R2=0.33, %
RMSE=65.2%), which was expected given the difficulty in predicting
stem density even with active remote sensing instruments (Maltamo
et al., 2004; Shang et al., 2019).

4.5.3. Variable importance analysis
In terms of the contribution of different predictor variables to the

estimation, environmental predictors encompassing various spectral,
geographic and topographic variables were, in most cases, the most
important variables for the range of forest attributes examined in this
study (Fig. 12), followed by Landsat-derived forest structural variables.
The only exception was stem density, which was more closely asso-
ciated with forest structural information (e.g., TCW). For all the forest
attributes, disturbance-related information did not contribute as much
to the predictive models, possibly due to the fact that forest dis-
turbances are not reflected in VRI in a timely fashion. Among the in-
dividual forest attributes examined, some variations in variable im-
portance were found. For example, climatic information (i.e., BEC zone)
was only ranked the 9th most important variable for predicting species,
but it made much stronger contributions to modelling site index and
stand age.

5. Discussion

The mapping of forest attributes over large areas is challenging due
to the extensive and diverse training data required and the related high
cost of obtaining a representative sample of field plots over these large
geographic extents (Chopping et al., 2008; White et al., 2016). The
modelling approach presented herein aims to mitigate these issues by
integrating pre-existing large-area forest inventory information and
remotely-sensed data in a transparent and systematic modelling fra-
mework, which enhances the timeliness of the information and results
in greater spatial detail.

Fig. 7. Distribution of stand-level dominant
species in a two-dimensional feature space re-
presented by the first and second principal
components derived from PCA based 2000
samples drawn using a stratified random sam-
pling strategy, for test sites B and C. For inter-
pretation purposes, the loadings of only six
predictor variables are presented.

Fig. 8. Sensitivity of the local and global species classification accuracy to
training sample size per zone.
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Fig. 9. Overall predicted species abundance compared to reference species abundance weighted by area.

Fig. 10. Producer’s and User’s accuracy of stand-level dominant species for each of the five ecozones in British Columbia. From top to bottom, the species are
arranged in a descending order based on their abundance in British Columbia.
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5.1. Utility of micro-stand derived through segmentation

Despite the extensive coverage of the VRI data, one inherent issue
that arises from aerial photo interpretation is the quality and con-
sistency of forest stand delineation and the estimated attributes across
human interpreters. Numerous studies have explored methods to au-
tomate the delineation of forest stands from high spatial resolution
imagery using object-based image analysis (Hay et al., 2005; Wulder
et al., 2008b; Mora et al., 2013). Despite the more coarse spatial

resolution of Landsat compared to these high spatial resolution ex-
amples, multiple Landsat pixels are containted within forest inventory
polygons providing opportunity to derive spectrally homogeneous
image objects, described herein as micro-stands. Micro-stands are
generated with an aim to reduce the uncertainties associated with
larger, more internally heterogeneous, polygons found in VRI (Wulder
et al., 2004b). Rather than attempting to directly delineate individual
forest stands through image segmentation, a process similar to the
super-pixel approach, designed to remove noise and lower the

Fig. 11. Predicted versus reference values (VRI) for site index, stand age, and stem density on the 1200 validation samples. Point density is indicated with a purple to
yellow color gradient. The 1:1 lines are shown in red, and the regression lines between predicted and reference values are in dashed black. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 12. Variable importance for the four forest attributes modeled in this study. The variables are color coded according to the variable functional groups identified
in Fig. 7.
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computational hurdle, was implemented (Zhang et al., 2015). Given
that these objects are smaller in size compared to the VRI polygons,
intra-polygon spectral homogeneity is improved, thereby enabling the
development of stronger models. Since forest inventories are tradi-
tionally compiled at the stand level, the micro-stands afford additional
spatial detail that is normally subsumed in the larger VRI polygon
(Figs. 4). The use of smaller micro-stands results in a larger number of
data records for the inventory, with implications to data management
and analysis. This enhanced information can be carried forward in the
inventory as value added, or be removed to avoid any confusion once
polygon level attribution is completed. Trade-offs between spatial detail
and data management are relevant, but are becoming less of an issue in
an age when inventories are fully digital and computational resources
are readily available and increasingly cost effective.

A unique challenge pertaining to the integration of remotely-sensed
data with pre-existing forest inventory data in a polygon format is the
potential differences in scale (Wulder et al., 2006). Considering the
small size of the micro-stands obtained from image segmentation, a
number of homogeneity criteria were put in place to facilitate the se-
lection of relatively homogeneous VRI polygons as training data. Ad-
ditionally, data acquisition and interpretation for VRI took place over
the time span of several decades (British Columbia Ministry of Forests,
Lands, Natural Resource Operations and Rural Development, 2018).
Even though several forest attributes were projected to the current date
with a growth and yield model, this extensive timespan increased un-
certainties of the VRI data. Given that the structural layers derived from
Landsat data and ALS plots were generated in a spatially and temporally
explicit manner, these layers were used to further refine the selection of
VRI polygons for model development, based on the premise that poly-
gons showing good agreement with the predicted structural variables
would be more up-to-date and of higher quality. In addition to potential
forest disturbance events between acquisition of aerial photographs and
our target year 2015, the discrepancy between VRI and Landsat-based
forest structural layers could also be a result of inaccurate estimates in
photo interpretation and inherent errors associated with the imputed
forest structural layers themselves.

These selection criteria contributed to a more robust and reliable
pool of training data, which exhibited consistent characteristics with
our micro-stands in size distribution (Fig. 5). After the uncertainties in
the VRI data were reduced as much as possible, the recurrent ob-
servations made by Landsat can be leveraged to update forest inventory
information for the entire province with desired update frequency and
wall-to-wall coverage. This is particularly cost-effective compared to
reacquisition of aerial photographs and interpretation. In addition, the
wall-to-wall maps of forest attributes generated from this study would
cover areas not previously included in VRI, such as provincial parks.
Given the diversity of the training samples used to calibrate our models,
these forested areas can be characterized with reportable levels accu-
racy, thereby satisfying science and policy information needs as well as
fulfilling national and international reporting obligations.

5.2. Agreement between predicted forest attributes and VRI

With large volumes of data, a balance between model efficiency and
predictive accuracy is of critical importance. The local model of
dominant species was developed with spatially constrained training
samples, while the global model was calibrated with samples across the
entire study area. As revealed in Fig. 7, the level of species separability
(i.e., degree of inter-species overlap) varies from one region to another,
so do the driving factors behind species distribution. This indicates that
species abundance mapping may be highly variable between regions. As
expected, the local model outperformed the global model by a large
margin both in terms of classification accuracy and computational ef-
ficiency. This is likely a result of the inclusion of “impure” samples into
the global model. Despite the species that different geographic zones
may have in common, the local controls of species distribution were

inconsistent, which would result in varying degrees of species separ-
ability (Fig. 7). Given that a global model makes predictions in a hol-
istic fashion, differentiation between tree species relies on the same set
of rules for the model to perform well. However, training samples
collected from multiple geographic areas could increase the hetero-
geneity of any given class. Even though RF performs a classification by
partitioning the training samples into homogeneous pockets in an
iterative fashion, the additional intra-class variability introduced from
multiple geographic zones likely reduced the accuracy and efficiency of
the classification. Zhang and Roy (2017) compared a global im-
plementation of RF land cover classification across North America
against a locally adaptive RF variant where part of the training samples
are replaced by locally collected samples. At a broader scale, these two
approaches made similar predictions; however, the locally adaptive RF
model had lower OOB error rates, indicating a stronger agreement
between the predicted and reference maps.

Following a similar approach, Thompson et al. (2015) used Landsat
BAP pixel composites and topographic variables to model dominant
species in Saskatchewan, Canada, with an OOB error rate of approxi-
mately 25%. Given the relatively simple species composition for Sas-
katchewan, only six tree species were examined compared to over 25
species classified in this research, which may in part account for the
relatively high accuracy reported in Thompson et al. (2015). As we
focus on the top 80% of the species in terms of relative areal coverage in
British Columbia, the agreement between VRI and classified species
increased to 72%. It must be noted however that species interpretation
from aerial photography is also prone to error, which can confound
models of species distributions that rely on relatively unique relation-
ships between species and predictor variables. Given that tree species
classifications conducted in this study focused on dominant species, the
relative proportion (by areal coverage) of species in VRI also influenced
the quality of training data, with highly mixed stands being inherently
more challenging to classify than pure stands. As we examined the
agreement between predicted species and VRI records on an individual
zone basis, moderate variations in agreement were found between
geographic zones, which may in part be attributed to the local species
richness and corresponding driving factors controlling for species dis-
tributions (e.g., disturbance history and land form). Additionally, intra-
year spectral information has been demonstrated as a means to capture
phenology and may be of value in further improving species identifi-
cation (Dymond et al., 2002; Pasquarella et al., 2018).

The variable importance scores (Fig. 12) corroborated the sig-
nificant contribution of geographic variables (i.e., latitude and long-
itude), at both local (species) and broader scales (site index and stand
age). This means that the predictive models tend to first select geo-
graphic or topographic variables over other predictors to partition the
data into relatively homogeneous samples before they are used to refine
the predictions. Similar utility of geographic variables has been found
for modelling forest structure in existing studies (Zald et al., 2016;
Bolton et al., 2018; Matasci et al., 2018b). Stem density, as an excep-
tion, did not share the same level of correspondence with geographic/
topographic variables. Considering that it also had relatively poor ac-
curacy, the primary driving factors behind stem density are likely ab-
sent from our model, such as management interventions, species com-
position, and stand development stage. Among the three forest
structural variables examined in this study, the site index model fea-
tured the highest predictive accuracy. Given that site index represents
the average height of dominant and co-dominant trees attained at 50
years, it is strongly associated with stand age. However, stand age was
predicted with noticeably lower accuracy than site index. This was
likely a result of non-linear relationship between stand age and height:
the rate of stand height development decreases as it ages (Huang et al.,
1992), which might not be captured by Landsat time series data.
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6. Conclusion

In this research, we presented an automated methodology to esti-
mate a suite of forest attributes at the stand-level in a transparent and
systematic fashion, which allows for a cost-effective means towards
updating of jurisdictional strategic forest inventory databases.
Following a series of sample selection criteria, a pre-existing polygon-
based provincial inventory system was integrated with a selection of
Landsat-derived predictor variables to form the basis of our predictive
modelling framework. As a part of our modelling strategy, image ob-
jects were obtained through multiresolution segmentation, which led to
the prediction of forest attributes at the sub-inventory polygon, or
micro-stand, level. The comparison between the local and global spe-
cies classification models revealed that the local model implementation
was more suitable for large-area species mapping in terms of predictive
accuracy and computational efficiency. Quantitative accuracy assess-
ment demonstrated good agreement between the predicted and re-
ference forest attributes. By leveraging the open Landsat archive and
derived data products, the methodology demonstrated in this paper
enabled us to map currently estimated (e.g., height, biomass, volume;
after Matasci et al., 2018a) and an expanded suite of forest attributes
across a large, environmentally and economical important. Integration
with current information and processes is buttressed through using pre-
existing forest inventory data as the basis for the model training pool
and the mapping of outcomes. Given the recurrent nature of satellite
observations, this enables more frequent and consistent updating of
forest inventory information, thus contributing to more timely and
transparent forest monitoring. The approach demonstrated avails upon
open access data sets and is portable, suitable for implementation
outside of this study area.
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